
HTML By Example/appa.htm

Appendix A

Answers to Review Questions

CONTENTS[bookmark: CONTENTS]

		Chapter 1

		Chapter 2

		Chapter 3

		Chapter 4

		Chapter 5

		Chapter 6

		Chapter 7

		Chapter 8

		Chapter 9

		Chapter 10

		Chapter 11

		Chapter 12

		Chapter 13

		Chapter 14

		Chapter 15

		Chapter 16

		Chapter 17

		Chapter 18

		Chapter 19

		Chapter 20

		Chapter 21

		Chapter 22

		Chapter 23

		Chapter 24

		Chapter 25

		Chapter 26

		Chapter 27

		Chapter 28

		Chapter 29

[bookmark: Chapter1]Chapter 1

		No. It's a text mark-up language.

		True.

		SGML (Standard Generalized Mark-up Language.)

		Explicit formatting means the designer specifies the appearance
of text. Implicit formatting leaves appearance up to the Web browser
application.

		False. WordPerfect documents are binary (i.e., non-ASCII)
computer files that can't be edited without a special word processing
application.

		No. The HTML Working Group is part of the IETF. The W3C is
an organization of Internet companies.

		To reach the widest possible audience of designers and users.

		By deciding which elements or commands to use and which to
ignore.

[bookmark: Chapter2]Chapter 2

		The Web protocols allow Web server computers to send many
different types of data and information.

		Hypertext is a system of documentation where certain words
in a document are linked to other documents. The Microsoft Windows
help system is an example of hypertext.

		False. Hypermedia links are hypertext links to multimedia
files.

		A site is a collection of Web documents and files. A page
is a single Web document.

		Helper applications are used to display or play non-HTML files
and documents, like multimedia files.

		File extensions help browsers determine the file types of
multimedia files.

		Gopher and FTP.

		Your e-mail address.

[bookmark: Chapter3]Chapter 3

		The original graphical browser is NCSA Mosaic. The most popular
is Netscape Navigator.

		Page layout.

		Lynx is a text-only browser.

		Server address.

		mailto: is followed by
a simple e-mail address instead of a server/path combination.

		A forward slash (/).

		Yes (assuming the path and filename were correct).

		True. All text and graphics on Web pages must be downloaded
to the user's computer.

		(a) binary; (b) ASCII; (c) binary; (d) binary.

[bookmark: Chapter4]Chapter 4

		Yes. Customer service and technical support.

		Multimedia makes the Web a unique marketing medium, where
customers can interactively experience products and services.

		The All-Rite travel site could be updated more frequently
with special offers than could their brochures, with more appeal
than direct mailings.

		It can sit dormant and unchanged for weeks or months.

		A Web page or site that acts as a front end for data processing.

		The next logical medium for publication.

		HTML 2.0.

		Tables (also frames and text/graphics alignment).

[bookmark: Chapter5]Chapter 5

		False.

		Web server software and a high-speed Internet connection.

		Kbps is thousands of bits per second. Mbps is millions of
bits per second.

		Call your local phone company.

		Throughput is the average amount of information per user multiplied
by the number of users. ISPs charge for throughput to discourage
one site from monopolizing the ISP's Internet connections.

		Eight characters with a three-character extension (8.3).

		The hybrid systems uses separate directories for items that
appear once (e.g., documents and files specific to a particular
Web page), while commonly-accessed files are kept in their own
directories (e.g., "logos").

		A graphics file; most likely a photo of a person. This graphic
might be linked to the About the Company page on a Web site.

		Put. Uploading means
sending the file.

[bookmark: Chapter6]Chapter 6

		No. You can use a simple text editor or word processing program.

		HTML files are saved in the ASCII text file format. The extension
should be .html or .htm.

		<HTML>, <HEAD>,
and <BODY>.

		<TITLE>.

		Save it with a new file name and HTML extension.

		Container tags have two parts, the "on" and "off"
tags, and containers act on a specific block of text. Empty tags
appear once and perform some function on their own.

		<HR> (also
).

		The "on" and "off" tags aren't identical
except for a forward slash (/).

		True.

		<P> is a container
that defines a section of text;

is an empty tag that forces a line return.

[bookmark: Chapter7]Chapter 7

		Explicit is also known as physical styles; implicit is also
known as logical styles.

		Implicit tags let the browser choose the formatting; explicit
tags let the designer choose.

		Because it gives the browser no choice in how to render the
affected text.

		No, <I> will not
work in a text browser. Yes,
will.

		<VAR>.

		For internal documentation when your HTML document explains

computer-related issues.

		Yes.

		The <P> paragraph
tag.

		Yes.

[bookmark: Chapter8]Chapter 8

		The list type container tag ()
and the list item empty tag ().

		A bullet point (and a return).

		No.

		Directory list.

		Yes.

		It can accept two different list item tags, <DT>
and <DD>.

		No.

		No.

		No. The concept comes from computer programming and works
with many HTML tags.

		B.

		An unordered list ()
nested within an ordered list ().

[bookmark: Chapter9]Chapter 9

		The file size of the graphic.

		True.

		GIF and JPEG. Yes, but many browsers will require helper applications
to view other graphics formats.

		When compressed, the graphic file loses image quality.

		Create the graphic. Download public-domain graphics. Use scanned
photographs. Use graphics created by a digital camera. Use PhotoCDs.

		Around 20 kilobytes.

		Small images that are linked to a larger version of the same
image that users can view if interested.

		The GIF89a format.

		An attribute.

		It displays text in browsers that can't view the image file.

		False.

		It's the default value.

[bookmark: Chapter10]Chapter 10

		An attribute.

		No.

		A section link. It's going to access another section of the
same document.

		Yes.

		The <BASE> tag
establishes the absolute base for relative URLs in your document.
It appears between the <HEAD>
tags.

		False. It requires an absolute URL.

		No. mailto: does not
require a double-slash (//).

		<REL> and <REV>
(also <HREF>).

		No.

		Ask the Web server administrator.

[bookmark: Chapter11]Chapter 11

		False.

		Yes, to emphasize the text used for the hypertext link.

		<U> (underline).

		No.

		Yes. It accesses the section parttwo
in the local document chapter1.html.

		This is an anchor for a clickable graphic thumbnail. It is
legal.

		Yes, but it might not display automatically in the browser
window or helper application.

[bookmark: Chapter12]Chapter 12

		Because these images are "mapped" into different
sections that act as hyperlinks.

		Create the graphic, map it for hot zones, and place the correct
information on the Web server.

		ASCII text.

		Yes. You need to know if your map definition file should be
in CERN or NSCA format.

		Ask your Web server administrator.

		Two. 100.

		True. The map editing program is just designed to create the
map definition file, which you could conceivably create in a text
editor.

		The graphic file and the map definition file.

		No. The shapes are drawn to determine the coordinates of shapes
for the map definition file. The map editing program doesn't alter
the image file in any way.

		Any click that doesn't occur in another shape will be evaluated
by the server as "close" to the point, and the default
will never be accessed.

		The coordinates of the mouse pointer when clicked. The design
adds the ISMAP attribute
to the tag.

[bookmark: Chapter13]Chapter 13

		GET and POST.
POST is used most often.

		The URL to a form-processing script.

		<TEXTAREA> is used
for free-form entry. The user enters data with the keyboard.

		The default text for the textarea.

		An attribute.

		Checkboxes work independently of one another; radio buttons
allow one selection among a number of choices.

		Use the attribute CHECKED.

		With a Submit button (TYPE="SUBMIT").
When the user clicks this button, the data is sent.

		A pop-up menu.

		It displays as a scrolling menu.

		Use the attribute SELECTED.

[bookmark: Chapter14]Chapter 14

		<P> is designed
as a container, not a line-return tag. <P>
also adds varying levels of space in different browsers.

		Yes. Yes.

		A series of form elements that logically belong together (e.g.,
name and address).

		Extra spacing. Multiple

tags don't render consistently in different browsers.

		Don't use the

tag between them.

		It doesn't allow the user to enter more than the defined number
of characters. It's errorchecking for elements like phone numbers
or ZIP codes that should always be a certain number of characters.

		It allows you to align elements using a monospaced font. You
"lose" the use of the browser's paragraph font (all
descriptive text between <PRE>
tags is rendered in the monospaced font).

		The <DL> list never
uses bullet points or numbers for list items. A
list would display bullets.

		The list is
used to number form elements.

		The POST method is more
powerful, because it allows for more data to be transferred. The
GET method is a bit easier
to use.

		Most scripts can use a standard print command to "standard
out" for HTML output. The Web browser acts like a terminal
console.

[bookmark: Chapter15]Chapter 15

		Because most current browsers don't support the full specification.

		Yes.

		Inches.

		CELLPADDING is the distance
between the cell walls and the cell's contents. CELLSPACING
is the distance between the walls of the table and the individual
cells.

		False. The default (when no value is assigned) is a one pixel
border.

		At the top of the table.

		Yes.

		This creates one cell with three lines of text. (Each name
appears below the previous name within a stretched cell.)

		ALIGN.

		If that particular cell needs special alignment (e.g., dollar
amounts).

[bookmark: Chapter16]Chapter 16

		LEFT and RIGHT.

		True (aside from LEFT
and RIGHT, which align the
figure relative to the browser window).

		Inline.

		Multipurpose Internet Mail Extensions. The styles used for
<INSERT> are not all
official MIME types, so we call them MIME-style.

		It's used when the browser is unable to display the <INSERT>
tag's multi-media file.

		This chapter doesn't include a table of values for NAME
and VALUE because different
multimedia file formats will use these attributes for different
reasons. The best place to find these values is from the company
or organization that created the multimedia file format.

		Yes. <PARAM> is
only used when you want to pass a parameter to the multimedia
file. If the file doesn't require a special parameter, there's
no reason to use the <PARAM>
tag.

		It reserves those functions for HTML 3.0 level style sheets.

		Light, between tan and gray. HTML 3.0 doesn't let you control
font colors, and most browsers default to black text. Dark backgrounds
will make pages difficult to read.

[bookmark: Chapter17]Chapter 17

		A client-side image map doesn't require a special map server
program on the Web server.

		No. The <MAP> tag
is used to define the map.

		Not all browsers support client-side maps, so including support
for both types of image map reaches the widest possible audience.

		True.

		USEMAP. <MAP>.

		Rectangle (RECT), circle
(CIRCLE), and polygon (POLYGON).

		The client-side map specification includes support for ALT
hypertext links for text-only browsers. The browsers must be updated
to recognize this standard, so that the ALT
text is rendered.

		When users with browsers that don't support client-side image
maps click an image map, they can be taken to a page that explains
this problem and/or gives them an alternative way to access the
links on your site.

[bookmark: Chapter18]Chapter 18

		Shorthand references for HTML tags.

		Parentheses.

		False. They are used to represent math formulas.

		The integration symbol.

		e~.

		No. <BANNER> is
used to fix a portion of the HTML document at the top of the browser
window, so that subsequent text scrolls under it.

		Style sheets are for specific control over the layout and
appearance of a Web page. Up until the style sheet specification,
the HTML standard gave the browser program more control over page
layout than it gave the designer.

		Cascading Style Sheets standard. It's a specific definition
of the different layout and appearance options you have for your
Web page. CSS is only one possible definition for HTML style sheets.

		Classes are defined as extensions to HTML tags in the <STYLE>
container (usually in the head of a tag). Classes are implemented
using the attribute CLASS=
to a given mark-up tag.

		 does nothing
on its own; it has to be defined. <DIV>
is a similar tag in that it does no specific formatting, but can
be used for limited layout functions (like alignment).

		The background will be a blend from white to blue.

		It allows you to incorporate a common style sheet for a number
of pages.

		<CENTER>.

[bookmark: Chapter19]Chapter 19

		<DIV ALIGN="CENTER">.

		The values for red, green, and blue. This is the hexadecimal
numbering system.

		It sets the color of an active hypertext link.

		<BLINK>.

		No. No, <WBR> suggests
to Netscape where it's possible to break a word

or line;
 forces
a break when inserted.

		False. <BASEFONT>
changes all paragraph fonts, but text in header tags

(e.g., <H3>) is unaffected.

		No, a plus or minus sign is not required.

		False. It accepts no values.

		Yes.

		VPSACE and HSPACE.

		ALIGN creates a floating
image when used with the values LEFT
or RIGHT.

[bookmark: Chapter20]Chapter 20

		It actually replaces the <BODY>
tag.

		True.

		The page has two columns; one column is 25 percent of the
screen and uninterrupted, while the second column is 75 percent
of the screen and divided into two equal rows.

		auto.

		Netscape (and compatible browsers) are designed to ignore
text between <NOFRAMES>
tags. Browsers that don't recognize frames tags will ignore everything
but the markup.

		Don't start the name with an underscore (_).

		<FORM> and <BASE>.

		It forces all links on that page to target a particular frame
window without requiring you to enter a TARGET
attribute for every anchor.

		False. Magic targets are special commands that can't be performed
any other way.

		They can't directly access the URL for pages in the frames
interface and they can't use the Forward and Back buttons in their
browser.

[bookmark: Chapter21]Chapter 21

		BGSOUND is not an attribute
for <BODY>; it's a
stand-alone tag.

		An .au or .wav
sound sample or a MIDI format file.

		Three hexadecimal numbers for red, green, and blue values.

		As often as desired.

		It determines how many times the sound will play.

		It works with <TABLE>,
<TR>, and <TD>.

		<INSERT>.

		Using the START="MOUSEOVER"
attribute to an
tag allows the video clip to start by pointing the mouse at it.

[bookmark: Chapter22]Chapter 22

		<APPLET>.

		Yes.

		The <PARAM> tag
sends any parameters required by the Java program to the applet
when it's started.

		LANGUAGE.

		A method.

		It comes from the function call in the body of the document.

		The end of the comment tag should have //
in front of it to keep from confusing some browsers, as in:

// -->

		An event handler allows JavaScript to react to an event, which
can be defined as any action by the user.

		False. It could be named nearly anything.

		this.form.city.value
(also document.form.city.value).

		It's the opposite of focus.

		stringname.length.

[bookmark: Chapter23]Chapter 23

		player2.at_bats = 25.

		A method.

		The name assigned to the object by the keyword new.

		False.

		The second is an assignment. Assignments always evaluate to
true.

		The script simply moves on to the next statement.

		1.

		6.

		You can use the plus sign (+) to concatenate strings.

		stringname.link.

[bookmark: Chapter24]Chapter 24

		The use of a binary file format.

		x-world/x-vrml, .wrl.

		VRML is a different format from HTML and it's very important
to get the header and file format correct for VRML worlds.

		PI and .5PI.

		Yes. Cube has a default value of one meter for each dimension.

		Cylinder.

		False. It will begin at X=0.

		scaleFactor.

		It will be flipped upside-down.

		True.

[bookmark: Chapter25]Chapter 25

		The second entry is darker. (As a value approaches 1, it becomes
more intense.)

		Red.

		REPEAT tiles an entire
object with a texture, while CLAMP
forces only one copy of the tile graphic on an object. REPEAT
is the default, so you only have to type CLAMP
when that's the effect you want.

		It's best to use absolute URLs for VRML worlds in general
because many VRML browsers download to file to the user's computer
first, making relative URLs ineffective.

		Separator.

		There isn't much point in having a Material
statement as part of the WWWAnchor
node, since an anchor doesn't create a visible object. WWWAnchor
nodes should enclose other separator nodes that create visible
objects.

		To indicate the end of a series of point numbers that defines
one "side" of a shape.

		2.

		True.

		Inside of the sphere, at the center (until you move within
the VRML browser).

[bookmark: Chapter26]Chapter 26

		True.

		Yes.

		Acrobat.

		They are generally downloaded and handed over to a helper
application.

		MS Word for Windows 2.0 or above.

		RTF files maintain a minimal level of formatting (like font
sizes and alignment), while ASCII maintains no formatting beyond
basic characters, spaces, and returns.

[bookmark: Chapter27]Chapter 27

		Yes.

		A word processing program.

		ASCII text. Yes, any text editor or word processor.

		True. It creates an Unordered List.

		Properties, Text. (Then choose the Paragraph
tab.)

		Description Lists.

		No. Hit Shift+Return for
.

		Once your HTML documents are on the Web server, their path
statements might need to be slightly different than they were
on your PC. Browse creates PC-style relative links that may not
be appropriate for your site.

		By default, instead of creating a relative link, Gold copies
the graphic to the current directory.

		No. You need to use the Document Properties dialog box.

[bookmark: Chapter28]Chapter 28

		No, it's an add-on for Microsoft Word. It can be downloaded
free from http://www.microsoft.com/.

		Yes.

		ASCII text. Yes you can, in any text editor or word processor.

		True.

		Select OL from the pull-down menu in the button bar.

		In 1.0, a tab between the term and definition automatically
formats the list. In 2.0, you need to format each term and definition
individually.

		False. When using the HTML template, use the HTML file type
for saving, so that Windows correctly recognizes the file and
it's given the correct extension.

		A section link, e.g., .

		You enter the bookmark link first, and then create the calling
link.

		The Submit button. SUBMIT
and METHOD can be set in
the Submit Button Form Field dialog box.

[bookmark: Chapter29]Chapter 29

		No, you can also use command-key shortcuts for many HTML tags.

		Use the <P> tag
to get back to regular text.

		Since you need to assign every definition item individually,
this saves about half the work.

		There is no menu command. Press the <HR>
button in the button bar.

		Yes.

		PICT files are automatically converted to GIF files.

		The "magic wand."

		Use the shape tool to create hotzones and enter corresponding
URLs. Select the entire graphic and define a default URL. Return
to the editor window, select the graphic, and change the graphic
to a map using the Attributes Inspector.

		Regular text and HTML tags (like we've used throughout the
book). If you don't use a special command, PageMill assumes your
HTML markup is just text, not actual tags.

		Through the document button in the Attribute Inspector.

[image:]
[image:]
[image:]

HTML By Example/cc.gif

HTML By Example/ch1.htm

Chapter 1

What is HTML?

CONTENTS[bookmark: CONTENTS]

		HTML at a Crossroads

		HTML is not a Programming Language

		A Short HTML History

		Marking Up Text

		Who Decides What HTML Is?
		The HTML Working Group

		The World Wide Web Consortium

		Individual Companies and HTML

		Additional Information on HTML Standards and Organizations

		Summary

		Review Questions

The explosive growth of the World Wide Web is relatively unprecedented,
although it resembles the desktop publishing revolution of the
early and mid-1980s. As personal computers became more common
in homes and offices, people began to learn to use them for document
creation and page layout. Although early word processing programs
were not terribly intuitive and often required memorizing bizarre
codes, people still picked them up fairly easily and managed to
create their own in-house publications.

Suddenly, the same kind of growth is being seen as folks rush
to create and publish pages of a different sort. To do this, they
need to learn to use something called the Hypertext Mark-up
Language (HTML).

[bookmark: HTMLataCrossroads]HTML
at a Crossroads

HTML and the World Wide Web in general are currently in a stage
of development similar to that of the desktop publishing revolution.
Still working to reach maturity as a standard, HTML is feeling
the same growing pains that early word processing programs did-as
more users flock to HTML, there is a growing need to standardize
it and make it less complex to implement.

These days, word processors are much more intuitive than they
were 15 years ago. There are fewer codes and special keystrokes
required to get something done. The applications have matured
to the point where most of the low-level formatting is kept hidden
from the user of the application. At the same time, the printed
page is now more completely mirrored on the computer screen, with
accurately represented fonts, emphasis, line breaks, margins,
and paragraph breaks.

Although programs are quickly being developed to offer similar
features for HTML development, these tend to be less than ideal
solutions. Currently then, anyone who decides to learn HTML is
going to have to know some codes, memorize some syntax, and develop
pages for the World Wide Web without the benefit of seeing all
the fonts, emphasis, and paragraph breaks beforehand.

But anyone who has had any success with word processing programs
of ten or 15 years ago (or desktop publishing programs as recently
as five years ago) will have little or no trouble learning HTML.
Ultimately, you'll see that HTML's basic structure makes a lot
of sense for this emerging medium-the World Wide Web. And, as
with most things computer-oriented, you'll find that once you've
spent a few moments with it, HTML isn't nearly as difficult as
you might have originally imagined.

[bookmark: HTMLisnotaProgrammingLanguage]HTML
is not a Programming Language

There's nothing I'd like more than to say: "Yes, HTML is
a very difficult programming language that has taken me years
to master. So I'll have to charge $75 an hour to develop your
Web pages for you." Unfortunately, it's simply not the case.
As I've already hinted, creating an HTML document is not much
more difficult than using a ten-year-old copy of WordPerfect with
the Reveal Codes setting engaged.

		Tip

		

Remember the definition of HTML: Hypertext Mark-up Language. In HTML itself, there is no programming-just the "marking up" of regular text for emphasis and organization.

In fact, I prefer to call people who work with HTML "designers"
or "developers," and not programmers. Actually, there's
only limited design work that can be accomplished with HTML (especially
the most basic standards of HTML), and anyone used to working
with FrameMaker, QuarkXPress, or Adobe PageMaker will be more
than a little frustrated. But the best pages are still those created
by professional artists, writers, and others with a strong sense
of design.

As Web page development matures, we are starting to see more concessions
to the professional designers, as well as an expansion into realms
that do require a certain level of computer programming expertise.
Creating scripts or applets (small programs) in the Java language,
for instance, is an area where Web page development meets computer
programming. It's also a relatively distinct arena from HTML,
and you can easily be an expert in HTML without ever programming
much of anything.

The basics of HTML are not programming, and, for the uninitiated
in both realms, HTML is much more easily grasped than are most
programming languages. If you're familiar with the World Wide
Web, you've used a Web browser like Netscape, Mosaic, or Lynx;
and if you have any experience with a word processor or text editor
like WordPad, Notepad, SimpleText, or Emacs, then you're familiar
with the basic tools required for learning HTML.

[bookmark: AShortHTMLHistory]A Short
HTML History

HTML developed a few years ago as a subset of SGML (Standard
Generalized Mark-up Language) which is a higher-level mark-up
language that has long been a favorite of the Department of Defense.
Like HTML, it describes formatting and hypertext links, and it
defines different components of a document. HTML is definitely
the simpler of the two, and although they are related, there are
few browsers that support both.

Because HTML was conceived for transmission over the Internet
(in the form of Web pages), it is much simpler than SGML, which
is more of an application-oriented document format. While it's
true that many programs can load, edit, create, and save files
in the SGML format (just as many programs can create and save
programs in the Microsoft Word format), SGML is not exactly ideal
for transmission across the Internet to many different types of
computers, users, and browser applications.

HTML is more suited to this task. Designed with these considerations
in mind, HTML lets you, the designer, create pages that you are
reasonably sure can be read by the entire population of the Web.
Even users who are unable to view your graphics, for instance,
can experience the bulk of what you're communicating if you design
your HTML pages properly.

At the same time, HTML is a simple enough format (at least currently)
that typical computer users can generate HTML documents without
the benefit of a special application. Creating a WordPerfect-format
document would be rather difficult by hand (including all of the
required text size, fonts, page breaks, columns, margins, and
other information), even if it weren't a "proprietary"-that
is, nonpublic-document format.

HTML is a public standard, and simple enough that you can get
through a book like this one and have a very strong ability to
create HTML documents from scratch. This simplicity is part of
a trade-off, as HTML-format documents don't offer nearly the precision
of control or depth of formatting options that a WordPerfect-
or Adobe PageMaker-formatted document would.

[bookmark: MarkingUpText]Marking
Up Text

The most basic element of any HTML page (and, therefore, any page
on the Web) is ASCII text. In fact, although it's slightly bad
form, a single paragraph of regular text-generated in a text editor
and saved as a text file-can be displayed in a Web browser with
no additional codes or markings (see fig. 1.1). An example of
this might simply be:

Figure 1.1 : Text is so basic to HTML that it can be displayed in a Web browser with no additional commands or codes.

Welcome to my home on the World Wide
Web. As you can see, my page isn't

completely developed yet, but there were some things I simply
had to say

before I could get anything else done. My name is Emmanuel Richards,
and

I'm a real estate developer located in the San Fernando Valley.
If you'd

like, you can reach my office at 555-4675.

		Note

		

Although possible, you would never want to display plain text on the Web without conforming to certain HTML conventions, which are explained in Chapter 6, "Creating a Web Page and Entering Text."

Remember that HTML-formatted documents aren't that far removed
from documents created by a word processing program, which are
also basically text. Marking up text, then, simply means you add
certain commands, or tags, to your document in order to
tell a Web browser how you want the document displayed.

One of the most basic uses for HTML tags is to tell a browser
that you want certain text to be emphasized on the page. The HTML
document standard allows for a couple of different types of emphasis
including explicit formatting, where you choose to make something
italic as opposed to bold, or implicit formatting, where it's
up to the browser to decide how to format the emphasized text.

Using part of the example above, then, an HTML tag used for emphasis
might look something like this:

Welcome to my home
on the World Wide Web.

In this example,
and are HTML
tags that tell the Web browser which text (in this example, my
home) is to be emphasized when displayed (see fig.
1.2).

Figure 1.2 : HTML tags can be used to mark certain text for emphasis.

The browser isn't just displaying regular text; it has also taken
into account the way you want the text to be displayed according
to the HTML tags you've added. Tags are a lot like margin notes
you might make with a red pen when editing or correcting term
papers or corporate reports. After you've entered the basic text
in a Web document, you add HTML mark-up elements to tell the browser
how you want things organized and displayed on the page.

You'll learn more about the specific types of tags in Chapter 6,
"Creating a Web Page and Entering Text," but for now,
the most important distinction is between text and HTML tags.
All HTML documents will be basically text, as are all word processing
documents and most desktop publishing documents. The only difference,
then, is how the text is described for display on the screen (or,
in many cases, for a hard copy printout).

In most word processing documents, the "mark up" that
describes the emphasis and organization of text is hidden from
the user. HTML, however, is a little more primitive than that,
as it allows you to manually enter your text mark-up tags to determine
how the text will appear. You can't do this with an MS Word document,
but, then again, MS Word documents aren't the standard for all
Web pages and browsers on the Internet!

[bookmark: WhoDecidesWhatHTMLIs]Who
Decides What HTML Is?

It's difficult to pin down exactly who is responsible for the
HTML standard and its continued evolution. While what may be the
most important question is who uses HTML, and how they use it,
a number of groups exist to monitor, brainstorm, and try to pin
down the standards as they evolve.

[bookmark: TheHTMLWorkingGroup]The HTML Working Group

The HTML standard is maintained and debated by a group called
the HTML Working Group, which, in turn, is a creation of the Internet
Engineering Task Force. The Working Group was charged in 1994
with the task of defining the HTML standard that was in widespread
use on the Web at the time (known as HTML 2.0), and then submitting
proposals for future standards, including the HTML 3.0 standard.

Up until the spring of 1996, the Working Group seemed to be the
bearer of the basic standard for HTML around the world, while
others work to agree on standards for other Web-oriented technologies
that have a cursory relationship-like graphics formats, digital
movies, sounds, and emerging Web languages such as Java and VRML
(Virtual Reality Modeling Language). Now, nearly all responsibility
for future Web development will most likely fall to an industry
cooperative called the W3 Consortium.

[bookmark: TheWorldWideWebConsortium]The World Wide Web Consortium

HTML was originated by Tim Berners-Lee, with revisions and editing
by Dan Connolly and Karen Muldrow. Up until the time when the
Working Group took over responsibility for the standard, it was
largely an informal effort.

Still very much involved in the evolution of the standard is Tim
Berners-Lee, who now serves as director of the World Wide Web
Consortium (W3C)-a group of corporations and other organizations
with an interest in the World Wide Web. The group is run by the
Laboratory for Computer Science at MIT, and includes members such
as AT&T, America Online, CompuServe, Netscape Communications
Corp., Microsoft Corp., Hewlett Packard, IBM, and many others.

Here, member organizations get together to iron out differences
over Web-related standards and practices while working to maintain
some level of standardization between their products. Corporate
self-interest can sometimes get in the way, but it is definitely
of utmost importance to most of these organizations that their
products stay abreast of the most popular standards, and that
their customers are fully able to take advantage of the Web.

[bookmark: IndividualCompaniesandHTML]Individual Companies
and HTML

In the meantime, HTML continues to evolve, sometimes in spite
of standard-bearing organizations. As more and more commercial
companies take an interest in the HTML standard, it has become
increasingly difficult to know who, exactly, decides what HTML
will become in the future.

Some notable deviations from the standard are the extensions,
or additional commands, that Netscape Communications Corp. has
added to HTML 2.0 (see fig. 1.3). Only Netscape's browsers (and
those written to be compatible with Netscape's products) can view
all of these extensions, and some of them have yet to be recognized
by the HTML Working Group. Netscape can get away with this, though,
since it controls somewhere around 60 percent of the World Wide
Web browser market.

Figure 1.3 : Aside from being able to view most of the HTML standard tags recognized by the HTML. Working Group, Netscape Navigator can also display text in special ways.

With that sort of influence, Netscape can sway the hearts and
minds of members of the W3 Consortium to some degree-plans for
future HTML specifications often take into account the additions
made by companies such as Netscape.

Other companies, notably Microsoft, have also distributed Web
browsers-in Microsoft's case, the Internet Explorer-that offer
enhancements over the agreed-upon HTML standards, and acceptance
of those extensions by a majority of Web designers may further
sway groups like the HTML Working Group.

		What is the IETF?

		

The Internet Engineering Task Force (IETF) is a fairly loose organization of people interested in affecting the growth and infrastructure of the Internet. It is the main group engaged in the creation of new Internet standards and
specifications.

The first IETF meeting was held in January 1986 in San Diego, and drew 15 attendees. The IETF now meets in a variety of locations, including meetings held occasionally in Europe and elsewhere around the world. Meetings and participation are completely
voluntary, and anyone can attend meetings, which are held three times a year.

Although there is no formal or legal power behind the specifications created by the IETF, they are often reasonable and useful enough that they are adopted by the Internet community as a whole. The Internet, perhaps more so than many other computing
communities, relies on useful and widely available standards in order to reach the greatest number of people.

The IETF's role in the future of HTML is a little vague, since it seems that most Web-related development efforts have been shifted to the W3 Consortium, with the emphasis seemingly on cooperation between the competing corporate standards emerging on the
Web.

Anyone can also join the IETF announcement mailing list or the IETF discussion list (ietf@cnri.reston.va.us). This is where the broadest Internet discussions are held (most working groups have
their own mailing lists for discussions related to their work). To join the IETF announcement list, send an e-mail with the word subscribe in the body to
ietf-announce-request@cnri.reston.va.us.

To join the IETF discussion list, send an e-mail with the word subscribe in the body to ietf-request@cnri.reston.va.us.

To join the discussion list for the HTML Working Group, send a blank e-mail message to www-html-request@w3.org.

[bookmark: AdditionalInformationonHTMLStandards]Additional
Information on HTML Standards and Organizations

Most of the HTML standard bodies and organizations maintain an
active presence on the World Wide Web, and information about these
groups and their work can be found in many places.

For more on the World Wide Web Consortium, consult the W3C Web
site at http:/www.w3.org/. This site will probably be the
most useful as you continue to learn more about HTML and emerging
new standards.

For more information on the IETF, point your Web browser to the
URL http://www.ietf.cnri.reston.va.us/home.html. This is
the IETF's home on the Web, offering tons of links to related
projects as well as information about meetings and other Internet-related
groups.

To learn about the HTML Working Group, take a look at http://www.ics.uci.edu/pub/ietf/html/.
Here, you'll find a little about the history of HTML, who the
current members and officers of the Working Group are, and how
to contact the group.

Information about Netscape and Netscape's additions to HTML can
be found at http://www.netscape.com/.

[bookmark: Summary]Summary

HTML is a document format, somewhat like word processing or desktop
publishing formats, but considerably less complicated and based
on more open standards. Creating HTML programs isn't really programming-although
some programming can be necessary in other aspects of Web page
creation. There are a few different organizations that make it
their business to oversee the HTML standard, but the standard
can just as easily be affected by the software companies that
write Web browsers. The standard is also influenced very much
by what commands and layout features Web designers implement,
and what commands they ignore.

[bookmark: ReviewQuestions]Review
Questions

		Is HTML a programming language?

		True or false. HTML documents can be created with nothing
more than a text editing program.

		What other mark-up language is HTML based on?

		What's the difference between explicit formatting and implicit
formatting?

		True or false. You can directly edit a WordPerfect-format
document.

		Is the HTML Working Group a subsidiary of the World Wide Web
Consortium?

		Why is it important that HTML be a public standard?

		How can individual Web designers affect the HTML standard?

[image:][image:][image:]

HTML By Example/ch10.htm

Chapter 10

Hypertext and Creating Links

CONTENTS[bookmark: CONTENTS]

		Using the <A> Tag
		Section Links

		Example: A More Effective Definition List

		Using Relative URLs
		Adding the <BASE> Tag

		Example: A Hybrid-Style Web Site

		Creating Links to Other Internet Services
		Hyperlinks for E-Mail Messages

		Other Internet Services

		Other Links for the <HEAD> Tag
		The <LINK> Tag

		The <ISINDEX> Tag

		Summary

		Review Questions

		Review Exercises

Now that you've seen in detail the ways you can mark up text for
emphasis and add images to your Web pages, it's time to take the
leap into making these pages useful on the World Wide Web by adding
hypertext links. The anchor tag for hypertext links is simple
to add to your already-formatted pages. You'll see how URLs are
useful for creating hypermedia links and links to other Internet
services.

[bookmark: UsingtheATag]Using the
<A>
Tag

The basic link for creating hypertext and hypermedia links is
the <A>, or anchor,
tag. This tag is a container, which requires an
to signal the end of the text, images, and HTML tags that are
to be considered to be part of the hypertext link. Here's the
basic format for a text link:

Text
describing link

Be aware that HREF, although
it's something that you'll use with nearly every anchor tag you
create, is simply an attribute for the <A>
tag. Displayed in a browser, the words Text
describing link would appear underlined and in
another color (on a color monitor) to indicate that clicking that
text initiates the hypertext link.

The following is an example of a relative link:

Our
Product Information

If the HTML document to which you want a link is located elsewhere
on the Internet, you simply need a more complete, absolute URL,
such as the following:

Our
Product Information

In either case, things end up looking the same in a browser (see
fig. 10.1).

Figure 10.1 : These are the hypertext links that you've created.

[bookmark: SectionLinks]Section Links

Aside from creating hypertext links to documents on your local
computer or elsewhere on the Internet, you can create links to
other parts of the same document in which the link appears. These
"section" links are useful for moving people to a new
section that appears on the same Web page without forcing them
to scroll down the entire page.

Doing this, though, requires two instances of the anchor tag-one
that serves as the hypertext link and another that acts as a reference
point for that link, following this format:

Link
to another section of this document

Beginning of new section

Notice that the anchor tag that creates the hyperlink is similar
to the anchor tags that you have used previously. The only difference
is the pound sign (#) used
at the beginning of the HREF
text. This sign tells the anchor that it is looking for a section
within the current document, as opposed to within an external
HTML document.

The NAME attribute is used
to create the actual section within the current HTML document.
The text that the NAME attribute
contains is relatively unimportant, and it won't be highlighted
or underlined in any way when displayed by a browser. NAME
is nothing more than an internal reference; without it, though,
the link won't work.

		Note

		

Remember to use the pound sign (#) only for the actual hypertext link, not the NAME anchor. Also, realize that the NAME text is case-sensitive and that the associated HREF text should use the same case for all letters as does the

NAME. If the HREF calls for Section_ONE, and the NAME is actually Section_One, the link will not work.

[bookmark: ExampleAMoreEffectiveDefinitionLis]Example: A More
Effective Definition List

In Chapter 8, "Displaying Text in
Lists," you worked with the definition list tags available
to use in HTML and, in some cases, actually used them for a list
of definitions. You do that again in this section, but this time
you use section links to move directly to the words that interest
you.

Load the HTML template into your text editor, and choose the Save
As command in your text editor to create a new file. In the body
of your HTML document, type Listing 10.1 or something similar.

Listing 10.1 listlink.html Creating
a Definition List

<BODY>

<H2>The Definition List</H2>

<P>Click one of the following words to move to its definition
in the list:

epithet

epitome

epoch

epoxy

equal

</P>

<HR>

<DL>

<DT>ep i thet

<DD>noun. a descriptive, often contemptuous
word or phrase

<DT>ep it o me

<DD>noun. someone who embodies a particular
quality

<DT>ep och

<DD>noun. a division in time; a period
in history or geology

<DT>ep ox y

<DD>noun. a synthetic, heat-sensitive
resin used in adhesives

<DT>e qual

<DD>adj. having the same quality or
status; having enough strength, courage, and so on.

<DD>noun. a person or thing that is
equal to another; a person

with similar rights or status

</DL>

</BODY>

In the example, clicking one of the words that appears as a hyperlink
in the first section of the paragraph moves the browser window
down to that link's associated NAME
anchor, so that the definition becomes the focal point of the
user's attention. Obviously, using section links would be of greater
use in a larger list. Consider the implications for turning an
entire dictionary into HTML documents.

Also notice that anchors can be placed within the confines other
HTML tags, as in the first paragraph container and in the definition
lists of the example. In general, anchor tags can be acted on
by other HTML tags as though they were regular text. In the case
of hyperlinked text, the underlining and change in color in graphical
browsers take precedence, but the hyperlinked text also has any
other qualities of the surrounding text (for example, indenting
with the rest of the definition text).

In figure 10.2, notice which anchors cause the text to become
a hyperlink and how the anchor tags respond within other container
tags.

Figure 10.2 : Anchor tags are used to define and move between sections of an HTML document.

[bookmark: UsingRelativeURLs]Using
Relative URLs

Go back and look at the hypertext links that we discussed at the
beginning of this chapter (as opposed to section links). In most
cases, the URL referenced by the HREF
attribute within the anchor tag needs to be an absolute URL, unless
it references a file located in the same directory as the current
HTML document.

But consider the case of a well-organized Web site, as set out
in Chapter 5, "What You Need for a
Web Site." That chapter discussed the fact that it's not
always the best idea to drop all your Web site's files into the
same directory, especially for large sites that contain many graphics
or pages. How do you create links to files that may be on the
same server but not in the same directory?

One obvious way is to use an absolute URL for every link in your
Web site. If the current page is http://www.fakecorp.com/index.html,
and you want to access a specific page that you organized into
your products directory,
you could simply create a link like the following, using an absolute
URL:

Our
new

products

These absolute URLs can get rather tedious, not to mention the
fact that if you happen to change the name of your Web server
or move your site to another basic URL, you'll probably have to
edit every page in your site to reflect the new URLs.

[bookmark: AddingtheBASETag]Adding the <BASE>
Tag

The <BASE> tag is used
to establish the absolute base for relative URLs used in your
document's hypertext links. This tag is especially useful when
your Web pages may appear in different subdirectories of a single
main directory, as in some of the organizational types discussed
in Chapter 5. The format of the <BASE>
tag is as follows:

<BASE HREF="absolute URL">

Note that the <BASE>
tag is designed to appear only between the <HEAD>
tags.

It may be helpful to think of <BASE>
as doing something similar in function to a DOS path statement.
The <BASE> tag tells
the browser that relative URLs within this particular Web document
are based on the URL defined in the <BASE>
tag. The browser then assumes that relative URLs derive from the
URL given in the <BASE>
tag and not necessarily from the current directory of the HTML
document.

Consider a document named http://www.fakecorp.com/products/list.html
that looks something like this:

<HEAD>

<TITLE>Page One</TITLE>

</HEAD>

<BODY>

Back to Index

</BODY>

In this example, the browser tries to find a document named index.html
in the directory products,
because the browser assumes that all relative addresses are derived
from the current directory. Using the <BASE>
tag, however, changes this example a bit, as follows:

<HEAD>

<BASE HREF="http://www.fakecorp.com/">

<TITLE>Page One</TITLE>

</HEAD>

<BODY>

Back to Index

</BODY>

Now the browser looks for the file index.html
in the main directory of this server, regardless of where the
current document is stored (such as in the products
directory). The browser interprets the relative URL in the anchor
tag as though the complete URL were http://www.fakecorp.com/index.html.

		Tip

		

If you plan to create a large Web site, you may want to add the <BASE> tag (complete with the base URL) to your HTML template file.

Using the <BASE> tag
to point to your Web site's main directory allows you to create
the different types of organization systems described in Chapter 5
by using relative URL statements to access HTML documents in different
subdirectories.

[bookmark: ExampleAHybridStyleWebSite]Example: A Hybrid-Style
Web Site

Chapter 5 discussed the hybrid style of
Web site organization, which allows you to put some common files
(such as often-used graphics) in separate directories and to organize
unique files with their related HTML pages.

In this example, you create an HTML document called products.html,
located at the URL http://www.fakecorp.com/products/products.html.
Some of your graphics are maintained in a subdirectory of the
main directory of this Web site; the subdirectory is called graphics/.
You also have links to other pages in the main directory and in
a subdirectory called about/.
Figure 10.3 shows this graphically.

Figure 10.3 : Graphical look at your fictitious Web site's organization.

For this example, you create only one Web page. To test the page,
however, you want to create a directory structure similar to the
previously outlined directory structure and include all the files
mentioned.

Begin by saving your template file as products.html.
Then, in your text editor, enter Listing 10.2.

Listing 10.2 basetag.html Creating
a Directory Structure

<HTML>

<HEAD>

<TITLE>Our Products</TITLE>

<BASE HREF="http://www.fakecorp.com/">

</HEAD>

<BODY>

<H2>Our Products</H2>

<P>Here's a listing of the various product types we have
available. Click

the name of the product category for more information:</P>

<DL>

<DT>

<DD>

PC Software

<DD>

Macintosh Software

<DD>

PC Hardware

<DD>

Macinotsh Hardware

</DL>

<HR>

Return to Main

</BODY>

</HTML>

Notice that all the hypertext link HREF
commands are pointing to pages that are relative to the <BASE>
URL, which is set for the main directory of the Web site. With
<BASE> set, it's no
longer appropriate simply to enter a filename for your relative
URL, even if the file is in the current directory (for example,
products/). If all goes well
and all your references hold up, your page is displayed as shown
in figure 10.4.

Figure 10.4 : Your Products page, complete with relative links to other parts of the Web site.

		Note

		

Notice that the <BASE> HREF also affects graphics placed with the tag. Remember to use relative addresses for images that take the <BASE> address into account. Only HTTP documents and images are affected
by <BASE>, though, and not other URL types (like ftp:// and gopher://).

[bookmark: CreatingLinkstoOtherInternetService]Creating
Links to Other Internet Services

Here's where the real power of URLs comes into play. Remember
that an URL can be used to describe almost any document or function
that's available on the Internet? If something can be described
in an URL, a hyperlink can be created for it. In the following
section, you start with e-mail.

[bookmark: HyperlinksforEMailMessages]Hyperlinks for E-Mail
Messages

Creating a hyperlinked e-mail address is simple. Using the mailto:
type of URL, you can create the following link:

Send
me e-mail

In many graphical browsers, this URL often loads an e-mail window,
which allows you to enter the subject and body of an e-mail message
and then send it via your Internet account (see fig. 10.5). Even
many of the major online services support this hyperlink with
their built-in e-mail systems.

Figure 10.5 : Clicking a mailto : link bring up an e-mail message window in Netscape.

Not all Web browsers accept the mailto:
style of URL, however, and most of those don't return an error
message. If you use this type of link, you may want to warn users.
Something like the following text should work well for users of
nongraphical browsers:

<P>If your browser supports the
mailto: command, click here
to send me an e-mail message.

</P>

[bookmark: OtherInternetServices]Other Internet Services

Using the various types of URLs discussed in Chapter 3,
you can create links to nearly all other types of Internet services
as well. For Gopher sites, for example, a hypertext link might
look like the following example:

the
Library of Congress Gopher

Most Web browsers can display Gopher menus. In most cases, clicking
a gopher link points the browser at the Gopher site, and the Gopher
menu appears in the browser window.

You can create links that cause the Web browser to download a
file from an FTP server, as follows:

<P>You can also downloadthe
latest version of our software.

When the connection to the FTP server has been negotiated, the
file begins to download to the user's computer (see fig. 10.6).
Depending on the Web browser, this file may not be formatted correctly.
Each browser needs to be set up to accept files of a certain type
(such as the PKZip format file in the preceding example).

Figure 10.6 : Netscape is downloading a file from an FTP server.

		Note

		

Most browsers can accept hyperlinks only to anonymous FTP servers. You generally should not include in your HTML documents links to FTP servers that require usernames and passwords.

Again, most browsers have some mechanism (sometimes built into
the browser window) for reading UseNet newsgroups. Some browsers
launch a separate program to read UseNet groups. In either case,
you can create a link like the following:

UseNet
Help Newsgroup

This link loads whatever UseNet reading features the browser employs
and displays the specified newsgroup (see fig. 10.7). As discussed
in Chapter 3, the news:
URL type does not require a particular Internet server address
to function. Each browser should be set up with its own links
to the user's news server.

Figure 10.7 : MS Internet Explorer after clicking a link to the newsgroup news.answers.

[bookmark: OtherLinksfortheHEADTag]Other
Links for the <HEAD>
Tag

You can create a couple more tags in the <HEAD>
section of your HTML documents. These tags are of varying levels
of real-world usefulness, so you may want to read this section
quickly and refer to it again later if you have a question. The
two tags discussed in the following sections are <LINK>
and <ISINDEX>.

[bookmark: TheLINKTag]The <LINK>
Tag

The <LINK> tag is designed
to establish a hypertext relationship between the current document
and another URL. Most of the time, the <LINK>
tag does not create a clickable hypertext link in the user's Web
viewer window. It's a little beyond the scope of this book, but
programs can be written to take advantage of the <LINK>
tag, such as a program that creates a toolbar that makes use of
the relationship defined.

The <LINK> tag generally
has either of the following formats:

<LINK HREF="URL"
REL="relationship">

or

<LINK HREF="URL"
REV="relationship">

For the most part, <LINK>
is used to create an author-defined structure to other HTML documents
on a Web site. The attribute REL,
for example, defines the relationship of the HREF
URL to the current document. Conversely, REV
defines the relationship between the current document and the
HREF'ed URL.

Following are two examples of <LINK>
statements:

<LINK HREF="http://www.fakecorp.com/index.html"
REL="PARENT">

<LINK HREF="http://www.fakecorp.com/product2.html"
REV="CHILD">

In the HTML 2.0 standard, these definitions are relatively irrelevant-at
least publicly on the Web. You more commonly find these statements
used within certain organizations (perhaps companies employing
an intranet), especially for advanced Web-based documentation
efforts and for efforts that use HTML and SGML (as discussed in
Chapter 1, "What is HTML?") together.

HTML 3.0 more than likely will introduce more widespread use of
the <LINK> statement
and other <HEAD> tags
for more tangible benefits.

You may want to use one <LINK>
frequently: the REV="MADE"
link, which tells users who created the HTML page. Although this
use of <LINK> doesn't
actually call up a mailto:
link in most browsers, some may recognize it eventually. In the
meantime, it gives people who view your source code the e-mail
address of the author, as in the following example:

<LINK HREF="mailto:tstauffer@aol.com"
REV="MADE" REL="AUTHOR">

You also should include a mailto:
anchor tag in the body of your document to allow people to respond
to your Web page. Using both is encouraged, but it's ultimately
up to you.

		Tip

		

You can find more information about <LINK>, and the various values for REL/REV, at http://www.sq.com/papers/Relationships.html.

[bookmark: TheISINDEXTag]The <ISINDEX>
Tag

Adding the <ISINDEX>
tag to the <HEAD> of
your document allows some Web-server search engines to search
your Web pages for keywords. If your Web server offers such a
search engine and the user's browser supports these searches,
the user will be presented with a simple search box when this
page is loaded. The user can then enter the text he or she wants
to search for on your page.

The tag itself is very straightforward and requires no further
attributes, as the following example shows:

<HEAD>

<ISINDEX>

</HEAD>

		Note

		

If someone else runs your Web server, you may want to ask that person whether you should include the <ISINDEX> tag. If the administrator offers a server-based search engine, he or she may have you use the <ISINDEX> tag, or he

or she may insert it into your document himself or herself.

[bookmark: Summary]Summary

The <A> (anchor) tag
is the basis for creating hyperlinks on your Web pages. This tag
is fairly straightforward; you can use it in conjunction with
other tags (such as definition lists) to make hypertext links
easy to understand and presentable to the user.

You also can create links to other parts of the same document:
relative links and links for special services, such as e-mail.
In the case of some of these links (especially relative links),
you must seriously consider the way in which your Web site is
organized.

The head section of your HTML page can accept several other link-related
tags. To keep relative links in check, you can use the <BASE>
tag. The <LINK> tag
is used mainly for internal reference, and the <ISINDEX>
tag can be used on Web servers that provide search engines for
your Web pages.

[bookmark: ReviewQuestions]Review
Questions

		Is HREF a tag or an attribute?

		Do local links and distance links look any different when
they are viewed in a browser?

		What type of link is Intro?
Can you tell from the link what document will be accessed?

		Is it possible to include HTML markup tags (such as emphasis
tags) inside anchor tags?

		What is the purpose of the <BASE>
tag, and in what part of the HTML document does it appear?

		True or false. The <BASE>
tag's HREF attribute requires
a relative URL.

		Would the following link succeed? (Assume that the e-mail
address is correct.)

Mail
me!

		What two attributes for the <LINK>
tag are discussed in this chapter?

		Does the <LINK>
tag create a hypertext link in the browser window?

		If your Web server is administered by someone else, what's
the best way to find out whether the <ISINDEX>
tag will do you any good?

[bookmark: ReviewExercises]Review
Exercises

		Create a hypertext link that points to a section of another
document. (Hint: use the URL and a section name, like http://www.fakecorp.com/products.html#clothing).
Don't forget the NAME anchor
in the second document.

		Using the <BASE>
tag, change the following so that the URL and image SRC attribute
are relative:

<BODY>

<P> Welcome to BigCorp
on the World Wide Web!</P>

</BODY>

		Create a page about your hobbies and interests. (This might
be a great About page for your personal Web site.) On the page,
include links to interesting sites that coincide with your description.
(For instance, if you like sports, you might create a link to
http://www.cnn.com/SPORTS/ for the benefit of your users.)

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch11.htm

Chapter 11

Using Links with Other HTML Tags

CONTENTS[bookmark: CONTENTS]

		Using Links with HTML Formatting Tags
		Emphasis Tags and Hyperlinks

		Example: Hyperlinks in Context

		Using Hypertext Links in HTML Lists

		Example: An HTML Table of Contents

		Creating Graphical Links
		Example: A Graphical, Hyperlinked Listing

		Example: A Clickable Graphic Menu Bar

		Example: Custom Controls

		Using Hypermedia Links

		Summary

		Review Questions

		Review Exercises

Creating links to other local and distance HTML documents is a
relatively straightforward process, as Chapter 10,
"Hypertext and Creating Links," showed. But you also
can include links within and together with other HTML tags to
make them more interesting, better organized, and more accessible
to your users.

As you read this chapter, it may strike you that very little new
information about HTML is presented. That's done somewhat purposefully.
The point of most of this chapter is simply to explore the various
ways that hypertext links can be added to fully formatted HTML
documents.

In this chapter, you'll take what you know about hypertext links
and integrate them more completely into your Web pages. You'll
also look at how to create graphical links-links that are
initiated by allowing the user to click images in your documents,
instead of just text. You'll also create menubar links
(a series of graphical links) in an effort to design an attractive
interface for your Web sites. And, you'll see how to call multimedia
files using hypertext links.

[bookmark: UsingLinkswithHTMLFormattingTags]Using
Links with HTML Formatting Tags

You can include the anchor tag (<A>)
for hypertext links inside or with nearly any other HTML formatting
tags. Although it's important to remember that anything inside
the actual <A HREF>
statement needs to remain intact, the <A>
tag acts almost exactly like the <P>
tag (except that it doesn't insert a return). Entire sentences,
paragraphs, and even lists and headers can be a single hypertext
link. Although this would be unsightly and bad HTML design, it
is possible.

You can also include links within nearly all other HTML container
tags. Even emphasis tags, such as
and , can accept
an entire anchor container within their confines; they still allow
the hypertext link to be created and the descriptive text to be
emphasized. The following section shows how this might work.

[bookmark: EmphasisTagsandHyperlinks]Emphasis Tags and Hyperlinks

The first, most obvious example of using emphasis tags and hyperlinks
involves emphasizing the descriptive text of the link within the
<A> tag itself. What
if you need to create a link that is also the title of a book
and that, as such, must be italicized? You could actually do this
in either of the following two ways:

<I>The
Young and the Dirty</I>

<I>The Old and the
Unkempt</I>

Either method is acceptable, although the first probably makes
a bit more sense to someone viewing your source document.

As usual, the best practice is to finish inside tags first and
then close off outside tags. In the first example shown earlier
in this section, the closing </I>
tag should come before the
tag, because the italics tag is the interior tag and the <A>
tag is acting as a container for the entire line.

The , ,
<BOLD>, and <TT>
tags can be used the same way with hypertext links. The <U>
(underline) tag, although legal, is redundant, because most browsers
display hyperlinks by turning them a different color and underlining
the descriptive text.

Hyperlinks can appear within the confines of any of the container
tags that this book has described so far. The <PRE>
tag, header tags, the special formatting tags (such as <ADDRESS>,
<CITE>, and <CODE>),
and the <P> tag can
contain hyperlinks.

[bookmark: ExampleHyperlinksinContext]Example: Hyperlinks in
Context

This example shows you a few more ways to use emphasis tags with
hyperlinks in an HTML document. For this example, give your HTML
template a new name, and type Listing 11.1 between the <BODY>
tags.

Listing 11.1 links.html Creating
Hyperlinks

<BODY>

<H2>The Page of Links</H2>

<ADDRESS>

Todd Stauffer

Colorado Springs

TStauffer@aol.com

</ADDRESS>

<P>On the following pages, I offer a series of <A HREF="

http://www.ncsa.uiuc.edu/demoweb/html-primer.html#A1.3.3";>
links

to WWW sites that I think you may find interesting.

Also, if you haven't yet read <A HREF="

hhttp://home.netscape.com/escapes/whats_cool.html";>

<I>The Cool Links Page</I> from Netscape
Corp., you can't imagine how much you're missing on the Web.</P>

<HR>

<P>The following table will lead you to some of my favorite
links on a

variety of topics:

<PRE>

My Favorite Corporate Web Sites By Topic:

Topic
Site

Windows The
Microsoft

Windows95 Site

Macintosh Apple
Corp. Home Pages

OS/2

IBM's OS/2 Warp Web Site

</PRE>

</P>

<CITE>Some of the addresses in this Web site are based on
results obtained from the Infoseek
Web Search Pages.</CITE>

</BODY>

When displayed in a browser, all the links should appear properly
formatted and ready for the user to click (see fig. 11.1).

Figure 11.1 : Hypertext links formatted with other HTML tags.

[bookmark: UsingHypertextLinksinHTMLLists]Using Hypertext Links
in HTML Lists

In Chapter 10, you saw an example of using
the <DL> (definition
list) tag to create a better organization for section links within
a hypertext document. But, like other types of HTML container
tags, HTML lists can easily accept any sort of hypertext link
as a (list item),
<DT> (definition term),
or <DD> (definition).

Any HTML list type that accepts the
tag to create a new list item can include a hypertext link. An
unordered (bullet-style) list can easily accept hypertext links
by themselves, as the following example shows:

 Microsoft
Corp.

 Apple
Corp.

 IBM
Corp.

Or even hypertext links mixed with other text (see fig. 11.2):

Figure 11.2 : Hypertext links in unordered links.

 For a discussion of Windows 95, try

Microsoft Corp..

 Mac users might check out the
Apple Corp. Web site.

 OS/2 and PC folks:

IBM Corp.

Adding hypertext links works just as easily with other HTML list
types, including ordered (numbered) lists, menu lists, directory
lists, and definition lists.

[bookmark: ExampleAnHTMLTableofContents]Example: An HTML Table
of Contents

One of the most common reasons for using a combination of HTML
lists and hypertext links is to create a table of contents for
a particularly long HTML site (or the HTML version of an academic
thesis, scientific study, or book). Using nested HTML lists (like
those that you created in Chapter 8), you
can add different levels of links under each different subject
heading in your outline.

Using your HTML template, create a new HTML document and enter
Listing 11.2 or something similar (see fig. 11.3).

Figure 11.3 : Using lists and hypertext links to create a table of contents.

Listing 11.2 listlink.html HTML
Table of Contents

<BODY>

<H2>The Guidebook to Local Hangouts</H2>

<P>Choose from the following links to jump directly to that
section of

the text:</P>

Credits

What is
unique about this guide?

Included
clubs

How the
rating system works

Type of
Club

 Sports
Bars

 Country
(& Western) Bars

 Alternative
Bars

 Album/Hard
Rock Clubs

 Jazz
& Classic Blues Bars

 Big
Band/Classical/Torchsong Bars

 Pool
Halls

Type
of Restaurant

</BODY>

A table of contents is a great excuse to use section tags, along
with regular URLs, to access parts of remote documents. In the
preceding example, the document guide.html
contains information on all types of bars in the area, with each
section being defined by an
tag. Using the tags enables your Web page users to access parts
of the remote document directly.

[bookmark: CreatingGraphicalLinks]Creating
Graphical Links

Now you know that you can place a hypertext link inside nearly
any other HTML container tag, and you know that different tags
work well inside the anchor tag. But what about graphics?

Graphics work as well as just about all other types of HTML tags.
Simply by placing an
tag inside an anchor tag, you create a clickable image, which
can substitute for the descriptive text in a link.

Consider the following example:

Notice that the example doesn't include any sort of descriptive
text in the link. If a user's graphical viewer can support this
type of image, the link displays the graphic, with a colored border.
Clicking the image sends the browser to the associated link. If
the user isn't viewing this page with a graphical viewer, he or
she sees the ALT text, which
works as a hyperlink.

If you want, you can include text inside the anchor container,
as follows:

Go to BigCorp's Web Site

The descriptive text is displayed right next to the graphic image,
and both the text and image are hyperlinks (see fig. 11.4).

Figure 11.4 : A clickable image and a clickable image with descriptive text.

[bookmark: ExampleAGraphicalHyperlinkedListin]Example: A Graphical,
Hyperlinked Listing

Another interesting use of lists and hypertext links features
the <DL> list, with
an interesting twist. This example throws in thumbnail versions
of some graphics that suggest what the links access. The user
can access a link by clicking the associated graphic.

This example shows a popular HTML menuing format; it offers a
low-bandwidth way to offer a visual reference for a database-style
Web site. On a page such as this, you could list artwork, movie
reviews, other Web sites, a company's products, a list of people,
screen shots of computer programs, or just about anything else
graphical.

Create a new HTML document from your template, and then enter
text and tags according to the example in Listing 11.3.

Listing 11.3 linkmenu.html Creating
a Graphics Listing

<BODY>

<H2>Suggested Search and Directory Pages</H2>

<P>Ready to Search the Net? Click the associated icon to
jump to that

particular Web search page.</P>

<DL>

<DT> The Infoseek

Engine

<DD>Infoseek offers a broad range of searching and directory
options, and

is a fine place to start your search on the Web. It's also possible
to

search other services, like UseNet and Classifieds. <I>Tip:</I>
For best

results, put proper names or complete phrases in quotes, like
"Microsoft

Windows".

<DT>
The Yahoo Directory

<DD> Widely regarded as the earliest attempt to organize
the Web, Yahoo

remains a formidable directory of links to useful sites. Searching
isn't as comprehensive as some others, but the directory is the
main reason to use Yahoo, anyway.

<DT>
The Lycos Search Engine

<DD> Image isn't everything, and Lycos doesn't give the
prettiest search

results. But if you're comfortable with relatively plain listings,
Lycos

offers one of the larger databases of Web Sites available.

</DL>

</BODY>

This is an attractive way to organize thumbnail graphics into
menus and so versatile that you'll find plenty of uses for this
style of presentation (see fig. 11.5).

Figure 11.5 : Creating a clickable graphic menu.

[bookmark: ExampleAClickableGraphicMenuBar]Example: A Clickable
Graphic Menu Bar

Wrapping a hypertext anchor tag around a graphic allows you to
do something else with graphical links: create clickable menu
bars. You'll see this style of interface used frequently on the
Web. Menu bars are generally designed to allow you to access the
most frequently sought pages or commands on a Web site. By lining
up your graphical hyperlinks, you can create your own menu bars.

		Tip

		

The key to a good menu bar is creating graphical buttons of uniform height.

You start by creating a couple of button images in a graphics
applications. Save the images as GIF or JPG files. Then create
the menu bar in a new HTML file (see Listing 11.4).

Listing 11.4 menubar.html Creating
a Graphical Menu Bar

<BODY>

<IMG
SRC="home_button.gif"

ALT="Back to Home">

<IMG
SRC="prod_button.gif"

ALT="To Products">

<IMG
SRC="about_button.gif"

ALT="To About Bigcorp">

<IMG
SRC="serv_button.gif"

ALT="To Service">

</BODY>

Remember that HTML isn't sensitive to spacing and returns, so,
although each of these links is on a separate line in the example
(just to enhance readability), the graphic buttons are displayed
next to one another without spacing (see fig. 11.6). You've created
a graphical menu bar for your Web site.

Figure 11.6 : A sample menu bar, created with clickable graphic links.

Chapter 12, "Clickable Image Maps
and Graphical Interfaces," goes into further depth about
creating a graphical interface for your Web site.

[bookmark: ExampleCustomControls]Example: Custom Controls

The HTML isn't any different for this example, but it shows something
else that you can do with graphical links: add custom controls
(such as clickable arrows) to your Web site.

		Note

		

Some great places to get public-domain clickable graphics on the Web include the following:

http://www.widomaker.com/~spalmer/

http://www.fau.edu/student/chemclub/dave/img1.htm

http://ivory.nosc.mil/html/trancv/html/icons-bsdi.html

You can check for other sites at Yahoo's icon pages:

http://www.yahoo.com/Computers_and_Internet/Internet/World_Wide_Web/Programming/Icons/

Start by either creating some arrow controls that you want to
use or downloading them from a public-domain graphics site on
the Web. Then save your template as a new document, and enter
HTML text similar to Listing 11.5.

Listing 11.5 controls.html Having
Controls

<BODY>

<PRE>

</PRE>

</BODY>

The <PRE> tag is used
in the example just to offer a little space between the two graphics;
the arrows look better that way. Although the example places only
the arrows between the <BODY>
tags, you have probably much more to say, but the arrows tend
to be attractive at the top of the page. Some people duplicate
the arrows at the bottom of the page so that users can move on
after reading everything.

You'll have to have a fairly strong organization to your pages
to make the arrow graphics work. If people are supposed to move
through your site page by page, using the arrows is a great idea.
If your site is a little more relaxed, the arrows may only confuse
people. You can always use only the left arrow to provide a link
back to your index or main page.

[bookmark: UsingHypermediaLinks]Using
Hypermedia Links

You don't need to remember anything special about transferring
multimedia files across the Internet, except for the fact that
you need to use the correct transport protocol. In most cases,
that just means using the http:// protocol for transferring
files that you expect the browser to hand off to a helper application.

You could easily send a multimedia QuickTime movie, for example,
from your Web page with the following link:

Click
to see my

vacation movie (218K)

By the same token, you could use a relative link to the multimedia
file, using the <BASE>
tag or putting the multimedia file in the same directory as the
HTML document that includes the link, as follows:

Click
to see my vacation movie (218K)

		Tip

		

It's good netiquette to include an estimate of the size of multimedia files, so that modem users can decide whether to spend time downloading the files.

Using what you've learned about clickable graphics, it's just
as easy to include a small single-frame graphic clip of your QuickTime
movie in GIF or JPEG format to use as your link, as follows:

(218K)

Although you can send multimedia files by using the ftp://
protocol, some browsers interpret this as an attempt to download
the file to the user's computer without invoking the associated
helper application (or displaying the file with the browser's
built-in abilities).

Suppose that you have a graphics file that you want to display
at full size in the browser window, instead of embedding the image
in an HTML document. Create the following link:

Click
here to see the full 512x240 image

This link sends the graphic over the Web to the browser. The browser
then attempts to display the full graphic in the browser window.

Now suppose that you use the FTP protocol instead, as shown in
the following example:

Click
here to see the full

512x240 image

In most browsers, the user is prompted for a directory and filename
to give the file when it arrives. The file then is saved to the
user's hard drive but not displayed automatically.

In fact, such is the case with most multimedia files. The HTTP
protocol suggests to the browser that it should display the file,
if possible, or pass the file on to a helper application. The
FTP protocol, on the other hand, causes some browsers simply to
save the file to the hard drive.

		Note

		

The FTP protocol doesn't always cause browsers to simply save the file. One notable exception is HTML documents themselves. Often, an FTP server can successfully serve HTML documents to a Web browser, which then displays the documents in the browser
window.

[bookmark: Summary]Summary

This chapter took some of the things that you've learned about
hyperlinks, graphics, and hypermedia links and rolled them into
one. Most of this material isn't new, but most of the ideas for
using them are.

You can include hypertext links within most other HTML markup
tags, or you can use HTML emphasis tags to mark up the descriptive
text of most hypertext links. Remember to keep things organized
and mark up your anchor text only for a good reason. Using lists,
for example, you can create a table of contents that makes getting
around a text-heavy site much easier.

When you put graphics and hypertext links together, ideas start
to explode. You can create graphical menus, employ clickable menu
bars, and add custom controls to your Web pages. Clickable graphics
(especially thumbnail-style images) are among the easiest and
most satisfying ways to enhance your Web site.

[bookmark: ReviewQuestions]Review
Questions

		True or false. Like the <P>
tag, the anchor (<A>)
tag inserts a return after the closing
tag.

		Can you mix hypertext and emphasis tags, and if so, for what
purpose?

		What emphasis tag usually is redundant when it's used with
an anchor tag?

		Are any HTML list types incapable of accepting hypertext links
as list items?

		Is the following link correctly formatted, and what does it
access:

Ch.1,
Part II

		What might the following link be used for, and is this construct
legal?

		What happens if a link uses the FTP protocol to transfer a
multimedia file over the Web? Can the user still view or listen
to the multimedia file?

[bookmark: ReviewExercises]Review
Exercises

		Use the <DIR> and
<MENU> HTML containers
to create a list of hypertext links. Notice the differences between
these and ordered and unordered lists in your browser.

		Create a "table of contents" style page (using regular
and section links) that loads a different document for each chapter
or section of the document. For example, clicking the link Introduction
would load the file intro.html
into the browser windows. Clicking the link Chapter 1.1
would load the link chapter1.html#section1
and so on.

		Create a vertical (up-and-down) menu bar. (Hint: use

and graphics that are all the same width.) Can you get the images
to touch (and appear seamless) like you can with a horizontal
menu bar?

		Using a <DL> definition
list, create a "thumbnails" page of graphics (for a
catalog, for instance). When users click one of the thumbnail
graphics, take them to a product page with a larger graphic and
description of the product. Also, place a graphical button or
arrow on the product page that lets them click to get back to
the thumbnail view.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch12.htm

Chapter 12

Clickable Image Maps and Graphical
Interfaces

CONTENTS[bookmark: CONTENTS]

		Image Maps Defined
		Example: The Apple Web Site

		Understanding How Image Maps Work
		The Map Server Program

		The Map Definition File

		The Various Shapes of Hot Zones

		Defining Your Image map Hot Zones
		MapEdit for Microsoft Windows and X-Windows

		Example: MapEdit and a Simple Button Bar

		WebMap for Macintosh

		Adding Image Maps to Your Web Page
		The Image Map URL

		Example: Testing Your Link

		Image Map Design Tips

		Summary

		Review Questions]

		Review Exercises

In Chapter 11, "Using Links with
Other HTML Tags," you spent some time creating clickable
images, which make Web pages more graphically appealing and (ideally)
a little more intuitive. This chapter takes creating a graphical
interface to your Web site one step further.

With image maps, you can create an entire interface for your Web
pages and sites that rivals the interfaces of popular multimedia
games, graphical operating environments, and interactive kiosks.
The first 11 chapters of this book have said that the Web is about
text, but that fact doesn't mean that you can't use some great
graphics to spice up your presentation.

[bookmark: ImageMapsDefined]Image
Maps Defined

The map part of image map conjures up two separate
images. First, image maps on Web sites often act like road maps
for the Web site, adding interface elements that make it easier
to get around on the Web site. Second, the word map also
suggests the way that image maps are created. Image maps begin
life as normal graphics (usually in GIF or JPEG format), designed
with the Web in mind. Then another program is used to map hot
zones (clickable areas) on top of the graphics.

When put in place on a Web page, an image map allows users to
access different HTML pages by clicking different parts of the
graphic. Because each hot zone has an associated URL, and because
each hot zone corresponds to part of the graphic, maneuvering
about a Web site becomes more interesting, graphical, and interactive.

[bookmark: ExampleTheAppleWebSite]Example: The Apple Web Site

Apple Computer offers a very interesting example of an image map
on the main page of its Web site. To check out the page, load
your graphical Web browser, connect to the Internet (if you're
not already connected), and enter http://www.apple.com/.

When the page loads in your browser, you'll see the interface,
which looks a little like a futuristic hand-held computer, on-screen.

		Note

		

Notice how long it can take a graphical interface to load over your connection, especially if you use a modem to access the Internet.

This example isn't terribly structured, but it allows you to play
with the image map interface. You may already have a good deal
of experience with such interfaces, especially if you've spent
a lot of time on the Web.

By simply pointing at part of the graphic, you may be able to
bring up a URL in the status bar at the bottom of your browser
bar (see fig. 12.1). This bar shows you where the various hot
zones for the image map are and at what coordinates your mouse
pointer appears.

Figure 12.1 : The image map interface at Apple Computer's Web site.

Check out one more thing. If the image map fills your screen,
scroll down in your browser window so that you can see what's
below the interface on Apple's Web page. The text directly below
the interface almost exactly mirrors the hyperlink options you
have with the image map, because image maps, unlike clickable
graphics, don't offer an ALT
statement for the various hot zones. So you have to include additional
links to cater to your users of nongraphical browsers.

[bookmark: UnderstandingHowImageMapsWork]Understanding
How Image Maps Work

Creating an image map involves three steps: creating the graphic,
mapping the graphic for hot zones, and placing the correct information
(along with the correct programs) on the Web server itself. This
section discusses the Web server; the next section talks about
defining hot zones.

For more information on creating graphic images for Web pages,
see Chapter 9, "Creating and Embedding
Graphics."

To offer your users the option of using image maps, you must have
a special map server program running on your Web server. For UNIX-based
servers, this program will most often be NCSA Imagemap; other
platforms have their own map server programs.

[bookmark: TheMapServerProgram]The Map Server Program

When a user clicks an image map on a Web page, the browser determines
the coordinates of the graphic (in pixels) that describe where
the user clicked. The browser then passes these numbers to the
map server program, along with the name of the file that contains
the URLs that correspond to these coordinates.

NCSA Imagemap, then, simply accepts the coordinates and looks
them up in the database file that defines the hot zones for that
image map. When NCSA Imagemap finds those coordinates and their
associated URL, it sends a "connect to URL" command
(just as a hypertext link does) that causes your browser to load
the appropriate HTML document.

		Note

		

If you're running your own WebStar or MacHTTP server from a Macintosh, you can use a map server called MapServe, which you can download from http://www.spub.ksu.edu/other/machttp_tools/mapserve/mapserve.html.

For the most part, other commercial Web servers for UNIX and Windows NT include map server capabilities.

[bookmark: TheMapDefinitionFile]The Map Definition File

To determine which parts of the image map are linked to which
URLs, the map server program must have a map definition file at
its disposal. This file is generally a text file with the extension
MAP, stored somewhere in the CGI-BIN
directory for your Web site. Exactly where this file is stored
depends on the combination of your Web server and map server.
Let it suffice to say that you'll need to consult your server's
documentation or your ISP.

The map definition file looks something like figure 12.2. You
can create this file and save it as a standard ASCII text file
 with the appropriate extension; fortunately, you probably won't
have to.

Figure 12.2 : A map definition file.

You can define different shapes in the file; these shapes correspond
to the shapes of the hot zones that overlay the graphic that you
want to use for your image. Each set of coordinates creates a
point on the graphic. The coordinates are expressed in pixels,
with each pair of numbers representing the number of pixels to
the right and down, respectively, from the top left corner of
your graphic.

The shapes require a different number of points to define them.
Rectangles require two points, for example, and polygons require
as many points as necessary. Luckily, the number of points involved
isn't something that you'll have to worry about. Simply by using
a map editing program for Windows or Macintosh (discussed later
in this chapter in the sections, "MapEdit for Microsoft Windows
and XWindows" and "WebMap for Macintosh"), you
can automatically create the map definition file required for
your map server.

		Note

		

You can create image maps without map servers and map definition files by using a technology called client-side image maps. Currently a Netscape technology, this technology eventually may become an HTML 3.0 standard. For more information, see Chapter 17, "Client-Side Image Maps."

[bookmark: TheVariousShapesofHotZones]The Various Shapes of
Hot Zones

This section briefly defines the shapes of hot zones. Hot zones
can be in any of the following shapes:

		rect (rectangle)-This shape requires two points: the
upper left coordinates and the lower right coordinates.

		circle-To create a circular region, you need coordinates
for a center point and an edge point. The circle is then computed
with that radius.

		point-A point requires only one coordinate. The map
server software decides which point the mouse pointer was closest
to when the shape was clicked (provided that the click didn't
occur in another hot zone).

		poly (polygon)-You can use up to 100 sets of
coordinates to determine all the vertices for the polygon region.

		default-Any part of the graphic that is not included
in another hot zone is considered to be part of the default region,
as long as no point zones are defined. If a point is defined,
then default is redundant, since the map server will evaluate
any click (outside of a hot zone) and choose the nearest point.

[bookmark: DefiningYourImageMapHotZones]Defining
Your Image Map Hot Zones

As a designer, you are responsible for doing two things in the
hot zone definition process. First, you need to define the hot
zones to create the image map-that is, you need to decide what
URL the coordinates will correspond to when the image map is clicked.
Second, you need to create the map definition file that makes
the hot zone information available to the Web server. For Windows
and Macintosh users, luckily, programs that do both are available.

[bookmark: MapEditforMicrosoftWindowsandXWind]MapEdit for Microsoft
Windows and X-Windows

Available for all flavors of Windows (Windows 95, Windows 3.1,
and Windows NT) and for most types of UNIX, MapEdit is a powerful
program that allows you to graphically define the hot zones for
your image maps. You can access and download the latest version
of this program via the MapEdit Web site (http://www.boutell.com/mapedit/).

When you have the program installed and you double-click its icon
to start it, follow these steps to define your map:

		Choose File, Open/Create from the MapEdit menu.
The Open/Create Map dialog box appears.

		In the Open/Create Map dialog box, enter the name of the map
definition file you want to create and the name of the graphic
file you want to use for your map. You should also use the radio
buttons to determine whether you'll use CERN or NCSA map definitions.
(Consult your map server software or ISP if you're not sure whether
to use CERN or NCSA.)

		Click the OK button. The Creating New Map File dialog box
appears. In this dialog box, click Yes. After a moment, MapEdit
displays your image file.

		To create a new hot zone, choose the shape from the Tools
menu; then click one time for each point required for the shape.
For a rectangle, click once to start the rectangle and then click
where you'd like the opposite corner of the triangle to appear.
For a circle, click for the middle, and then drag out the circle
and click when you've got the right radius. The triangle tool
is actually a "polygon" tool, so click for each point
in the polygon. Then, right-click at the last point (to connect
your last point to the first point and complete the shape).

		When the shape is created, the Object URL dialog box appears
(see fig. 12.3). Enter the URL that you want to associate with
your new hot zone. (You also can enter comments, if you want.)
Then click OK to continue.

		Add more shapes by following steps 4 and 5 until you finish
mapping your graphic.

		Choose File, Save. Now you have a .MAP
file for your image map.

Figure 12.3 : Associating an URL with the hot zone.

		Tip

		

By choosing File, Edit Default URL, you can determine whether your image map includes a default URL for clicks outside your hot zones.

[bookmark: ExampleMapEditandaSimpleButtonBar]Example: MapEdit
and a Simple Button Bar

In this example, you use MapEdit to create a simple button bar-a
little like the menu bar that you created with clickable graphics
in Chapter 11, except for the fact that
this one is an image map. Start by drawing an appropriate graphic
in a graphics application and saving it as a GIF file. For this
example, name the file testbar.gif.
Then follow these steps:

		Open MapEdit, and choose File, Open/Create.
The Open/Create Map dialog box appears.

		In this dialog box, enter testbar.map for the map file
and testbar.gif for the graphics file. (If you saved the
GIF file in a different directory, use the Browse button to find
and load it.)

		When the graphic loads, pull down the Tools menu and
make sure that Rect is selected.

		Draw rectangles for the buttons, providing an appropriate
URL for each button. For this example (four buttons in all), use
the following URLs:

http://www.fakecorp.com/index.html

http://www.fakecorp.com/product.html

http://www.fakecorp.com/service.html

http://www.fakecorp.com/help.html

		Choose File, Edit Default URL. The Default URL
dialog box appears.

		Enter the following URL:

http://www.fakecorp.com/error.html

		Choose File, Save.

		Choose File, _Quit.

You've created your map definition file. To look at the file,
open Notepad (or a similar text editor), and load the file testbar.map
into it. The file should look something like figure 12.4 (although
the coordinates are bound to be slightly different).

Figure 12.4 : A successful map definition file created in MapEdit.

[bookmark: WebMapforMacintosh]WebMap for Macintosh

If you're a Macintosh user, you can use a program called WebMap,
which is similar to MapEdit. You can download WebMap from http://www.city.net/cnx/software/webmap.html.
Install the program; then double-click its icon to start it.

To create an image map in WebMap, follow these steps:

		Choose File, Open.

		In the Open dialog box, select the graphic that you want to
use for your map and the name of the map definition file that
you want to create.

		Click the OK button. After a moment, MapEdit displays your
image file.

		To create a new hot zone, choose the shape from the floating
tool palette, and drag to create a hot zone. For a rectangle,
circle, or oval, click and hold the mouse in the top left corner
of your shape, drag the mouse to make the shape the desired size,
and then release the mouse button. To create a polygon, choose
the polygon shape from the tool palette and then click once on
the graphic for each point in your polygon. To complete the shape,
click once on the first point you created.

		When the shape is created, enter the URL in the space provided
above the graphic file (see fig. 12.5). You can use the pointer
tool (the one that looks like a mouse pointer) to select different
shapes that you've created and then edit their URLs.

		To create a default URL, use the pointer tool to click the
graphic background (not a shape). Default
URL should appear in the comment window. Then enter
the default URL in the URL text box.

Figure 12.5 : Using WebMap to create hot zones.

To create your map definition file, pull down the File menu and
choose Export As Text. In the resulting dialog box, you can name
your map file and save it in CERN or NCSA format. Now you're free
to save the graphic and quit the program.

[bookmark: AddingImageMapstoYourWebPage]Adding
Image Maps to Your Web Page

After you create your image map and your map definition file,
you're ready to add a link for your image map to your HTML page.
You can accomplish this task in a couple of ways, depending on
your Web server. In essence, though, the only major difference
between an image map and a clickable image (refer to Chapter 11)
is a new attribute for the
tag: ISMAP.

Image maps follow this format:

<IMG SRC="graphic.ext"
ISMAP>

		Note

		

It's perfectly acceptable to add other tag attributes (such as ALT) to your image map definition.

Using the ISMAP attribute
doesn't do much for you unless the image map is also a hyperlink,
so the following code is everything that you need to add an image
map to your Web page:

Our next step is to figure out what to use as the URL in this
hyperlink.

[bookmark: TheImageMapURL]The Image Map URL

The URL that you're interested in accessing isn't a particular
Web page, because using an URL to a particular Web page would
defeat the image map concept; the link would act like a regular
clickable graphic. Instead, you want the URL to access the map
definition file. You'll have to ask your ISP (or figure out for
yourself) where on the server the map file is stored.

Some Web servers allow you to store the map definition file anywhere
on the server; the servers are smart enough to figure out that
you're accessing a map definition file and take care of the rest.
In that case, you could simply store the map definition file in
the current directory and access it as follows:

If you have an understanding server, this method may work for
you.

Other servers may require you to access a particular directory
on the server, such as the /cgi-bin/
or /bin/ directory, where
server scripts (mini computer programs) are stored. In such a
case, something like the following examples may be the way to
access the image map:

or

If the server requires you to access one of these scripting directories,
though, it may not want you to access the map definition file
directly. Instead, the server will want you to use an alias.

Some servers store all map information in a single database file
(often called imagemap.conf)
and require you to access information within the database by using
an alias. You and your Web server administrator have to determine
what this alias is. In that case, your link would look more like
the following:

[bookmark: ExampleTestingYourLink]Example: Testing Your Link

The best way by far to participate in this example is to confer
with your ISP, place your map definition file on the Web server,
and test it from a remote location using the correct URL. If that
procedure doesn't work, you can manage some testing on your own.

Save your template as a new HTML file, and have an image-mapped
graphic handy in the same directory. Then enter Listing 12.1 between
the <BODY> tags.

Listing 12.1 img_map.html Adding
Image Maps in HTML

<BODY>

<IMG SRC="mymap.gif"
ISMAP ALT=

"My Image Map">

<H2>Welcome to my page!</H2>

</BODY>

		Note

		

If you're going to test this example on an actual Web server, you need to replace the URL with the appropriate one for your Web site (and add the type of link to your map info file that's required for your server). Also, use the real name of the mapped GIF

file in the tag.

Save the HTML file and then load it in a graphical browser. If
your graphic came up, chances are that you set the
tag correctly. Notice that many browsers do not display a colored
link border around the graphic, because the graphic is now considered
to be an image map.

Before clicking any of the hot zones, move your mouse pointer
around on the image map graphic. If you have a status bar at the
bottom of your browser window, you may notice that the link keeps
changing (see fig. 12.6). Along with the URL of your map definition
file, you should be seeing the current coordinates of your pointer.
All this information is sent to the map server to help it figure
out what region you clicked. (If you're testing this image map
from your local drive, the status bar test is the only part of
the example that will work.)

Figure 12.6 : An example image map, showing the URL and the coordinates that it will access if clicked.

Now, if you are testing your image map on the Web server, go ahead
and click the map to make sure that all the links work. If you're
viewing the image map locally, turn off the graphics-loading option
in your browser, and reload the page. You should notice that there's
now no way to access the hyperlinks in the image map-that's why
you also need text links for your image map pages.

[bookmark: ImageMapDesignTips]Image
Map Design Tips

This chapter has covered creating and linking an image map to
your Web page fairly thoroughly. Image maps are a bit of a departure
from standard text-markup HTML, however, so you should learn a
little bit of design theory and Web-related netiquette before
you leave this chapter. Please try to keep some of the following
suggestions in mind when you add image maps to your Web pages:

		Use image maps sparingly. The best way to use an image
map is as a clickable menu bar or some other easy-to-recognize
interface element. The point isn't really to see how graphical
you can make your Web pages-just how intuitive.

		Remember that image maps are usually little more than big
graphics files. Ultimately, the key to graphics on the Web
is keeping them small. Even if your image map is incredibly attractive,
users will be annoyed if they have to wait many minutes for their
four possible choices to download to their browsers. Use all the
tips in Chapter 9 to keep your graphic
as small as possible, and use image maps only to enhance usability.

		Image maps require redundant text links. Unless you
plan to leave out everyone who can't view your graphics, you need
to create text links that do everything that your image map does.
Remember that with clickable graphics, the ALT
attribute takes care of the problem. The ALT
attribute doesn't work for image maps, because a single image
map graphic can have many links, so you need to create an identical
text link on your page for every hot zone link in your image map.

		Stick to normal shapes whenever possible. Rules
are made to be broken, but in general, you should try to be conservative
with your image maps (see fig. 12.7). A graphic that looks as
though it has rectangular buttons should function as though it
has rectangular buttons. In other words, make your hot zones correspond
logically to the image map graphics. Random hot zones randomly
annoy users.

Figure 12.7 : Some sites make it their business to use image maps that break the rules. This one doesn't.

[bookmark: Summary]Summary

Image maps allow you to create hot zones in individual graphics
files. These hot zones point to different URLs, effectively turning
a single graphic into a Web interface. By creating creative graphics
and pointing different sections of those graphics to pages in
your site, you can make it very easy for Web users to get around
on your site.

Image maps work in conjunction with your Web server, which must
be running a special map server program. In such a case, you need
to create a graphic and a map definition file. Fortunately, programs
for Windows, UNIX, and Macintosh exist to help you create this
definition file.

In conjunction with your system administrator, you place the map
definition file in the correct directory on your Web server (most
often in the /cgi-bin or
/bin directory), and create
a link to the image map on your Web page. Placing the image map
in your HTML document requires the same anchor and
tags, but you need to include the ISMAP
attribute in the
tag.

After you finish with all your tags, test your new image map.
If all goes well, you'll have a new interface for your Web pages.

You should consider some design rules. Basically, keep the graphics
small and fairly standard, so that you don't annoy or confuse
your users.

[bookmark: ReviewQuestions]Review
Questions

		Why are the graphics discussed in this chapter called image
maps?

		What three steps do you follow to create an image map?

		What file format is the map definition file saved in?

		Is it important to know what type of map server program your
Web server is using? Why or why not?

		How do you find out where to store your map definition file?

		How many points are required for a rectangle in a map definition
file? What is the maximum number of points that you can use for
a polygon?

		True or false. You can create an image map without a map editing
program.

		Which files must you create for an image map to work?

		Do the shapes (rect, poly, point, and so on) that you draw
in a map editing program show up in the Web browser window? Why
or why not?

		Why is defining a default map definition redundant if you
have already defined a point?

		Aside from the URL to the map definition file, what information
does the Web browser send to the Web server? What does the designer
do to make this happen?

[bookmark: ReviewExercises]Review
Exercises

		Create two different map definition files for the same graphic,
one using the CERN method and one using NCSA. Compare the two
definition files and notice the differences.

		Again create two different map definition files for the same
graphic, this time using all polygon shapes for one of the definitions
and all squares for the other definition. Compare the two definition
files. Are polygons considerably more complicated than standard
shapes?

		Create a button bar (or menu bar) using a series of clickable
graphics. Then, create a similar button bar using an image map.
Which takes more work? Which will take more time to download to
a browser (i.e., which method takes up more drive space)?

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch13.htm

Chapter 13

HTML Forms

CONTENTS[bookmark: CONTENTS]

		Using Forms and Form-Capable Browsers

		Creating the Form
		Example: Someone Else's Form

		Text Fields and Attributes
		Example: Web-based Feedback Form

		The <INPUT> Tag
		TEXT

		PASSWORD

		CHECKBOX

		RADIO

		HIDDEN

		RESET

		SUBMIT

		Example: A More Complete Form

		Creating Pop-Up and Scrolling Menus
		Using <SELECT>

		Allowing More than One Selection

		Example: Order Form

		Summary

		Review Questions

		Review Exercises

The next set of HTML tags are designed to allow you to enhance
the interactivity of your Web pages by increasing your ability
to request information from users. Using the forms tags, you can
ask users to enter text information, choose from menus, mark checkboxes,
make choices from radio buttons, and then send that information
to the Web server for processing.

[bookmark: UsingFormsandFormCapableBrowsers]Using
Forms and Form-Capable Browsers

Although the forms tags are a part of the HTML 2.0 standard, it's
important to recognize that not all browsers are capable of viewing
them-especially older browsers and text-based browsers. Users
need to have forms-aware browsers, like the current versions of
NCSA Mosaic, Netscape Navigator, and Microsoft Internet Explorer,
among others. Generally, other browsers will simply ignore the
forms commands if they can't deal with them.

		Tip

		

It's a good idea to let your users know that they're about to jump to a form-based page whenever possible. Forms pages are a waste of time for users of older browsers that don't support them.

The idea behind a Web form is simple-it allows you to accept information
or answers from your users with varying levels of guidance. Users
can be asked to type answers, choose their answers from a list
of possibilities you create, or even be limited to choosing one
answer from a number of options that you specify.

That data is then passed on to the Web server, which hands it
to a script, or small program, designed to act on the data and
(in most cases) create an HTML page in response. In order to deal
with forms data then, you need to understand a little something
about scripting, or programming, for a Web server-or know someone
who does. While learning to program is beyond the scope of this
book, we'll look at how these scripts work in Chapter 14,
"Form Design and Data Gathering with CGI Scripts."

		Note

		

Most Web server scripts are written in Perl, C, or UNIX shell scripts. If your Web server is DOS, Windows, or Mac based, however, you may have other options. Some DOS Web servers allow you to script in the DOS batch language, while some Windows servers can

accept Visual Basic scripts (not to be confused with Microsoft's new Visual Basic Script language). Mac Web servers generally allow for AppleScript or Frontier scripting.

[bookmark: CreatingtheForm]Creating
the Form

In an HTML document, forms are set between the <FORM>
container tags. The form container works as follows:

<FORM METHOD="how_to_send"
ACTION="URL of script">

...form data...

</FORM>

Notice that the <FORM>
tag takes two attributes: METHOD
and ACTION. The METHOD
attribute accepts either POST
or GET as its value. POST
is by far the more popular, as it allows for a greater amount
of data to be sent. GET is
a little easier for Web programmers to deal with, and is best
used with single responses, like a single textbox.

The second attribute is ACTION,
which simply accepts the URL for the script that will process
the data from your form. Most often the script is stored in a
directory called bin/ or
cgi-bin/ located on your
Web server.

An example of the <FORM>
tag then, would be the following:

<FORM METHOD="SEND" ACTION="http://www.fakecorp.com/cgi-bin/register_script">

</FORM>

As with any HTML container tag, this implementation of the <FORM>
tag has actually created a complete form (just like <P>
and </P> is a complete
paragraph). Unfortunately, our complete form doesn't do
anything yet, so that's somewhat academic.

		Note

		

You can't nest forms within one another. You need to add the end tag </FORM> for the first form before creating another one in the same document. Generally, browsers will ignore any new occurrences of the <FORM> tag, since the

purpose of the tag is to tell the browser how to submit data to the server, and different parts of the form can't be submitted in different ways.

[bookmark: ExampleSomeoneElsesForm]Example: Someone Else's
Form

Let's take a quick look at a form that's been created by someone
else-one that most seasoned Web browsers have encountered at one
time or another. Load up your Web browser and point it to http://webcrawler.com/.

This is the WebCrawler page, a Web search engine offered by America
Online. Your next step is to view the source of this document.
Select the View Document Source command in your Web browser's
Edit menu. What you see will look something like figure 13.1.

Figure 13.1 : Example of an HTML form available on theWeb.

		Note

		

Nearly all graphical browsers have a View Source command. Look in the Edit menu for this command or a command with a similar name. The HTML source of the current Web document will then be displayed or saved as a text file.

Notice a couple of things here. The <FORM>
tag at WebCrawler is using the ACTION
and METHOD attributes that
were discussed. ACTION is
accessing a script called WebQuery
found in the cgi-bin/ directory
of the Web server. The METHOD
used is SEND.

		Tip

		

Although you shouldn't copy others' work, don't forget that you can always use View Source commands to learn how something was done on the Web.

[bookmark: TextFieldsandAttributes]Text
Fields and Attributes

One of the more common uses for forms is to accept multiple lines
of text from a user, perhaps for feedback, bug reports, or other
uses. To do this, use the <TEXTAREA>
tag within your form. You can set this tag to control the number
of rows and columns it displays, although it will generally accept
as many characters as the user desires to enter. It takes the
following form:

<TEXTAREA NAME="variable_name"
ROWS="number" COLS="number">

default text

</TEXTAREA>

It may surprise you to find that <TEXTAREA>
is a container tag, since it just puts a box for typing on the
page. What's contained in the tag is the default text-so you can
guide your users by letting them know what you'd like entered
there. For instance:

<FORM>

<TEXTAREA NAME="comments" ROWS="4" COLS="40">

Enter comments about this Web site.

Good or Bad.

</TEXTAREA>

</FORM>

The default text appears in the textbox just as typed. Notice
in figure 13.2 that text inside the <TEXTAREA>
tag works like <PRE>
formatted text. Any returns or spaces you add to the text are
displayed in the browser window. In fact, notice that by hitting
Return after the opening <TEXTAREA>
tag, I'm inserting a blank line at the top of the textarea (in
many browsers).

Figure 13.2 : The <TEXTAREA> tag in action.

The NAME attribute is a variable
name for this string of text. It gets passed on to your processing
script on the Web server. ROWS
and COLS can accept different
numbers to change the size of the textarea box, but you should
take care that the majority of browsers can see the entire box
on-screen. It's best to limit COLS
to 80, and ROWS to something
like 24 (the typical size for a text-based computer screen). But
it's up to you.

<TEXTAREA> will also
accept one other attribute: WRAP.
WRAP can be set to OFF
(which is the default if WRAP
is not included), VIRTUAL,
or PHYSICAL. Setting wrap
to PHYSICAL forces the browser
to include actual line breaks in the text when sending it to the
Web server. VIRTUAL makes
the textbox seem to offer line wrap, but sends a continuous stream
of words to the Web server (unless the user has entered returns
on his or her own).

[bookmark: ExampleWebbasedFeedbackForm]Example: Web-based Feedback
Form

I mentioned before that <TEXTAREA>
is commonly used to gather feedback from your Web users. To create
a small form to do just that, save your default template as a
new HTML document and enter the following:

<BODY>

<H3>Feedback Form</H3>

<P>Please take a moment to tell us what you thought of the
Web site.

Your Feedback is appreciated!</P>

<FORM METHOD="POST" ACTION="cgi-bin/feedback">

Enter your comments below:

<TEXTAREA NAME="comments" ROWS="10" COLS="70"
WRAP="VIRTUAL">

Dear BigCorp:

</TEXTAREA>

</FORM>

</BODY>

You can see how this looks in figure 13.3. Notice in the example
that some descriptive text is enclosed inside the <FORM>
tag, but outside of the <TEXTAREA>
tag. This is completely legal-it just lets you explain what the
purpose of the textarea is.

Figure 13.3 : Sample textarea HTML form.

You may have realized that there's something lacking in this sample
form. There's no way to submit the user's entry! You'll get to
that in the next section, when I discuss this next tag for form
entry.

[bookmark: TheINPUTTag]The <INPUT>
Tag

Our next tag for HTML forms give you the opportunity to be a bit
more picky about the type of input you're going to accept from
the user. The <INPUT>
tag follows the following format:

<INPUT TYPE="type_of_box"
NAME="variable" SIZE="number"
MAXLENGTH="number">

Now, technically, the only required attributes are TYPE
and NAME. Some other "types"
of the input tag will also accept the attribute VALUE.
But first, let's look at the different types of <INPUT>.

		Note

		

By the way, notice that <INPUT> is an empty tag. There's no </INPUT> element.

[bookmark: TEXT]TEXT

The first possible value for the TYPE
attribute is TEXT, which
creates a single-line textbox of a length you choose. Notice that
the length of the box and the maximum length entered by the user
can be set separately. It's possible to have a box longer (or,
more often, shorter) than the maximum number of characters you
allow to be entered. Here's an example of a textbox:

Last name: <INPUT TYPE="TEXT"
NAME="last_name" SIZE="40" MAXLENGTH="40">

When appropriately entered between <FORM>
tags, this <INPUT>
yields a box similar to figure 13.4. If desired, the attribute
VALUE can be used to give
the textbox a default entry, as in the following example:

Figure 13.4 : Using the TEXT option with the TYPE attribute.

Type of Computer: <INPUT TYPE="TEXT"
NAME="computer" SIZE="50" MAXLENGTH="50"
VALUE="Pentium">

[bookmark: PASSWORD]PASSWORD

The PASSWORD option is nearly
identical to the TEXT option
except that it responds to typed letters with bullet points or
a similar scheme (chosen by the browser) to keep the words from
being read. A sample password box could be the following:

Enter Password: <INPUT TYPE="PASSWORD"
NAME="password" SIZE="25" MAXLENGTH="25">

When characters are typed into this textbox, they are shown on
the screen as in figure 13.5.

Figure 13.5 : PASSWORD hides text from people looking over your user's shoulder.

Recognize that the text is still stored as the text typed by the
user-not as bullet points or similar characters.

[bookmark: CHECKBOX]CHECKBOX

This value for TYPE allows
you to create a checkbox-style interface for your form. This is
best used when there are two possible values for a given choice-and
no others. You can also determine whether or not a checkbox will
already be checked (so that it must be unchecked by the user,
if desired), by using the attribute CHECKED.
Here's an example of adding checkboxes to a form:

Type of computer(s) you own:

<INPUT TYPE="CHECKBOX" NAME="Pentium" CHECKED>
Pentium

<INPUT TYPE="CHECKBOX" NAME="486"> 486-Series
PC

<INPUT TYPE="CHECKBOX" NAME="Macintosh">
Macintosh

In this example, it's possible to check as many of the options
as are presented. CHECKBOX
evaluates each item separately from any others. Figure 13.6 illustrates
how CHECKBOX is displayed
in a browser.

Figure 13.6 : Notice that Pentium is prechecked.

[bookmark: RADIO]RADIO

Like CHECKBOX, RADIO
is designed to offer your user a choice from pre-determined options.
Unlike CHECKBOX, however,
RADIO is also designed to
accept only one response from among its options. RADIO
uses the same attributes and basic format as CHECKBOX.

RADIO requires that you use
the VALUE attribute, and
that the NAME attribute be
the same for all of <INPUT>
tags that are intended for the same group. VALUE,
on the other hand, should be different for each choice. For instance,
look at the following example:

Choose the computer type you use most
often:

<INPUT TYPE="RADIO" NAME="Computer" VALUE="P"
CHECKED> Pentium

<INPUT TYPE="RADIO" NAME="Computer" VALUE="4">
486-Series PC

<INPUT TYPE="RADIO" NAME="Computer" VALUE="M">
Macintosh

<INPUT TYPE="RADIO" NAME="Computer" VALUE="O">
Other

With RADIO, it's important
to assign a default value, since it's possible that the user will
simply skip the entry altogether. While the user can't check more
than one, he or she can check none.
So choose the most common value and set it as CHECKED,
just so that the form-processing script doesn't have trouble.

		Note

		

Of course, if you want to give your user the option of choosing none, then you can leave off the CHECKED attribute. It's more complete and obvious for the user, however, to include another radio button with a VALUE of
none, and make it the CHECKED choice.

[bookmark: HIDDEN]HIDDEN

This <INPUT> type technically
isn't "input" at all. Rather, it's designed to pass
some sort of value along to the Web server and script. It's generally
used to send a keyword, validation number, or some other kind
of string to the script so that the script knows it's being accessed
by a valid (or just a particular) Web page. The <INPUT
TYPE="Hidden"> tag takes the attributes
NAME and VALUE.

		Note

		

This isn't really terribly covert, since an intrepid user could simply choose View Source to see the value of the hidden field. It's more useful from a programmer's standpoint. For instance, on a large Web site, the hidden value might tell a multi-purpose

script which particular form (among many) is sending the data, so the script knows how to process the data.

[bookmark: RESET]RESET

The <INPUT> tag has
built into it the ability to clear an HTML form. RESET
simply creates a push button (named with the VALUE
string) that resets all of the elements in that particular FORM
to their default values (erasing anything that the user has entered).
An example would be the following:

<INPUT TYPE="RESET">

With a VALUE statement, you
could enter the following:

<INPUT TYPE="RESET" VALUE="Reset
the Form">

The results are shown in figure 13.7.

Figure 13.7 : Default and VALUE-attributed Reset buttons.

[bookmark: SUBMIT]SUBMIT

The <INPUT> tag also
has a type that automatically submits the data that's been entered
into the HTML form. The SUBMIT
type accepts only the attribute VALUE,
which can be used to rename the button. Otherwise, the only purpose
of the Submit button is to send off all the other form information
that's been entered by your user. See the following two examples
(see fig. 13.8):

Figure 13.8 : Creating a Submit button.

<INPUT TYPE="SUBMIT">

<INPUT TYPE="SUBMIT" VALUE="SEND IT IN!">

You can use just about anything you want for the VALUE,
although it's best to remember that really small words, like OK,
don't look great as buttons. To make a button larger, enter the
VALUE with spaces on either
end, like in the following:

<INPUT TYPE="SUBMIT" VALUE="
GO ">

[bookmark: ExampleAMoreCompleteForm]Example: A More Complete
Form

Along with all the other <INPUT>
types, now you've finally got a way to submit data. So, let's
create a more involved form that includes some of these examples-a
subscription form.

Save your HTML template to create a new document. Then, enter
something similar to Listing 13.1.

Listing 13.1 scrp_frm.html Creating
a Complete Form

<BODY>

<H2>Subscribe to CorpWorld</H2>

<P>Interested in receiving daily email updates of all the
latest exploits of BigCorp? Well, now you can. And, best of all,
it's free! Just fill out this form and submit it by clicking the
"Send it In" button. We'll put you on our mailing list,
and you'll receive your first email in 3-5 days.</P>

<FORM METHOD="Send" ACTION="http://www.fakecorp.com/cgi-bin/subscribe">

Please complete all of the following:

First Name: <INPUT TYPE="Text" Name="first"
SIZE="25" MAXLENGTH="24">

Last Name: <INPUT TYPE="Text" Name="last"
SIZE="35" MAXLENGTH="34">

Business: <INPUT TYPE="Text" Name="business"
SIZE="50" MAXLENGTH="49">

We must have a correct email address to send you the newsletter:

Email: <INPUT TYPE="Text"
Name="email" SIZE="50" MAXLENGTH="49">

How did you hear about BigCorp's email letter?

<INPUT TYPE="RADIO" NAME="hear" VALUE="web"
CHECKED>Here on the Web

<INPUT TYPE="RADIO" NAME="hear" VALUE="mag">In
a magazine

<INPUT TYPE="RADIO" NAME="hear" VALUE="paper">Newspaper
story

<INPUT TYPE="RADIO" NAME="hear" VALUE="other">Other

 Would you care to be on our regular mailing list?

<INPUT TYPE="CHECKBOX" NAME="snailmail"
CHECKED> Yes, I love junk mail

<INPUT TYPE="RESET">

<INPUT TYPE="SUBMIT" VALUE="Send it in!">

</FORM>

</BODY>

Notice that, for text type <INPUT>
boxes, the MAXLENGTH is one
less than the size of the box. This tends to look a little better,
but choosing the size is up to you. Figure 13.9 shows how it looks
on a Web page. (You'll get to straightening everything out and
making it look great in Chapter 14.)

Figure 13.9 : The complete form in MS Internet Explorer.

[bookmark: CreatingPopUpandScrollingMenus]Creating
Pop-Up and Scrolling Menus

The last types of input that you can offer to users of your Web
page revolve around the <SELECT>
tag, which can be used to create different types of pop-up and
scrolling menus. This is another element designed specifically
for allowing users to make a choice-they can't enter their own
text. The <SELECT>
tag requires a NAME attribute
and allows you to decide how many options to display at once with
the SIZE attribute.

[bookmark: UsingSELECT]Using <SELECT>

Also notice that, like <TEXTAREA>,
<SELECT> is a container
tag. Options are placeed between the two <SELECT>
tags, each with a particular VALUE
that gets associated with <SELECT>'s
NAME attribute when chosen.
The following is the basic format:

<SELECT NAME="variable">

<OPTION SELECTED VALUE="value"> Menu
text

<OPTION VALUE="value"> Menu text

...

</SELECT>

The attribute SELECTED is
simply designed to show which value will be the default in the
menu listing. value
can be anything you want to pass on to the Web server and associated
script for processing. An example might be:

Choose your favorite food:

<SELECT NAME="food">

<OPTION SELECTED VALUE="ital"> Italian

<OPTION VALUE="texm"> TexMex

<OPTION VALUE="stek"> SteakHouse

<OPTION VALUE="chin"> Chinese

</SELECT>

You can also use the SIZE
attribute to decide to display the menu in its entirety, by simply
changing the first line of the example to the following:

<SELECT NAME="food" SIZE="4">

Both examples are shown in figure 13.10.

Figure 13.10 : Two <SELECT> menus-a pop-up and a fixed.

In the first example, selecting the menu item with the mouse causes
the menu to pop-up on the page. The user can then select from
the choices. In the second example, it's necessary to click the
desired item.

[bookmark: AllowingMorethanOneSelection]Allowing More than
One Selection

One more attribute for the <SELECT>
tag allows the user to select more than one option from the menu.
Using the MULTIPLE attribute
forces the menu to display in its entirety, regardless of the
SIZE attribute. An example
might be the following: (the result appears in figure 13.11):

Figure 13.11 : A <SELECT> menu can allow multiple choices.

What type of cars does your family own
(select as many as apply)?

<SELECT NAME="cars" MULTIPLE>

<OPTION VALUE="sedan"> Sedan

<OPTION VALUE="coupe"> Coupe

<OPTION VALUE="mivan"> Minivan

<OPTION VALUE="covan"> Conversion Van

<OPTION VALUE="statn"> Stationwagon

<OPTION VALUE="sport"> SUV (4x4)

<OPTION VALUE="truck"> Other Truck

</SELECT>

[bookmark: ExampleOrderForm]Example: Order Form

With all of these possibilities for the form, you can manage some
fairly complete data entry interfaces for users. Consider this
one: an online order form. Used in conjunction with a secure Web
site, this form could be used to process purchase orders over
the Internet.

Save your template as a new HTML file and enter Listing 13.2's
example text between the <BODY>
tags.

Listing 13.2 ordr_frm.html Creating
an Order Form

<BODY>

<H3>Online Order Form</H3>

<P> Please enter your name, billing address and shipping
address. Please

don't forget the order number from our online catalog listings.
Thanks for shopping BigCorp!</P>

<FORM METHOD="SEND" ACTION="http://www.fakecorp.com/cgi-bin/order">

<HR>

Please enter a full name and address for BILLING purposes:

First Name: <INPUT TYPE="TEXT" NAME="first"
SIZE="25" MAXLENGTH="24">

Last Name: <INPUT TYPE="TEXT" NAME="last"
SIZE="35" MAXLENGTH="34">

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="60" MAXLENGTH="59">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25"
MAXLENGTH="24">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="3" MAXLENGTH="2"> ZIP:

<INPUT TYPE="TEXT" NAME="zip" SIZE="6"
MAXLENGTH="5">

<HR>

<INPUT TYPE="CHECKBOX" NAME="same_add">
Check if Shipping Address is

different from Mailing Address

<HR>

<TEXTAREA NAME="ship_add" ROWS="3" COLS="60"
WRAP="PHYSICAL">Enter shipping address here if different
from above.

</TEXTAREA>

<HR>

Please enter the code for the product you wish to purchase: <INPUT
TYPE=

"TEXT" NAME="prod_num" SIZE="7"
MAXLENGTH="6">

<HR>

How would you like to pay for this?

<SELECT NAME="credit">

<OPTION SELECTED VALUE="mast"> MasterCard

<OPTION VALUE="visa"> Visa

<OPTION VALUE="amex"> American Express

<OPTION VALUE="disc"> Discover

</SELECT>

Please enter the card number: <INPUT TYPE="TEXT"
NAME="cred_num" SIZE="17"

MAXLENGTH="16">

Expiration date (01/99): <INPUT TYPE="TEXT" NAME="exp_date"
SIZE="6"

MAXLENGTH="5"><HR>

Please take care that everything is filled out correctly, then
click "Submit Order." If you'd like, you can select
the "Reset" button to start again. Clicking the "Submit
Order" button will send your order to BigCorp and your credit
card will be charged.

<INPUT TYPE="reset">

<INPUT TYPE="submit" VALUE="Submit Order">

</FORM>

</BODY>

Here you've taken advantage of most of the options available to
you for forms (see fig. 13.12). Notice that, if the checkbox for
Check if Shipping Address is different from Mailing Address is
left unchecked, you can assume (in the processing script) that
the textarea can be ignored. Also notice how using the MAXLENGTH
attribute for State: and
ZIP: allows you some very
basic error checking in these fields. At least, you know that
users are entering the correct number of characters.

Figure 13.12 : The completed Web order form.

Once the user clicks the Submit Order button, the script on your
Web server takes over. The script should be designed to accept
the data, add it to your internal order-processing database (if
appropriate), and respond to the submission with an HTML page
confirming the order and offering any additional help or instructions.
Then, hopefully, the product will ship on time!

[bookmark: Summary]Summary

HTML forms are a powerful way to add interactivity to your Web
site. They can be used to elicit information, responses, memberships,
or even product orders from your users. They can also be used
as an interface for data retrieval.

The basic elements of a form are the <FORM>
tag itself, along with a number of different types of form elements,
including <INPUT>,
<SELECT>, and <TEXTAREA>.
Each of these have their own attributes, values, and special cases.

The <TEXTAREA> creates
a relatively free-form textarea where comments, messages, and
other feedback can be typed by the user. <INPUT>
allows for a number of different types of interaction with the
user, including single-line textboxes, radio button interfaces,
checkboxes, and special buttons for resetting forms or sending
in the form data.

<SELECT> types allow
you to control how users respond by offering them access to menu
listings. Menus can be either pop-up or scrolling, giving the
user the ability to make a single choice or multiple choices from
each menu.

[bookmark: ReviewQuestions]Review
Questions

		What are the two values for the <FORM>
attribute METHOD? Which are
you more likely to use?

		What does the ACTION
attribute accept?

		What is a <TEXTAREA>
form element used for? How does the user enter data?

		<TEXTAREA> is a
container tag. What does it contain?

		Why sort of element is TYPE
as it relates to the <INPUT>
tag?

		Aside from how they look, what's the major difference between
checkboxes and radio buttons?

		How do you define a checkbox or radio button as the default
value?

		How do you tell an HTML form to send its data to the Web server?

		What type of interface element does the <SELECT>
tag display?

		If you use the attribute MULTIPLE
with the <SELECT> tag,
what happens to the way the menu displays?

		How do you define the default value in a <SELECT>
menu?

[bookmark: ReviewExercises]Review
Exercises

		Create a simple form that lets your user send you an e-mail
message. (Hint: you can use the mailto:
type of URL to actually cause the form to mail the form data
to your e-mail account.)

		Create a form that offers the following choices in a pop-up
menu, a series of radio buttons, and a list of checkboxes. Make
a different value the default in each. The choices are: North,
South, East, and West.

		Using a Select menu, create two different menus of the following
items. Make one a pop-up menu and the other a scrolling menu.
The choices are: Life, Liberty, Happiness, Death, and Taxes.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch14.htm

Chapter 14

Form Design and Data Gathering
with CGI Scripts

CONTENTS[bookmark: CONTENTS]

		Form Design Issues

		Line Breaks, Paragraphs, and Horizontal Lines
		Line Breaks

		Horizontal Lines

		Paragraph Tags

		Example: Fix-A-Site

		Other Tags for Form Formatting
		Using the <PRE> Tag

		Using List Tags for Forms
		Example: Customer Service Revisited

		CGI-BIN Scripts and Dealing With Form Data
		Using CGI-BIN Scripts

		Receiving Form Data

		Your Script's Output

		Summary

		Review Questions

		Review Exercises

Now that you've seen how to create the basic form tags, let's
put that knowledge together with some of the HTML tags you've
already learned and make your forms more intuitive, attractive,
and meaningful to the user. You'll also look at how data is transferred
to the Web server and how your scripts need to be written to deal
with the data.

[bookmark: FormDesignIssues]Form
Design Issues

Central to the idea of form design is making the form as easy
for users to understand and underwhelming enough that they follow
through and fill out the form. The less incentive you have for
them to fill out the form, the less likely they are to try. A
clean, short form is more likely to entice users than a long,
confusing one.

There are a couple of rules you should consider when building
your forms so that they're easier and more effective for users:

		Use other HTML tags to make things clear. You can use

, <HR>,
and paragraph tags to set apart different "chunks" of
your form, while ,
<I>, and even <PRE>
can be used to make the form more easily read.

		Keep your forms short. This isn't always possible,
but when your forms are long, it's important to at least use <HR>
and similar tags to break it up a bit. If forms have smaller sections,
they're easier on the eye.

		Use intuitive design. Common sense is sometimes the
key to a good form. For instance, putting the Submit button in
the middle of the form will keep people from filling out the rest
of it. Often it's best to use <SELECT>,
radio buttons, and checkboxes to keep your users from guessing
at the type of info you want.

		Warn users of unsecured transactions. You should tell
your users if your Web server is secure-and how they can make
sure that the connection is current. If you ask for a credit card
or similar personal information over an unsecured connection,
let them know that, too.

Sound simple enough? Let's move on to some of the specifics of
this advice-and get these form tags to work.

[bookmark: LineBreaksParagraphsandHorizontal]Line
Breaks, Paragraphs, and Horizontal Lines

The first rule of form design tells you to use HTML appearance
tags to make your forms more coherent to the user. Doing this
will affect the layout in one way or another-it's up to you to
decide which is best for your particular circumstance.

[bookmark: LineBreaks]Line Breaks

Unlike text-oriented HTML, your best friend in form design is
not really the paragraph tag-it's the line break tag. This is
because you want to directly affect the layout of the forms, instead
of leaving it up to the browser. Therefore, you've got to be a
little more proactive. You'll end up with a lot of line break
tags before your form is through.

Consider the following example:

<FORM>

Enter your name and phone number

First Name: <INPUT TYPE="TEXT" NAME="first"
SIZE="30">

Last Name: <INPUT TYPE="TEXT" NAME="last"
SIZE="40">

Phone: <INPUT TYPE="TEXT" NAME="phone"
SIZE="12">

</FORM>

Figure 14.1 illustrates how this would appear in a browser.

Figure 14.1 : These text boxes were inputted without
 tags.

It doesn't look terribly clean, does it? To get each of those
text boxes on a separate line, and thus more pleasing to the eye,
we need to add the

tag:

<FORM>

Enter your name and phone number

First Name: <INPUT TYPE="TEXT" NAME="first"
SIZE="30">

Last Name: <INPUT TYPE="TEXT" NAME="last"
SIZE="40">

Phone: <INPUT TYPE="TEXT" NAME="phone"
SIZE="12">

</FORM>

Adding
 forces
each subsequent text box to the next line. This is a more attractive
form, and the

tags make it easier for the user to understand (see figure 14.2).

Figure 14.2 : Look at the difference the
 tag makes!

Notice then, that the parts of a form (like the <INPUT>
empty tag) work a lot like text in a regular HTML document. Even
if you add returns while typing, they're still ignored by the
browser. You need

tags to create new lines.

Also notice the use of instructional text for these text boxes,
which were put in boldface for the example. This is another important
tenet of form design-using HTML emphasis tags to make things clear.
Most of your forms will need instructions throughout, just like
any paper-based form. It's a good idea to standardize your instructions,
using bold or italic tags to make them stand out from your other
text.

[bookmark: HorizontalLines]Horizontal Lines

Along that same line of thought, you should not only use instructional
text but also break your form into smaller chunks by using the
<HR> tag. Start with
Listing 14.1, which uses

and emphasis tags.

Listing 14.1 br_form.html Our
Example so Far

<FORM>

Enter your name and phone number

First Name: <INPUT TYPE="TEXT" NAME="first"
SIZE="30">

Last Name: <INPUT TYPE="TEXT" NAME="last"
SIZE="40">

Phone: <INPUT TYPE="TEXT" NAME="phone"
SIZE="12">

Enter your mailing address

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="50">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="2">

Zip: <INPUT TYPE="TEXT" NAME="zip" SIZE="7">

Enter your email address

Email: <INPUT TYPE="TEXT" NAME="email"
SIZE="45">

Enter your comments below:

<TEXTAREA NAME="comments" ROWS="5" COLS="40">

Dear BigCorp,

</TEXTAREA>

</FORM>

Viewed in a browser, this form is easier for the user to understand,
with instructions in bold and textboxes where you'd expect them
(see fig. 14.3).

Figure 14.3 : Adding "chunks" to the previous example.

But there's still more you can do. By placing <HR>
tags in your form, you make it clear that new instructions are
coming up or that the form has reached the next logical chunk
of entry. The <HR>
tag simply makes it easier to look at as it guides the user through
the different parts of the form. In Listing 14.2, you add <HR>
tags at the logical breaks.

Listing 14.2 hr_form.html Adding
<HR> to the Form

<FORM>

Enter your name and phone number

First Name: <INPUT TYPE="TEXT" NAME="first"

SIZE="30">

Last Name: <INPUT TYPE="TEXT" NAME="last"

SIZE="40">

Phone: <INPUT TYPE="TEXT" NAME="phone"
SIZE="12">

<HR>

Enter your mailing address

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="50">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="2">

Zip: <INPUT TYPE="TEXT" NAME="zip" SIZE="7">

<HR>

Enter your email address

Email: <INPUT TYPE="TEXT" NAME="email"
SIZE="45">

<HR>

Enter your comments below:

<TEXTAREA NAME="comments" ROWS="5" COLS="40">

Dear BigCorp,

</TEXTAREA>

</FORM>

Unfortunately, the form is a little larger now (see fig. 14.4).
But I don't think you've sacrificed the approachability by adding
<HR> tags. Increasing
the white space in a form is nearly as important as keeping it
short enough so it isn't intimidating to users. I think you'll
agree that each part of the form now just makes more sense.

Figure 14.4 : Adding <HR> tags to clearly define each new section of the form.

As you experiment with forms, you'll find that the larger the
form-and the more diverse the types of information you're asking
for-the more useful the <HR>
tag becomes in guiding your user's eye to the appropriate spots.

[bookmark: ParagraphTags]Paragraph Tags

Paragraph tags are basically good for keeping form data together
in smaller chunks. As always, paragraph tags will add space on
either side of the text that they enclose. You don't always want
to add <HR> tags just
because your form needs some white space. For instance, here is
a nice, short comment form:

<FORM>

Who are you?

Name: <INPUT TYPE="TEXT" NAME="name" SIZE="50">

Email: <INPUT TYPE="TEXT" NAME="name" SIZE="50">

<HR>

What product line do you wish to discuss?

Product: <SELECT NAME="product">

<OPTION SELECTED VALUE="sport"> Sporting Goods

<OPTION VALUE="home"> Home Furnishings

<OPTION VALUE="fashion"> Clothing/Fashions

<OPTION VALUE="electron"> Electronics

</SELECT>

<HR>

Okay, fire away!

<TEXTAREA NAME="comment" ROWS="5" COLS="40">

Dear BigCorp,

</TEXTAREA>

</FORM>

Again, this is fairly easy on the eyes. But the spacing isn't
really great, and there are a lot of horizontal lines (see fig.
14.5).

Figure 14.5 : Comment form without the <P> tag.

Let's look at this closely. Consider that second <HR>
tag. Isn't that a little illogical? It seems that the user is
supposed to select the product line that they'll be discussing
in the comment form. The way it's set up, it isn't particularly
clear that the <SELECT>
menu and the comment <TEXTBOX>
are related to one another.

Using paragraph tags, then, you can get the desired spacing between
the <SELECT> and <TEXTAREA>
elements, without the horizontal line that seems to break the
two apart. You can also pad the rest of the form a bit to keep
it nicely spaced from the horizontal lines that you do
use. The key is adding <P>
tags as in the following example:

<FORM>

<P>

Who are you?

Name: <INPUT TYPE="TEXT" NAME="name" SIZE="50">

Email: <INPUT TYPE="TEXT" NAME="name" SIZE="50">

</P>

<HR>

<P>

What product line do you wish to discuss?

Product: <SELECT NAME="product">

<OPTION SELECTED VALUE="sport"> Sporting Goods

<OPTION VALUE="home"> Home Furnishings

<OPTION VALUE="fashion"> Clothing/Fashions

<OPTION VALUE="electron"> Electronics

</SELECT>

</P>

<P>

Okay, fire away!

<TEXTAREA NAME="comment" ROWS="5" COLS="40">

Dear BigCorp,

</TEXTAREA>

</P>

</FORM>

Isn't that better (see fig. 14.6)? Now, the <SELECT>
and <TEXTAREA> elements
appear related to one another, but things aren't as crowded as
they would be if you'd just used the

tag. (Of course, the <P>
tags don't have to be on lines by themselves in your HTML document.)

Figure 14.6 : Better spacing and more conservative use of <HR> is possible when you include the pararaph tags.

		Tip

		

Different browsers will interpret multiple
 tags in different ways, so it's best to use the <P> tag for sufficient spacing.

[bookmark: ExampleFixASite]Example: Fix-A-Site

In this example, we'll start with a site that offers the bulk
of the form elements you've learned, but none of the spacing and
layout tips just discussed. It's just a plain little form. Then,
let's go through it and change the way it looks to try to make
it more intuitive and better looking.

Of course, there aren't any truly right answers when talking about
aesthetics. By the end of this example, see if you agree with
the changes made.

The HTML for your form is in Listing 14.3.

Listing 14.3 old_form.html Making
a Form Look Better

<BODY>

<H2>Customer Survey</H2>

<P>Please fill out the following form, including your personal
information, to help us better serve you. None of the addresses
or other information in these forms will be sold without your
permission. Thank You!

</P>

<HR>

<FORM METHOD="POST" ACTION="http://www.fakecorp.com/cgi-bin/csurvey">

Enter your name and address:

Name: <INPUT TYPE="TEXT" NAME="name" SIZE="60">

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="60">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25">
State: <INPUT TYPE="TEXT"

NAME="state" SIZE="2"> Zip: <INPUT TYPE="TEXT"
NAME="zip" SIZE="5">

Phone: <INPUT TYPE="TEXT" NAME="city" SIZE="12">

Please check the type of computer you own:

<INPUT TYPE="CHECKBOX" NAME="pentium">
Pentium

<INPUT TYPE="CHECKBOX" NAME="486"> 486-series
PC

<INPUT TYPE="CHECKBOX" NAME="386"> 386-series
PC

<INPUT TYPE="CHECKBOX" NAME="mac"> Mac

<INPUT TYPE="CHECKBOX" NAME="win95">
Please check if your computer runs

Windows 95 What is your favorite way to shop for computer products
(choose one)?

<INPUT TYPE="RADIO" NAME="favorite" VALUE="mail">
Mail Order Catalog

<INPUT TYPE="RADIO" NAME="favorite" VALUE="local">
Local Computer Store

<INPUT TYPE="RADIO" NAME="favorite" VALUE="super">
Computer Superstore

<INPUT TYPE="RADIO" NAME="favorite" VALUE="net">
Internet/World Wide Web

Please enter any additional comments below:

<TEXTAREA NAME="comments" ROWS="5" COLS="70">

Enter comments here

</TEXTAREA>

Thanks for your input. Please click the Done button below to send
us your

info or click Reset to clear the form.

<INPUT TYPE="RESET">

<INPUT TYPE="SUBMIT" VALUE=" Done ">

</FORM>

</BODY>

See how this looks in a browser in figure 14.7.

Figure 14.7 : The initial attempt at the customer feedback form.

Now, let's pull this thing apart a bit and make some changes.
It's a fairly logical organization, so you should be able to figure
out what the chunks are. The first chunk is the address section,
which currently looks like the following:

Enter your name and address:

Name: <INPUT TYPE="TEXT" NAME="name" SIZE="60">

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="60">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="2">

Zip: <INPUT TYPE="TEXT" NAME="zip" SIZE="5">

Phone: <INPUT TYPE="TEXT" NAME="city" SIZE="12">

All this really needs is some HTML markup, some

tags, a paragraph around it, and a horizontal line, shown in the
following code:

<P>

Enter your name and address:

Name: <INPUT TYPE="TEXT" NAME="name" SIZE="60">

Address: <INPUT TYPE="TEXT" NAME="address"

SIZE="60">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="3"

MAXLENGTH="2">

Zip: <INPUT TYPE="TEXT" NAME="zip" SIZE="5">

Phone: <INPUT TYPE="TEXT" NAME="city" SIZE="12">

</P>

<HR>

As discussed in Chapter 13, it's also
a good idea to set the size of your textbox a little larger than
the MAXLENGTH. In this case,
though, you've only changed the MAXLENGTH
of state since you want to
allow users to enter more than the allotted characters in other
textboxes (hence, no MAXLENGTH
value).

Your next chunk is the computer-related questions. It might seem
like two chunks, but let's use the idea of putting them in the
same section of the form, since they are similar and don't take
up much space. Here's the original code for this chunk:

Please check the type of computer you
own:

<INPUT TYPE="CHECKBOX" NAME="pentium">
Pentium

<INPUT TYPE="CHECKBOX" NAME="486"> 486-series
PC

<INPUT TYPE="CHECKBOX" NAME="386"> 386-series
PC

<INPUT TYPE="CHECKBOX" NAME="mac"> Mac

<INPUT TYPE="CHECKBOX" NAME="win95">
Please check if

your computer runs

Windows 95 What is your favorite way to shop for

computer products (choose one)?

<INPUT TYPE="RADIO" NAME="favorite" VALUE="mail">
Mail

Order Catalog

<INPUT TYPE="RADIO" NAME="favorite" VALUE="local">

Local Computer Store

<INPUT TYPE="RADIO" NAME="favorite" VALUE="super">

Computer Superstore

<INPUT TYPE="RADIO" NAME="favorite" VALUE="net">

Internet/World Wide Web

How can you fix this? You need to be more specific about where
the checkboxes and radio buttons end and how they are allowed
to wrap with the browser screen (using
).
Plus, you should separate the three questions with
<P> tags, like the following:

<P>Please check the type
of computer(s) you own:

<INPUT TYPE="CHECKBOX" NAME="pentium">
Pentium

<INPUT TYPE="CHECKBOX" NAME="486"> 486-series
PC

<INPUT TYPE="CHECKBOX" NAME="386"> 386-series
PC

<INPUT TYPE="CHECKBOX" NAME="mac"> Mac

</P>

<P>

<INPUT TYPE="CHECKBOX" NAME="win95">
Please check if your computer runs

Windows 95

</P>

<P>What is your favorite way to shop for computer
products (choose one)?

<INPUT TYPE="RADIO" NAME="favorite" VALUE="mail">
Mail Order Catalog

<INPUT TYPE="RADIO" NAME="favorite" VALUE="local">
Local Computer Store

<INPUT TYPE="RADIO" NAME="favorite" VALUE="super">
Computer Superstore

<INPUT TYPE="RADIO" NAME="favorite" VALUE="net">
Internet/World Wide Web

</P>

<HR>

The three questions were separated into paragraphs, with an <HR>
tag added at the bottom, since this would be one section. Also
notice that the radio buttons all got

tags, while we left the checkboxes. Why? Because it's always best
to save space (by leaving the checkboxes on one line). But counting
the characters in the descriptions of the radio buttons tells
us that a single line of radio buttons would be well over 80 characters
long-and that's likely to wrap oddly in the browser window.

The final two chunks currently look like this:

Please enter any additional comments
below:

<TEXTAREA NAME="comments" ROWS="5" COLS="70">

Enter comments here

</TEXTAREA>

Thanks for your input. Please click the Done button below to send
us your

info or click Reset to clear the form.

<INPUT TYPE="RESET">

<INPUT TYPE="SUBMIT" VALUE=" Done ">

These chunks only need minor touch ups. Let's separate the control
buttons from the comment window and add some formatting:

<P>Please enter any additional
comments below:

<TEXTAREA NAME="comments" ROWS="5" COLS="70">

Enter comments here

</TEXTAREA>

<P>

<HR>

<P>Thanks for your input. Please click the Done button below
to send us your info or click Reset to clear the form.<P>

<INPUT TYPE="RESET">

<INPUT TYPE="SUBMIT" VALUE=" Done ">

<HR>

Then you close the form tags and you're done. By the way, that
last little <HR> isn't
really necessary-just my personal preference. And how does it
look in a browser now? Take a look at figure 14.8.

Figure 14.8 : Our mastepiece of a customer service survey.

[bookmark: OtherTagsforFormFormatting]Other
Tags for Form Formatting

So you've used <P>,

, and <HR>
tags for spacing things out and offering logical breaks for your
forms. But what about other issues, like aligning form elements?
You can turn to <PRE>
tags and HTML list tags for that.

[bookmark: UsingthePRETag]Using the <PRE>
Tag

One of the most annoying parts of setting up a form so far has
been the inability to line up textbox fields as they go down the
page. For instance, whenever the Name:
and Address: fields have
been used in examples, they always look a little ragged.

The solution is the <PRE>
tag. Because anything between the two tags uses the spacing and
returns, this tag does two things. First, it allows you to line
up your textboxes. Second, it eliminates the need for

tags at the end of <INPUT>
tags, since the browser will recognize your returns. The following
is a ragged example:

Favorite Book: <INPUT TYPE="TEXT"
NAME="book" SIZE="40">

Best Food: <INPUT TYPE="TEXT" NAME="food"
SIZE="30">

Favorite Music Group: <INPUT TYPE="TEXT" NAME="music"
SIZE="40">

Personal Quote: <INPUT TYPE="TEXT" NAME="quote"
SIZE="60">

Displayed (between <FORM>
tags) in a browser, this looks like figure 14.9.

Figure 14.9 : Ragged textboxes in a form.

To improve this situation, you can put this HTML between <PRE>
tags and format them yourself:

<PRE>

Favorite Book: <INPUT
TYPE="TEXT" NAME="book" SIZE="40">

Best Food:
<INPUT TYPE="TEXT" NAME="food" SIZE="30">

Favorite Music Group: <INPUT TYPE="TEXT"
NAME="music" SIZE="40">

Personal Quote: <INPUT
TYPE="TEXT" NAME="quote" SIZE="60">

</PRE>

Remember that you need to use spaces, not tabs, to create the
space between the name of the box and the textbox itself. As before,
you may need to play with the formatting a little to get things
lined up like they are in figure 14.10.

Figure 14.10 : A much cleaner looking form.

		Tip

		

If you can, set your text editor to a monospaced font (like Courier) for editing text inside your <PRE> tags. Doing this will allow you to see exactly how <PRE> text will be displayed when viewed in a browser since
<PRE> forces your browser to use a monospaced font.

[bookmark: UsingListTagsforForms]Using
List Tags for Forms

The last little form design tricks you'll look at involve using
the list tags-especially ,
, and <DL>-to
create organization for your forms. Nearly any form element can
be part of a list, and there are often good reasons to use them.
Consider the following example:

<DL>

<DT> Please choose the type of pet you're interested in:

<DD> <INPUT TYPE="RADIO" NAME="pet"
VALUE="dog"> Dog

<DD> <INPUT TYPE="RADIO" NAME="pet"
VALUE="cat"> Cat

<DD> <INPUT TYPE="RADIO" NAME="pet"
VALUE="fish"> Fish

<DD> <INPUT TYPE="RADIO" NAME="pet"
VALUE="bird"> Bird

</DL>

You've used lists in this way before-to create indented lists
or outline formats that help you communicate a little better.
In this case, it also makes the form look a little better, too
(see fig. 14.11).

Figure 14.11 : Use list tags to spruce things up.

A great excuse for using the
tag is to create form elements that are numbered for some reason.
Since the tag
for an ordered list enters a number, you can simply add form elements
to create a numbered form, as in the following example:

Enter your guesses for the top three
movies this week:

 <INPUT TYPE="TEXT" NAME="movie1"
SIZE="40">

 <INPUT TYPE="TEXT" NAME="movie2"
SIZE="40">

 <INPUT TYPE="TEXT" NAME="movie3"
SIZE="40">

Seen through a browser, each entry is numbered, eliminating the
need for individual descriptive text (see fig. 14.12).

Figure 14.12 : You can use an ordered list for your form.

[bookmark: ExampleCustomerServiceRevisited]Example: Customer
Service Revisited

Let's see if you can do an even better job with the customer service
form you created earlier in this chapter. Now, you have the opportunity
to clean up some of those textboxes and other chunks. Listing
14.4 shows the example as it stands (recall that figure 14.8 showed
this same form in a browser).

Listing 14.4 survey.html Customer
Service Form

<BODY>

<H2>Customer Survey</H2>

<P>Please fill out the following form, including your personal
information, to help us better serve you. None of the addresses
or other information in these forms will be sold without your
permission. Thank You!

</P>

<HR>

<FORM METHOD="POST" ACTION="http://www.fakecorp.com/cgi-bin/csurvey">

<P>

Enter your name and address:

Name: <INPUT TYPE="TEXT" NAME="name" SIZE="60">

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="60">

City: <INPUT TYPE="TEXT" NAME="city" SIZE="25">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="3" MAXLENGTH="2">

Zip: <INPUT TYPE="TEXT" NAME="zip" SIZE="5">

Phone: <INPUT TYPE="TEXT" NAME="city" SIZE="12">

</P>

<HR>

<P>Please check the type of computer(s) you own:

<INPUT TYPE="CHECKBOX" NAME="pentium">
Pentium

<INPUT TYPE="CHECKBOX" NAME="486"> 486-series
PC

<INPUT TYPE="CHECKBOX" NAME="386"> 386-series
PC

<INPUT TYPE="CHECKBOX" NAME="mac"> Mac

</P>

<P>

<INPUT TYPE="CHECKBOX" NAME="win95">
Please check if your computer runs

Windows 95

</P>

<P>What is your favorite way to shop for computer
products (choose one)?

<INPUT TYPE="RADIO" NAME="favorite" VALUE="mail">
Mail Order Catalog

<INPUT TYPE="RADIO" NAME="favorite" VALUE="local">
Local Computer Store

<INPUT TYPE="RADIO" NAME="favorite" VALUE="super">
Computer Superstore

<INPUT TYPE="RADIO" NAME="favorite" VALUE="net">
Internet/World Wide Web

</P>

<HR>

<P>Please enter any additional comments below:

<TEXTAREA NAME="comments" ROWS="5" COLS="70">

Enter comments here

</TEXTAREA>

<P>

<HR>

<P>Thanks for your input. Please click the Done button below
to send us

your info or click Reset to clear the form.<P>

<INPUT TYPE="RESET"

<INPUT TYPE="SUBMIT" VALUE=" Done ">

<HR>

</FORM>

</BODY>

Clearly, the first chunk can benefit from the <PRE>
tag so that you can line up those address lines. You might notice
that because you're using the <PRE>
tag, you no longer need the

tag to end some of the lines, as in the following code:

<P>

Enter your name and address:

<PRE>

Name: <INPUT TYPE="TEXT" NAME="name"
SIZE="60">

Address: <INPUT TYPE="TEXT" NAME="address"
SIZE="60">

City: <INPUT TYPE="TEXT" NAME="city"
SIZE="25">

State: <INPUT TYPE="TEXT" NAME="state"
SIZE="3" MAXLENGTH="2">

Zip: <INPUT TYPE="TEXT" NAME="zip"
SIZE="5">

Phone: <INPUT TYPE="TEXT" NAME="city"
SIZE="12">

</PRE>

</P>

<HR>

What else can you do? Let's put the second chunk in list format.
You can use a <DL>
style list for the series of radio buttons. You probably shouldn't
change the checkboxes since they're already formatted to appear
on one line. The following code includes these changes:

<P>Please check the type
of computer(s) you own:

<INPUT TYPE="CHECKBOX" NAME="pentium">
Pentium

<INPUT TYPE="CHECKBOX" NAME="486"> 486-series
PC

<INPUT TYPE="CHECKBOX" NAME="386"> 386-series
PC

<INPUT TYPE="CHECKBOX" NAME="mac"> Mac

</P>

<P>

<INPUT TYPE="CHECKBOX" NAME="win95">
Please check if your computer runs

Windows 95

</P>

<DL>

<DT>What is your favorite way to shop for computer
products (choose one)?

<DD><INPUT TYPE="RADIO" NAME="favorite"
VALUE="mail"> Mail Order Catalog

<DD><INPUT TYPE="RADIO" NAME="favorite"
VALUE="local"> Local Computer Store

<DD><INPUT TYPE="RADIO" NAME="favorite"
VALUE="super"> Computer Superstore

<DD><INPUT TYPE="RADIO" NAME="favorite"
VALUE="net"> Internet/World Wide Web

</DL>

Notice that the

tags at the end of each radio button entry are no longer required
since each <DD> tag
automatically appears on its own line.

The rest of the form can pretty much stand on its own. See how
the whole thing looks in a browser in figure 14.13.

Figure 14.13 : Our customer service form, now complete.

[bookmark: CGIBINScriptsandDealingWithFormDa]CGI-BIN
Scripts and Dealing With Form Data

Before we're finished discussing HTML forms, we should touch on
how data is passed to the Web server and how your script needs
to be written to handle this data. First, you'd better start with
a quick discussion of CGI-BIN scripts.

[bookmark: UsingCGIBINScripts]Using CGI-BIN Scripts

For the most part, CGI-BIN scripts are designed to receive values
from your user and then create HTML code programmatically
(or on-the-fly) by way of response. Scripts are most often used
to handle form data but can also be used to add things like "hit"
counters and variable images (different images that appear
at different times). For instance, to add a counter to your page,
you might have the following:

This will cause the script counter.pl
to be run and a value returned. The value will be the name of
a graphics file, which will be used to display an odometer-style
image, as in figure 14.4.

Figure 14.14 : Adding a hit counter by calling a CGI-BIN script.

An URL to a script can be used just about anywhere you might use
an URL to another document, a hypermedia file, or an image. In
a hypertext link, for instance, you might use a script that chooses
a "random" Web page to return, as in the following:

Click
me for a surprise

Web page!

Actually creating the scripts is a little beyond the scope of
this book. Most of the time, CGI-BIN scripts are written in Perl,
C, Visual Basic, or a scripting language like AppleScript. If
you're a programmer, I'd recommend looking into a book that seriously
discusses the ins and outs of CGI programming. Creating scripts
can be complicated, but rewarding-especially if you have access
to your Web server and aspire to be a Webmaster as well as an
HTML designer.

		Tip

		

Look into Que's Special Edition Using CGI for an in-depth discussion of CGI scripts and programming.

In the case of forms, you've already seen that you call the CGI-BIN
script in the <FORM>
tag using the ACTION attribute.
Once the script receives the data, it then needs to use that data
to create an HTML "results" page, which is sent back
to the browser.

[bookmark: ReceivingFormData]Receiving Form Data

You may recall from Chapter 13 that there
are two different METHODs
to pass data to the script you've created to deal with it. The
two methods, GET and POST,
cause data to be sent in different ways.

The type of METHOD used to
send the data is stored in an environment variable on the Web
server called REQUEST_METHOD.
The GETNT> method simply appends
your form data to the URL and sends it to the server. Most servers
will then store this data in another environment variable called
QUERY_STRING. This string
is generally limited to less than one kilobyte of data (approximately
1,000 characters) which explains why it is becoming less popular.

The POST method causes the
length of the data string to be stored in a variable called CONTENT_LENGTH,
while the data itself is redirected to stdin
(standard in). In effect, the data is made to appear to your script
or program that it was typed into the server using a typical keyboard.
Your script must then be designed to "parse" that input.

		Tip

		

I'd let a program do your parsing for you. cgi-bin.pl is the Perl library for this. Mac Web servers might use Parse CGI for AppleScript.

Generally speaking, programs that do this for you are already
available. There are actually two steps to receiving the input:
decoding and parsing. Data sent from your Web browser is encoded
to avoid data loss-essentially by turning spaces into plus signs
(+) and non-text characters (like !) into a percent sign (%) and
a hexadecimal code.

Once you've worked through the decoding process, you're left with
a text input that follows this format (where the ampersand simply
separates each pairing of NAME
and VALUE):

NAME1=VALUE1&NAME2=VALUE2&...

An example of this is:

ADDRESS=1234 MAIN ST&CITY=DALLAS&STATE=TX

and so on. If you're not using a parsing program or library (which,
ideally, would allow you to simply reassign the VALUEs
in this file to variables in your script), then your script will
need to accept this data, strip the ampersands, and reassign the
values to appropriate variables.

[bookmark: YourScriptsOutput]Your Script's Output

Output is much easier. Because stdout
(standard out) is redirected to the HTML browser, you simply need
to use print (Perl and other
languages), lprint (C language),
or similar commands that print directly to the screen (or terminal
or console). You use the print
command to output HTML codes, just as if you were using your text
editor.

Here's a short snippet of a Perl script to do just that:

print "Content-type: text\html\n\n";

print "<HTML>\n<HEAD><TITLE>Response</TITLE></HEAD>\n"

print "<BODY>\n<H2>Success</H2>\n<P>Thank
you for your

submission<\P>\n"

print "<P>Click here
to go

back <\P>\n</BODY>\n</HTML>"

In a number of programming languages \n
is the newline character, which simply feeds a Return to standard
out. Otherwise, this should seem (and look) rather familiar (see
fig. 14.15). It's just HTML!

Figure 14.15 : Results of the snippet of Perl scripting.

[bookmark: Summary]Summary

Form design is something of an art and science-it's important
that forms look good and be easy for the user to follow if they're
going to be effective. There are some general rules you can follow
for form design and, using other HTML commands you've learned
previously, you can make your forms very easy to read. That, in
turn, makes users more likely to use them.

It's also important for Web designers to have some idea how forms
send their data to the Web server and associated script-even if
they don't intend to create the scripts themselves. A designer
with almost any programming experience will find it fairly
easy to manage data-gathering scripts from their Web site.

[bookmark: ReviewQuestions]Review
Questions

		Why is the

tag more effective than the <P>
tag for individual lines of forms?

		Is it possible to use HTML tags (like
and <I>) within the
confines of a <FORM>
tag? What about just plain text?

		What are "chunks" of form elements?

		What do <P> tags
offer you that help break up chunks of form elements? Why not
just use multiple

tags?

		How can you get checkboxes and radio buttons to appear on
a single line on your Web page?

		What does MAXLENGTH do
for <INPUT TYPE="TEXT">
style form elements? How is this error-checking?

		What does the <PRE>
tag allow you to do with forms? What do you "lose" by
using the <PRE> tag?

		What's the point in using a <DL>
style list in a form? Why not use an
list?

		How can lists
keep you from having to add descriptive text to each line of your
form?

		What METHOD of form data
transfer is more popular? Why? Which is easier for programmers?

		Why is it so simple to output HTML with a server-based script?
What does the Web browser "act like?"

[bookmark: ReviewExercises]Review
Exercises

		Use <PRE> to make
the following form easier to read:

<FORM METHOD="POST" ACTION="/cgi-bin/searcher">

Enter a Search phrase and a type of search (AND, OR, NOT).

Search phrase: <INPUT TYPE="TEXT" NAME="SearchFor"
SIZE=38>

Type of search: <SELECT NAME="SearchType">

<OPTION SELECTED VALUE="and"> AND

<OPTION VALUE="or"> OR

<OPTION VALUE="not"> NOT

</SELECT>

<INPUT TYPE="submit" NAME="Submit" VALUE="Start
the Search">

</FORM>

		Create a form that allows the user to subscribe to a fictional
magazine. Include different "chunks" for name and address,
demographic information, and a credit card number. Also use layout
and HTML emphasis to make it clear to the user what information
is required and what information is optional.

		If you understand how to program in Perl, C, or another CGI
scripting language and you have access to your Web server (so
you can place the script in the cgi-bin
directory), create a script that accepts the value from the following
simple form and outputs the appropriate HTML coded text:

<FORM METHOD="POST" ACTION="/cgi-bin/picker">

How would you like the next page to appear?

<SELECT NAME="Appear">

<OPTION SELECTED VALUE="bold"> bold

<OPTION VALUE="ital"> italics

<OPTION VALUE="list"> in an HTML list

</SELECT>

<INPUT TYPE="submit" NAME="Submit" VALUE="Create
the Page">

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch15.htm

Chapter 15

Adding Tables to Your Documents

CONTENTS[bookmark: CONTENTS]

		Creating a Table

		The <TABLE> Tag
		Example: Playing with Table Attributes

		Captions, Table Headers, and Table Data
		<CAPTION>

		Table Rows

		Table Data and Rows

		Summary

		Review Questions

		Review Exercises

Many chapters ago you learned to use the <PRE>
tag to create preformatted tables that align your data and text
for easy reading. The HTML 3.0 table specification, however, takes
you far beyond that. Tables are a great addition to any Web site-especially
sites that need to offer a lot of information in an easy-to-read
way. Unfortunately, tables can't be viewed by all browsers. So,
you need to proceed with a little caution and consideration.

		Note

		

The current HTML 3.0 tables standard, in its entirety, isn't viewable by many browsers. In this chapter, everything discussed is part of the HTML 3.0 standard-but something less than the entire thing. Creating tables in this way will make your tables
viewable in the widest number of browsers.

[bookmark: CreatingaTable]Creating
a Table

Tables work a lot like HTML list tags, in that you must use the
table container tag to hold together a group of tags that define
each individual row. The main container is the <TABLE>
tag, which uses enclosing tags for table rows (<TR>)
and table data (<TD>).
Most tables will also use an element for table headers (<TH>)
which is generally used as the title text for rows and columns.

Tables take the following format:

<TABLE>

<CAPTION>Caption text for table</CAPTION>

<TR><TH>column1</TH><TH>column2</TH><TH>column3</TH>

<TR><TD>row1data1</TD><TD>row1data2</TD><TD>row1data3</TD>

<TR><TD>row2data1</TD><TD>row2data2</TD><TD>row2data3</TD>

...

</TABLE>

An example of a table using this format might be the following:

<TABLE>

<CAPTION>Team Members for 3-Person Basketball</CAPTION>

<TR><TH>Blue Team</TH><TH>Red Team</TH><TH>Green
Team</TH>

<TR><TD>Mike R.</TD><TD>Leslie M.</TD><TD>Rick
G.</TD>

<TR><TD>Julie M.</TD><TD>Walter R.</TD><TD>Dale
W.</TD>

<TR><TD>Bill H.</TD><TD>Jenny Q.</TD><TD>Fred
B.</TD>

</TABLE>

After you work with HTML list containers, it's fairly easy to
make the jump to creating tables in HTML. You can see how this
table looks in figure 15.1.

Figure 15.1: A simple table in HTML.

[bookmark: TheTABLETag]The <TABLE>
Tag

The <TABLE> tag is
actually a rather complex creature, at least insofar as it can
accept many different attributes. Some of the attributes are more
useful than others, so let's look at the most useful of them as
they currently stand:

		ALIGN. The ALIGN
attribute is used to determine where the chart will appear relative
to the browser window. Valid values are ALIGN=LEFT
and ALIGN=RIGHT. As an added
bonus, text will wrap around the table (if it's narrow enough)
when the ALIGN=LEFT or ALIGN=RIGHT
attributes are used.

		WIDTH. The WIDTH
attribute sets the relative or absolute width of your table in
the browser window. Values can be either percentages, as in WIDTH="50%",
or absolute values. With absolute values, you must also include
a suffix that defines the units used, as in px
for pixels or in for inches
(e.g., WIDTH="3.5in").
Absolute values for table widths are discouraged, though.

		COLS. The COLS
attribute specifies the number of columns in your table, allowing
the browser to draw the table as it downloads.

		BORDER. The BORDER
attribute defines the width of the border surrounding the table.
Default value is 1 (pixel).

		CELLSPACING. The
CELLSPACING attribute tells
the browser how much space to include between the walls of the
table and between individual cells. (Value is a number in pixels.)

		CELLPADDING. The
CELLPADDING attribute tells
the browser how much space to give data elements away from the
walls of the cell. (Value is a number in pixels.)

It is definitely not necessary to use all of these attributes
for your table-in fact, the simple table example earlier didn't
use any of them. Often, however, they will come in handy.

[bookmark: ExamplePlayingwithTableAttributes]Example: Playing
with Table Attributes

This is another fairly freeform example. Let's look at the difference
between a plain table and a table embellished with a few attributes.
Insert Listing 15.1 in a new HTML document.

Listing 15.1 badtable.html Creating
a Plain Table

<BODY>

<H2> BigCorp's Computer Systems </H2>

<P>We use only the highest quality components and software
for all of our

Wintel computer systems. Plus, if you don't see a configuration
you like,

call (or email) and let us know. We'll custom build to please!</P>

<TABLE>

<CAPTION>BigCorp's Computer Systems and Specifications</CAPTION>

<TR><TH>System 486</TH><TH>System 586</TH><TH>System
686</TH>

<TR><TD>486DX2-66 CPU</TD><TD>120 MHZ
AMD586</TD><TD>200 Mhz Pentium Pro</TD>

<TR><TD>8 MB RAM</TD><TD>16 MB RAM</TD><TD>16
MB RAM</TD>

<TR><TD>500 MB HD</TD><TD>1 GB HD</TD><TD>1.4
GB HD</TD>

<TR><TD>14.4 Modem</TD><TD>28.8 Modem</TD><TD>28.8
Modem</TD>

<TR><TD>desktop case</TD><TD>minitower
case</TD><TD>tower case</TD>

<TR><TD>DOS/Win 3.1</TD><TD>Windows 95</TD><TD>Windows
NT 4.0</TD>

</TABLE>

</BODY>

Now, take a quick glance at how this looks in a browser (see fig.
15.2).

Figure 15.2: A simple table without attributes, can still be difficult to read.

Last time we tried a simple table, it communicated its data well.
But this one is fairly ineffective, with everything lined up so
poorly. Using just the attributes only mentioned, though, you
can change this table so that it looks better to the user and
is easier to read.

All that needs to change is the first <TABLE>
tag:

<TABLE BORDER ALIGN="LEFT"
CELLSPACING="3" CELLPADDING="3">

That makes for a much nicer looking table, complete with borders
and lines for cells, and a comfortable amount of spacing to separate
cell data elements from one another (see fig. 15.3).

Figure 15.3: Look how nice the table looks with spacing and borders.

The rest of this example is up to you. Play with CELLSPACING
and CELLPADDING without a
border, for instance, or increase all values out of proportion.
See the range of what's available, to help you choose how to format
your tables in the future.

[bookmark: CaptionsTableHeadersandTableData]Captions,
Table Headers, and Table Data

To round out your tables, you have the other basic tags to examine.
You've already successfully used <CAPTION>,
<TH>, and <TD>,
but each has its own attributes and abilities that you need to
know about.

[bookmark: CAPTION]<CAPTION>

The <CAPTION> tag is
a container for reasons that may be obvious-it allows you to nest
other HTML tags within the description. For instance:

<CAPTION>Table 3.1 from
the book <I>Life in El Salvador</I></CAPTION>

Just about any sort of markup tags are possible inside the <CAPTION>
tags, although some-like list tags-wouldn't make much sense.

The <CAPTION> tag has
one attribute, ALIGN. ALIGN="TOP"
and ALIGN="BOTTOM"
are encouraged. By default, text is also aligned to center (horizontally).
By TOP and BOTTOM,
I'm referring to the entire table; the caption will default to
the top of the table if not otherwise specified. To align the
caption to BOTTOM, for instance,
enter the following:

<CAPTION ALIGN="BOTTOM">Table
of Common Foods</CAPTION>

The <CAPTION> tag is
commonly the first tag just inside the <TABLE>
tag (although this placement is not required). Regardless of where
you place the <CAPTION>
tag, however, you must use ALIGN
to force it to the bottom of the table. Otherwise, it will appear
at the top, according to its default.

Let's create an entire table and use the ALIGN
attribute to the <CAPTION>
tag to force the caption to the bottom, like this:

<BODY>

<H3>Favorite Ice Cream Flavors</H2>

<TABLE BORDER>

<CAPTION ALIGN="BOTTOM">Data from the <I>New
Jersey Times</I></CAPTION>

<TR><TH>Date</TH><TH>Chocolate</TH><TH>Vanilla</TH>

<TR><TH>1970</TH><TD>50%</TD><TD>50%</TD>

<TR><TH>1980</TH><TD>76%</TD><TD>24%</TD>

<TR><TH>1990</TH><TD>40%</TD><TD>60%</TD>

</TABLE>

</BODY>

When the browser interprets this table, it should place the caption
at the bottom of the table, centered horizontally (see fig. 15.4).

Figure 15.4: You can align the caption to BOTTOM.

[bookmark: TableRows]Table Rows

Table rows (<TR>) can
accept one attribute you should concern yourself with-ALIGN.
The ALIGN attribute is used
to determine how text will appear (horizontally) in each of the
rows data cells. For instance:

<TR ALIGN="CENTER"><TH>Date</TH><TH>Chocolate</TH><TH>Vanilla</TH>

<TR ALIGN="CENTER"><TH>1970</TH><TD>50%</TD><TD>50%</TD>

<TR ALIGN="CENTER"><TH>1980</TH><TD>76%</TD><TD>24%</TD>

<TR ALIGN="CENTER"><TH>1990</TH><TD>40%</TD><TD>60%</TD>

Here, I've added the ALIGN
attribute (with a value of CENTER)
to the rows in the previous example. Notice now that all cells
center data horizontally (see fig. 15.5). This ALIGN
attribute can also accept LEFT
and RIGHT.

Figure 15.5: This uses the ALIGN attribute with <TR>. (Compare this to figure 15.4)

		Note

		

HTML 3.0 also supports another useful attribute, VALIGN, which accepts the values TOP, BOTTOM, and CENTER. Using this attribute, you can choose to align cells vertically as well as horizontally. Until they support
VALIGN, non-HTML 3.0 browsers should ignore VALIGN. Unfortunately, those are currently the most popular browsers!

[bookmark: TableDataandRows]Table Data and Rows

You've already used the <TH>
and <TD> tags to include
headers and data in your tables. You may have noticed that, essentially,
the only difference between the two is that <TH>
emphasizes (boldfaces) the text and <TD>
does not. Now, technically, the <TH>
is a tag that the browser interprets as a header and thus displays
text in a way that's distinct from the <TD>
tag. In practice, that generally means it's turned bold.

Aside from accepting nearly any type of HTML markup tags within
them, both tags can accept four attributes (in most HTML versions).
These are ALIGN, VALIGN,
COLSPAN, and ROWSPAN.
If you were to add all of these attributes, a typical <TH>
(or <TD>) tag would
be formatted like the following:

<TH ALIGN="direction"
VALIGN="direction" COLSPAN="number"
ROWSPAN="italics">

ALIGN is used to align the
data within the cell horizontally, accepting values of LEFT,
RIGHT, and CENTER.
Note that ALIGN is redundant
when used with the ALIGN
attribute of <TR>,
unless it is used to override the <TR
ALIGN=> setting.

VALIGN is used to align the
data vertically within cells. Possible values are TOP,
BOTTOM, and CENTER.
COLSPAN and ROWSPAN
are used to force a cell to span more than one column or row,
respectively. An example of this might be:

<TABLE BORDER>

<TR><TH>Student</TH><TH>Test 1</TH><TH>Test
2</TH><TH>Average</TH>

<TR><TH>Mike M.</TH><TD>100</TD><TD>75</TD><TD
ROWSPAN="3">N/A</TD>

<TR><TH>Susan T.</TH><TD>80</TD><TD>95</TD>

<TR><TH>Bill Y.</TH><TD COLSPAN="2">Dropped
Course</TD>

</TABLE>

Viewed in a browser, the table looks like figure 15.6.

Figure 15.6: Using COLSPAN and ROWSPAN in a table.

Example: An Events Calendar

One interesting way to use a table is to create a calendar, which
is possible with what we now know about attributes for tables
and table elements. Let's create a calendar for November 1996.
We'll also throw in some hypertext links that would (presumably)
be used to discuss events planned for those days. Enter Listing
15.2 in a new HTML document.

Listing 15.2 calendar.html Using
HTML Tables to Create a Calendar

<BODY>

<H2>Coming Events</H2>

<P>Click any of the days highlighted in the calendar to
read about the event scheduled for that day.</P>

<TABLE BORDER WIDTH="75%">

<CAPTION>BigCorp's Calendar of Events - November 1996</CAPTION>

<TR ALIGN="CENTER"><TH>Sun</TH><TH>Mon</TH><TH>Tue</TH><TH>Wed</TH><TH>Thu</TH>

<TH>Fri</TH><TH>Sat</TH>

<TR ALIGN="CENTER"><TD COLSPAN="5"> </TD><TD>1</TD><TD>2</TD>

<TR ALIGN="CENTER"><TD>3</TD><TD>4</TD><TD>5</TD><TD>6</TD><TD>7</TD><TD>8</TD>

<TD>9</TD>

<TR ALIGN="CENTER"><TD>10</TD><TD>11</TD><TD>12</TD><TD>13</TD><TD>14</TD><TD>15</TD><TD>16</TD>

<TR ALIGN="CENTER"><TD>17</TD><TD>18</TD><TD>19</TD>

<TD>20</TD><TD>21</TD><TD>22</TD><TD>23</TD>

<TR ALIGN="CENTER"><TD>24</TD><TD>25</TD><TD>26</TD><TD>28</TD><TD>29</TD><TD>

30</TD><TD>31</TD>

</TABLE>

</BODY>

Notice the in
the <TD> tag that is
defined with COLSPAN? That
is an escape sequence for Web browsers that tells it "I want
a non line-breaking space here." Without that, the extra-long
cell won't be rendered correctly (with a complete border) because
there's nothing in that cell. With it, this table looks like a
calendar (see fig. 15.7).

Figure 15.7: Creating a calendar with HTML table taps.

Example: Product Specifications

One thing that hasn't really been touched on so far is the possibility
of including images in tables. It's definitely possible, and just
about as easy as anything else you've done with tables.

In this example, let's create a product specifications table for
a couple of our company's computer systems. With liberal use of
the ALIGN and VALIGN
attributes, this should come out looking rather pretty. Insert
Listing 15.3 in a new HTML document.

Listing 15.3 aligntbl.html Using
ALIGN and VALIGN
with Images in an HTML Table

<BODY>

<H2>Product Specifications</H2>

<P>The following table will tell you a little more about
our computer

systems. Clicking on the name of each system will tell you even
more,

offering a full-size photo of the system and some suggestions
on

peripherals.</P>

<HR>

<TABLE BORDER CELLSPACING="2" CELLPADDING="2">

<CAPTION>Our System Configurations</CAPTION>

<TR ALIGN="CENTER"><TH>Photo</TH><TH>Name</TH><TH>RAM</TH><TH>Hard

Drive</TH><TH>Video</TH><TH>Expansion</TH><TH>Case</TH>

<TR ALIGN="CENTER"><TD></TD><TD>

System 6001-60</TD><TD>8 MB</TD><TD>500
MB</TD><TD>1 MB PCI</TD><TD>4 PCI

Slots</TD><TD ROWSPAN="2">Desktop</TD>

<TR ALIGN="CENTER"><TD></TD><TD>

System 7001-75</TD><TD>16 MB</TD><TD>1.0
GB</TD><TD>1 MB PCI

</TD><TD>5 PCI

Slots</TD>

<TR ALIGN="CENTER"><TD></TD><TD>

System 8001-120</TD><TD>20 MB</TD><TD>1.6
GB</TD><TD>2 MB PCI

</TD><TD>5 PCI

Slots</TD><TD>Tower</TD>

</TABLE>

</BODY>

Graphics look very nice in tables, and they work well to enliven
what would otherwise be drier, text-heavy information (like computer
specs). I've offered up some creative uses of attributes in this
example, but I think it was worth it (see fig. 15.8).

Figure 15.8: A very complete custom HTML table.

[bookmark: Summary]Summary

Tables are an incredible leap over the <PRE>
tag for formatting HTML text. The basic tags, <TABLE>,
<CAPTION>, <TR>,
<TD>, and <TH>,
give you everything you need to build an impressive, easy-to-read
table for data elements.

Building on those tags, you can add formatting to rows, cells,
and individual text. You can also add just about any conceivable
type of HTML markup to your table data. You can even include graphics
and hypertext links to take tables to a higher level.

[bookmark: ReviewQuestions]Review
Questions

		Why doesn't this chapter discuss the entire HTML 3.0 tables
standard?

		Does the ALIGN attribute
for <TABLE> allow text
to wrap around the table?

		What does the in stand
for in the attribute definition WIDTH="3.5in"
for the <TABLE> tag?

		What's the different between the attributes CELLPADDING
and CELLSPACING?

		True or false. You must always define a value for the BORDER
attribute to the <TABLE>
tag.

		If I had tmhe following example:

<TABLE>

<TR><TH>Soup</TH><TD>Chicken Noodle</TD>

<TR><TH>Salad</TH><TD>Tossed Green</TD>

<CAPTION>My favorite foods</CAPTION>

</TABLE>

where would the <CAPTION>
text appear relative to the table?

		Is it possible to ALIGN
all of the data cells in a particular row with the <TR>
tag?

		What happens in the following example?

<TD>Ted David
Mike Rogers
Bill
Howell</TD>

		Which is used for horizontal alignment when used as an attribute
to the <TD> tag, ALIGN
or VALIGN?

		What possible reason could there be to force a <TD
ALIGN> tag definition to override a <TR
ALIGN> tag?

[bookmark: ReviewExercises]Review
Exercises

		Create a caption, aligned to the bottom of the table, that
includes an image. Does it work correctly?

		Create a table that uses images as the column headers.

		Create a table of "thumbnail" images, with an small
image, description of the image, and the image's filename in each
row. Make each image clickable, so that a larger image appears
(on a new page) when the user clicks the thumbnail.

		Create a table with no visible border (BORDER="0").
With this table, it's possible to lay out very intricate pages,
with text and graphics aligned to the left or right of the page.
Use the table to place a paragraph of text on the left side of
the page and three clickable graphics on the right side. (Hint:
Use ROWSPAN on the paragraph's
cell.)

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch16.htm

Chapter 16

Images, Multimedia Objects, and
Background Graphics

[bookmark: CONTENTS]CONTENTS
		
More Control with
		
Example: Magazine-Style Presentation

		
Inserting Multimedia Objects
		
The <INSERT> Tag

		
<INSERT>'s Attributes

		
Using <PARAM> and with <INSERT>

		
Background Graphics
		
Example: The HTML 3.0 Enhanced Graphics Page

		
Summary

		
Review Questions

		
Review Exercises

It is, perhaps, appropriate homage to the turbulent nature of
HTML that the title of this chapter has changed three times now
from conception to its final form. Initially conceived to discuss
the elegant <FIG> tag of the HTML 3.0 specification,
it seems that tag will be long in coming if at all. At the same
time, the tag has been expanded somewhat
to offer control over layout (in browsers that recognize it) and
a new tag, <INSERT>, is making headway in the HTML
world.

[bookmark: MoreControlwithltIMGgt]
More Control with

For the most part, today's graphical browsers seem to agree that
the ALIGN attribute for the tag
is here to stay. As was discussed in Chapter 9 the
tag is useful for both graphical and non-graphical browsers because
it allows for the text-only ALT attribute, which can
explain your graphics to users who can't see them.

The ALIGN attribute allows more control over the display
of the graphic and whether or not text will wrap around it. Its
general format is the following:

Appropriate values for the ALIGN attribute now include
TOP, MIDDLE, BOTTOM, LEFT,
and RIGHT. You may recall that TOP, MIDDLE,
and BOTTOM were part of the HTML 2.0 specification discussed
earlier. What's new, then, is just LEFT and RIGHT.

For all ALIGN attributes, the direction refers to where
text will be displayed in relation to graphic image and not the
other way around. In essence, you're using the attribute to align
text to the graphic not aligning the graphic to anything in particular.

So why add LEFT and RIGHT? They offer options
for wrapping text around an image. Consider the following example.
Without the ALIGN attribute, you could render a graphic
as the following:

<P>I just thought you might be interested in seeing this graphic I've created for
myself in PhotoShop. I
was actually a bit surprised at how easy it was to create. I'm not artist, but there are
enough filters and special effects in Photoshop that it makes it possible for me to create
something this professional looking without being absolutely sure of what I'm
doing!</P>

The following is the same example, except the ALIGN attribute
is set to LEFT:

<P>I just thought you might be interested in seeing this graphic I've created for
myself in PhotoShop. <IMG SRC="image1.gif" ALT="My Graphic"
ALIGN="LEFT"> I was actually a bit surprised at how easy it was to create. I'm
not an artist, but there are enough filters and special effects in Photoshop that it makes
it possible for me to create something this professional looking without being absolutely
sure of what I'm doing!</P>

Figure 16.1 shows you how these appear in a typical graphical
browser. Interesting, isn't it?

Figure 16.1 : Using the ALIGN attribute with the
tag.

As you can see, the ALIGN="LEFT" attribute
forces this image to be displayed to the left of the text, and
allows text to wrap above and below it on the page. Without it,
the image is displayed inline. (When a graphic is displayed inline,
it appears at the exact point in the text that the
tag appears.)

		TIP

		

Aligning to LEFT and RIGHT is most effective when embedded in a long paragraph of text in order to achieve a "text-wrap" feel.

Aligning to RIGHT works in a similar way:

<P>I just thought you might be interested in seeing this graphic I've created for
myself in PhotoShop. <IMG SRC="image1.gif" ALT="My Graphic"
ALIGN="RIGHT"> I was actually a bit surprised at how easy it was to create.
I'm not an artist, but there are enough filters and special effects in Photoshop that it
makes it possible for me to create something this professional looking without being
absolutely sure of what I'm doing!</P>

The graphic is lined up with the right side border of the browser
window, and is flexible with that window, so that dragging the
window to make it larger or smaller would affect where the image
would appear relative to the text (see fig. 16.2).

Figure 16.2 : ALIGN to RIGHT.

[bookmark: ExampleMagazineStylePresentation]
Example: Magazine-Style Presentation

One of the nicer things about gaining this kind of control over
your graphics is the options it gives you to present a long page
of text in a way that's a little more pleasing to the eye by breaking
it up with graphics. This example is an article I've written for
a local magazine. Notice also the advantage in putting this particular
article in HTML form you can add hypertext links when appropriate.

Start with a fresh HTML document (from your template) and enter
something similar to Listing 16.1 between the <BODY>
tags.

Listing 16.1 imgalign.html Using ALIGN
for HTML Page Layout

<BODY>
<IMG SRC="internet.gif" ALT="On the Internet"
ALIGN="LEFT"> <IMG SRC="todd.gif"
ALT="By Todd Stauffer" ALIGN="RIGHT">
<HR>
<H2>Figure Your IQ on the Web</H2>
<P>I was cruising along on the Web, engaged in one of my favorite activities:
plugging my name into search engines like Lycos and Infoseek. My current favorite,
<IMG SRC="alta.gif" ALT="Alta Vista Logo"
ALIGN="RIGHT"> Alta Vista
(http://altavista.digital.com/),
offers some great links to stuff that's about me. (Just remember to put my name in quotes,
like "Todd Stauffer" in the searching text box. Or try your
name...whatever.)</P>
<P>Somehow I came across a link to an IQ test in Europe.
With little sweat beads forming on my fingertips, and errant thoughts clanging about the
ego parts of my psyche ("What if I'm stupid"),
I plunged into the test, trying to beat that 20-minute time limit.</P>
<P>
I emerged from the test, clicked for my score and was pleasantly shocked. "Wow,"
I thought. "That's high." But was it right? </P>
</BODY>

It's a little hit or miss, since some of how the graphics will
display is based on the size of the browser window. Check it out
in figure 16.3.

Figure 16.3 : The ALIGN example.

[bookmark: InsertingMultimediaObjects]
Inserting Multimedia Objects

One of the latest HTML 3.0 (or, at least, beyond HTML 2.0) initiatives
has been the addition of a tag called the <INSERT>
tag, which expands on the role of the tag
by allowing various different multimedia types to be displayed
inline. As the bandwidth of connections to the Internet grows,
and the technology for inline multimedia grows with it, more and
more Web viewers will be capable of viewing inline animations,
presentation graphics, movies, and more.

As of this writing, very few browsers support the <INSERT>
tag. Unlike some other HTML initiatives, however, this specification
has been written with much more involvement from industry leaders
like Microsoft, Netscape, Spyglass, and Sun. So, I expect you'll
see support for this tag very soon (probably by the time you're
reading this) and might as well include it here now.

[bookmark: TheltINSERTgtTag]
The <INSERT> Tag

This is not exactly the easiest tag to get your arms around. Like
tables, the <INSERT> tag is a container for other
tags that help define the element. But, somewhat unlike tables,
most of those contained tags don't actually display anything.

		TIP

		

<INSERT> is a developing standard. Consult http://www.w3.org/ for possible changes.

Let's take a look at a typical <INSERT> container:

<INSERT DATA="URL to multimedia file" TYPE="type of file">
Other Insert tags...
</INSERT>

Already, there are a couple of things you're required to know.
You need to know the filename of the multimedia file or the appropriate
URL if it's not in the current directory. You also need to know
the MIME-style "type" of the data file. (See sidebar.)

MIME-Style Data Types

MIME (Multipurpose Internet Mail Extensions) data types are simply
the standardized way that certain Internet programs can identify
the type of ASCII and non-ASCII files that are being transferred
to a client application. A very common example of this is the
text/html MIME type.

The <INSERT> tag (and HTML in general) is not limited
to the official MIME categories and types, hence we'll call them
MIME-style data types. For the purposes of the <INSERT>
tag, this is just a more reliable way to tell a Web browser what
type of multimedia file to expect more reliable, that is, than
just the file's extension.

Some common MIME-style data types appear in Table 16.1. These
and others are all useful for the <INSERT> tag.

Table 16.1 Some MIME-Style Data Types for
the <INSERT> Tag

		Type of File		MIME Equivalent

		GIF		image/gif

		JPEG		image/jpeg

		AIFF sound		audio/aiff

		WAV sound		audio/x-wav

		QuickTime video		video/quicktime

		AVI video		application/avi

		Real Audio		application/x-pnrealaudio

		Macromedia Director		application/x-director

		OLE object		application/x-oleobject

MIME-style data types for newer multimedia formats (especially
vendor-specific ones like Macromedia Director) will generally
be in the form of application/x-datatype. More
often than not, these are the types you'll use for the <INSERT>
tag, since these are the data types used for browser plug-ins.

[bookmark: ltINSERTgtsAttributes]
<INSERT>'s Attributes

Aside from DATA and TYPE, <INSERT>
can also accept the attributes ALIGN, WIDTH,
HEIGHT, and BORDER. Its format is as follows:

<INSERT ALIGN="direction">

ALIGN works much as it does with .
The values possible for ALIGN are shown in Table 16.2.
Notice that some of these values (LEFT, CENTER,
MIDDLE) cause <INSERT> to act as a separate
object, while the others assume the inserted multimedia object
is supposed to be inline with the text of the document. You may
recall that this is almost identical to what you learned about
 at the beginning of this chapter.

Table 16.2 Values for the <INSERT ALIGN>
Attribute

		Value		Acts as
		How Object is Aligned

		LEFT		Object		With left border and allows text wrap

		RIGHT		Object		With right border and allows text wrap

		CENTER		Object		Between browser borders and allows text wrap

		TEXTTOP		Inline		Top vertically aligned with top of text's font

		MIDDLE		Inline		Middle vertically aligned with middle of text's font

		BASELINE		Inline		Bottom vertically aligned with baseline of text

		TEXTBOTTOM		Inline
		Bottom vertically aligned with lowest point in text

WIDTH and HEIGHT accept numbers and unit suffixes
(like px for pixels and in for inches). These
two attributes are used to define the size of the object for faster
downloading. Some browsers will also resize objects according
to these attributes, so that you might expand a smaller inline
movie's object with WIDTH and HEIGHT, for instance,
to save on downloading time. WIDTH and HEIGHT
take the following format:

<INSERT WIDTH="#units" WIDTH="#units">

The last parameter is BORDER, which has a default value
of 1. The border will generally only appear when the
entire <INSERT> object in enclosed in an anchor
tag, as in the following example:

<INSERT DATA="intro.moov" TYPE="video/quicktime" ALIGN="LEFT" WIDTH="3in"
HEIGHT="2in" BORDER="2">
</INSERT>

At least it's not complicated, right?

[bookmark: UsingltPARAMgtandltIMGgtwithltINSERTgt]
Using <PARAM> and with <INSERT>

Two of the most common tags you'll want to use with the <INSERT>
tag are the <PARAM> and tags.
The tag is used just as it has been elsewhere
except it's only displayed when the browser isn't able to deal
with the type of multimedia file that the <INSERT>
tag is trying to send. For instance, if you were sending a Macromedia
Director multimedia file from your Web pages, but the receiving
browser wasn't able to deal with it, the <INSERT>
tag would substitute the you'd specified
instead.

The <PARAM> tag is used to offer additional parameters
to the <INSERT> tag information like how many times
to play a movie clip. The <PARAM> tag takes elements
NAME and VALUE, which work a little like they
do for certain table tags. Unfortunately, each different type
of multimedia file will require different NAME and VALUE
values, so you'll have to seek those out from the creator of the
particular object type you're wanting to send.

		TIP

		

Often enough, you won't need the <PARAM> tag if you simply want something to play inline once. Also, for more tips, remember that you can view the source of pages that successfully use a multimedia object in a way that's new to you.

Here's an example of the <PARAM> tag:

<INSERT DATA="ship.avi" TYPE="application/avi">
<PARAM NAME="loop" VALUE="infinite">
</INSERT>

The tag is used within an <INSERT>
definition in the same way that it is used elsewhere, except that
the ALIGN attribute isn't really necessary since the
 will only be used to directly replace the
inserted multimedia object. You can add the
like this:

<INSERT DATA="ship.avi" TYPE="application/avi">
<PARAM NAME="loop" VALUE="infinite">

</INSERT>

Clearly, you'll often want the graphic to at least represent the
multimedia file that can't be displayed (see fig. 16.4). Or, perhaps,
you could cause a graphic to load that tells the user that he
or she is missing out on something better.

Figure 16.4 : The <INSERT> tag in action.

[bookmark: BackgroundGraphics]
Background Graphics

Let's move on from something that's barely been implemented at
all (<INSERT>) to something that's been implemented
in many different ways background graphics.

The HTML 3.0-compliant way to change the background into a graphic
is to use the BACKGROUND attribute for the body tag,
as in the following example (see fig. 16.5):

<BODY BACKGROUND="paper.gif">

Figure 16.5 : A background graphic.

The HTML 3.0 standard (as it stands) has no other abilities to
change colors of backgrounds or fonts, since HTML 3.0 will eventually
rely on style sheets for Web page layout. As far as I know, nearly
no current, popular browsers support style sheets. Plus, at the
time of writing, the HTML 3.0 standard is no longer the primary
concern of the W3C which, instead, is working on parts of the
original standard which will now be formalized as separate standards
(like tables and the <INSERT> tag).

What this means for you is if you use this HTML 3.0-compliant
background graphic style, then you'll need to make sure you're
not creating graphics that will offer a severe contrast with the
text color used by the client browser, since there's no way for
you to change the text color. This usually means you need to used
light-colored (between tan and gray) background images. Netscape's
more complete solution is discussed in Chapter 20.

Background Graphics: Size Matters

There's an interesting little paradox with background graphics.
I've constantly told you that graphic files should be as small
as possible to speed their downloading over the Internet. And,
the same is true for background graphics, most of the time.

The exception is the fact that once a background graphic is downloaded
to the Web browser, it's actually displayed a little quicker if
it's physically bigger (e.g., three inches ´ four
inches, instead of two inches ´ three inches). That's because
the Web browser has to "tile" the image behind the Web
page. The bigger the graphic, the fewer the tiles.

If you're using the same background graphic for all of
your pages, then it's okay to send a file that's a little on the
large size both physically and in terms of kilobytes. Once the
background is in the browser's cache, it will load rather quickly.

If you use a different background on every page, though, the cache
effect won't help as much. In that case, you'll still want to
keep your graphics fairly small.

[bookmark: ExampleTheHTMLEnhancedGraphicsPage]
Example: The HTML 3.0 Enhanced Graphics Page

Let's take what you've learned in this chapter and add some of
these graphical, multimedia enhancements to a fairly standard
Web page. We'll make this the About page for BigCorp, complete
with an exciting multimedia logo, text wrapped around graphics,
and a tasteful background graphic.

From your template, create a new document and add the text of
Listing 16.2.

Listing 16.2 graph30.html Enhancing a
Page with HTML 3.0 Tags

<BODY>
<BODY BACKGROUND="note_back.gif">
<INSERT DATA="logo.moov" TYPE="video/quicktime">

</INSERT>
<H3>A little About Bigcorp</H3>
<H4><I>I sat on my father's knee, looking at his hands and knew I had to make a
better life...</I></H4>
<P>It was 100 years ago that Remmington Bigbucks, founder of BigCorp, <IMG
SRC="founder.gif" ALIGN="RIGHT" ALT="Mr. Big.">first
uttered those word to a local newspaper editor in Smallville, CT, where he first started
BigCorp. At that time, it was a small, privately held corporation, with fewer employees
than it had banks trying to repossess the single factory building. Remmington knew he
needed something to save the company, which was initially formed to promote the use of
tin-can and string-based telecommunications equipment, which seemed promising in the face
of the more expensive alternative being touted by the upstart, American Telephone and
Telegraph.</P>
<H4>Success is Sight</H4>
<P>One crisp Saturday morning Mr. BigCorp was running late for the office <IMG
SRC="pda.gif" ALIGN="LEFT" ALT="PDA">(he usually was,
since he relied on a wake-up call from his secretary and neighbor, Miss Goodbody, but
insisted on using a tin-can communications system at his bedside. The rattling of the can
as it crashed against the window was often not enough of an irritant to awaken the
reportedly near-comatose Mr. BigBucks) when he was suddenly struck with an idea for
attaching little bells to the string that was strung between houses for his telephone
system. It was at that point that he realized that he didn't have ink well, feather and
parchment available to him. In a blazing moment of prophetic insight, he invented the
Personal Digital Assisant. Instantly realizing that was futile, he conceived of the
spiral-bound notepad.</P>
<P>From that moment, <IMG SRC="notepad.gif" ALIGN="RIGHT"
IMG="The Notepad"> Mr. BigBucks was headed for the Big Time with BigCorp.
Profits turned to company around, stock went souring and BigCorp was recognized for it's
unfailing strength and domination of the print communications industry. Although he never
realized his dreams of a PDA (in fact, he never was really sure if he realized that he'd
invented one at all) he did single-handedly create the position of dictation secretary. His
improvements in tape recording mechanism (after an abortive attempt at a reel-to-reel
microrecorder) still affect the business world today.</P>
<HR>
<IMG SRC="left_arrow.gif"
ALT="Back">
</BODY>

The key to those ALIGNed images is to keep them relatively
small, so that they are properly wrapped in text. A nice touch
is to sprinkle small, transparent graphics to add interest to
the text. You can see how this looks in figure 16.6.

Figure 16.6 : Some added graphical treats help a text-heavy
page.

Notice in the figure that you received the
part of the <INSERT> tag, not the QuickTime movie.
This makes sense, of course, because no browser at the time of
writing is capable of supporting the <INSERT> tag.

[bookmark: Summary]
Summary

The turbulent world of HTML offers us a few different (and emerging)
ways to add graphical interest to our pages. While these are bound
to continue to change over the next few months and years, the
tags in this chapter represent some of the latest changes.

The tag discussed previously has recently
been beefed up with two new ALIGN values, LEFT
and RIGHT. Not only do these align graphics to the borders
of the browser window, but they also allow text to wrap around
the graphics.

The <INSERT> tag is a very new addition to HTML,
designed to make it easier to add multimedia elements to Web pages.
Once this tag is widely accepted, it will be much easier to view
video, animations, presentations, and other multimedia file formats
inline.

Finally, the HTML 3.0 way to add background graphics is generally
supported by popular browsers, even if the implementation may
be a bit incomplete. The key is to use background graphics that
don't interfere with the text color of the user's browser, which
is usually set to black by default.

[bookmark: ReviewQuestions]
Review Questions

		Of the five values for the ALIGN attribute of the
 tag, which are new to you in this chapter?
(LEFT, TOP, BOTTOM, MIDDLE,
RIGHT)

		True or false. The ALIGN attribute for the
tag forces text to be aligned relative to the image.

		What word describes the way that graphics are placed (relative
to text) when the ALIGN attribute isn't used?

		What does MIME stand for? Why are the TYPE values
for the <INSERT> tag described as "MIME-style?"

		If you enclose an tag in an <INSERT>
tag, when is it actually used by the browser?

		Why isn't there a table of values for the NAME and
VALUE attributes to the <INSERT> tag?

		Is it possible to get away with not including the <PARAM>
tag in your <INSERT> definition? Why or why not?

		Why doesn't the HTML 3.0 specification offer more control
over background and text color?

		What colors should your background graphic be? Why?

[bookmark: ReviewExercises]
Review Exercises

		Use the ALIGN attribute with an image map graphic.
Does it work correctly?

		Again using ALIGN, test a small image and a long
paragraph of text. Experiment a bit by placing the
tag at different points in the text. Does the image alignment
vary with where you place the tag? Also try this experiment without
the ALIGN attribute, to see how the
appears when it's an inline graphic.

		Test your browser's support of the <INSERT>
tag by using <INSERT> to add a QuickTime or AVI
movie to an HTML document.

		Create a "background-testing" page. Using thumbnail
graphics, offer your user a choice of different background images.
When they click one of the thumbnails, that link should load a
page that uses the same graphic as a background for the page,
so the user can "test" the background.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch17.htm

Chapter 17

Client-Side Image Maps

CONTENTS[bookmark: CONTENTS]

		What's a Client-Side Image Map?

		Determining Your Hot Zones
		Example: Creating a Map Definition File

		Adding a Client-Side Map to Your Web Page
		The Tag

		The <MAP> Tag

		The <AREA> Tag

		Example: Creating a Client-Side Button Bar

		Total Image Maps
		Using Both Sides

		Adding Text Links

		The Clickable Image Fallback

		Example: A Complex, Complete Map

		Summary

		Review Questions

		Review Exercises

Chapter 12, ® Clickable Image Maps
and Graphical Interfaces,-discussed the use of image maps in interface
design, and you found that creating these image maps made your
Web sites more attractive and, often, more intuitive for users.
The original, and now expired, HTML 3.0 working paper used the
<FIG> tag to create
something called a client-side image map. As mentioned
before, it looks like the <FIG>
tag may not ever make it in the HTML world. But client-side image
maps will.

The current HTML 3.0-related draft has been offered for consideration
by Spyglass, Inc. Fortunately, it agrees with the methods currently
in use by Netscape and others-at least for the most part. Again,
we'll try to take the least common denominator and come up with
a specification that works for as many browsers as possible.

		Note

		

I'm basing this chapter on current drafts and market forces. Of course, the HTML 3.0 folks don't always agree with the market in general, and the "official" client-side image map specification may change. Keep a lookout at http://www.w3.org/ just to be sure.

[bookmark: WhatsaClientSideImageMap]What's
a Client-Side Image Map?

You've probably heard of client/server technology before,
even if you weren't sure what it meant. Essentially, client/server
describes the relationship between computers on the Internet (as
well as elsewhere in computer networking). In most cases on the
Web, for instance, the server is the Web server. The client
is the Web browser program you use to access information on that
server.

The image maps discussed in Chapter 12
were all server-side image maps, in that they required a special
map server program to determine what coordinates matched up with
what URLs. Instead of having your browser send an URL to the Web
server, the map server program sent it.

Client-side image maps don't require a special map server to determine
where the user clicked and what URL should be accessed. Instead,
if properly marked-up by the Web designer, a client-side image
map is interpreted by the browser itself, which simply loads the
URL as if a regular hypertext link were clicked. This clearly
requires a client-side aware browser like Netscape Navigator,
MS Internet Explorer, NCSA Mosaic, or a Spyglass, Inc. product.

		Advantages of Client-Side Image Maps

		

It may seem a bit redundant to talk about two different styles of image map creation in separate chapters of the book. You've already learned one, so why not stick to it?

If I wrote this book next year, I'd probably only cover client-side image maps. They're that much of an improvement. Unfortunately, as you'll see later is this chapter, the relative youth of the client-side concept can force you, at this point, to use both

types of image maps on your Web sites.

But the inherent advantages in using client-side image maps are considerable. First, they do away with the need for extra files and programs on the Web server, which should be a great relief to non-programming Web designers. Client-side maps are just more

HTML markup-and no CGI-BIN programming.

Related to that is the control that client-side maps offer you. As a designer, you're not forced to deal with your Web administrator to offer image maps to your users. If you don't think that's a big deal, try putting a server-side map on a Web page that's

served by one of the major online services (like AOL's member pages).

Finally, client-side maps don't require a Web server-or the HTTP protocol-at all. In fact, they don't even have to be on the Internet. It will become more and more common to see non-Web applications for HTML in the future (like CD-ROM based HTML archives)

where a Web server isn't part of the picture. With client-side maps, you don't need a server to create an interface.

		Tip

		

As with most HTML extensions, you'll want to warn users when certain browsers are required to access features on your site.

[bookmark: DeterminingYourHotZones]Determining
Your Hot Zones

This chapter assumes you've read about image maps in Chapter 12,
Clickable Image Maps and Graphical
Interfaces.-Client-side maps and the server-side maps discussed
in Chapter 12 are very similar.

What you need to start with for your client-side maps is an appropriate
graphic. Although client-side maps don't require a map definition
file, using a map editing program (like MapEdit for Windows/UNIX
or WebMap for Mac) is a sneaky way to come up with the information
you do need for your client-side map.

Using your map editor, you can create hot zones (the clickable
® shapes-that work as hyperlinks) that you'd like to use for
your map (see fig. 17.1). If you need instructions for this, refer
to Chapter 12. When you've created your
hot zones for a particular graphic, save your map definition file.
You now have the information you need to create a client-side
map.

Figure 17.1: Creating hot zones for a map definition file.

[bookmark: ExampleCreatingaMapDefinitionFile]Example: Creating
a Map Definition File

You've done this once already in Chapter 12,
but how about doing it again, with some attention paid to the
specifics of client-side maps? There are basically two things
to remember about client-side maps:

		Uncomplicate your hot zones. You won't be using this
map definition file directly-you'll be using it as a guide to
create hot zones in your HTML document. So, you're best off if
all of your shapes and coordinates make sense to you just by looking
at them in the definition file. How can you do this? Keep them
simple.

		Determine the coordinates of your entire graphic. Client-side
maps don't have a default like server-side maps do, so you'll
need to know the coordinates of your entire graphic to create
your own default.

For this example, create a map definition file for the graphic
you want to use as a client-side image map. Do your best to use
simple shapes for your hot zones. Also remember to create a hot
zone that covers the whole graphic. When you're done, you'll have
a map definition file like the one shown in figure 17.2. Print
this file out or save it somewhere where you can get at it. You'll
use this as a reference when you create the client-side map.

Figure 17.2: Keeping the map definition file simple.

[bookmark: AddingaClientSideMaptoYourWebPag]Adding
a Client-Side Map to Your Web Page

Client-side maps require two different sections of code-the
tag and a new tag, the <MAP>
container. <MAP> acts
much like a map definition file does, except that it is part of
the HTML document. You created the map definition file in the
last section to help you with this new tag.

[bookmark: TheIMGTag]The
Tag

Let's look at the
tag first. In order to create a client-side image map, you need
to add the new attribute USEMAP,
as follows:

<IMG SRC="map_name.gif"
USEMAP="#section_name">

Notice that USEMAP accepts
a section-style hyperlink. That's how you can store the map definition
information in the same HTML document. Here's an example:

That's all you need in order to display the image and tell the
browser that this is a client-side image map. Now, however, you
need to create the definition that the browser will use for that
map.

[bookmark: TheMAPTag]The <MAP>
Tag

The <MAP> tag is a
container tag that is referenced using a section-style NAME
attribute. Inside the <MAP>
container, you use the <AREA>
tag to define each hot zone for the client-side map. Here's how
it works:

<MAP NAME="section_name">

<AREA SHAPE="shape1" COORDS="coordinate
numbers" HREF="URL">

<AREA SHAPE"shape2" COORDS="coordinate
numbers" HREF="URL">

...

</MAP>

Notice that most of the information required for the <AREA>
tag is available to you in your map definition file. See how easy
this is going to be? Based on the map definition file you create
in a map editing program, you can come up with a complete client-side
<MAP> like the following
one:

<MAP NAME="mymap">

<AREA SHAPE="POLY" COORDS="1,0,1,72,108,0""
HREF="index.html">

<AREA SHAPE="POLY" COORDS="154,0,109,0,88,14,154,71""
HREF="ftp.html">

<AREA SHAPE="RECT" COORDS="157,0,287,35"
HREF="about.html">

<AREA SHAPE="RECT" COORDS="158,38,288,71"
HREF="support.html">

<AREA SHAPE="RECT" COORDS="0,0,288,71"
HREF="help.html">

</MAP>

That last <AREA> tag
is the one you're using to define your entire graphic. According
to the client-side specification, the area defined first takes
precedence when two areas overlap. So, if someone clicks in one
of the first four hot zones, they'll be taken to the appropriate
URL. If they miss a hot zone, though, they'll be taken to help.html,
where you'll tell them how to use the map. That's all there is
to it!

		Note

		

If you elect not to create your own default hot zone, client-side maps will automatically ignore clicks that fall outside of your other hot zones. This may frustrate users, but at least they won't be sent to URLs at random.

[bookmark: TheAREATag]The <AREA>
Tag

Before you see an example, I need to point out to you that the
shapes for client-side hot zones differ a bit from those for server-side
maps. There are only three basic shapes. (Remember this is when
you use your map editing program to determine coordinates.) The
SHAPE attribute is used to
accept these values. The numbers are given to the COORD
attribute. The three basic shapes are as follows:

		RECT-The rectangular
hot zone requires four coordinates: the top left corner and the
bottom right corner. An example would be 1,0,55,54
which places the left at pixel 1, the top at pixel 0, the right
at 55, and the bottom at 54.

		CIRCLE-A circular
zone requires three different coordinates: center-x, center-y,
and a radius. An example might be 20,20,5,
which would represent a circle with its center at 20,20 and a
radius of 5 pixels.

		POLYGON-For a
polygon, each vertex requires a pair of points as its definition.
(This is nearly the same as is created by most map definition
programs.) A COORD value
of 1,2,55,56,1,99 would create
a polygon (triangle) with a vertex at 1,2, one at 55,56, and a
third at 1,99.

The HREF attribute is used
to give the appropriate URL for each hot zone. If no URL is desired,
then the attribute NOHREF
can be used to make a particular hot zone useless.

Three different examples of <AREA>
tags might be:

<AREA SHAPE="RECT" COORDS="0,0,49,49"
HREF="about_me.html">

<AREA SHAPE="CIRCLE" COORDS="75,49,10"
HREF="resume.html">

<AREA SHAPE="POLYGON" COORDS="50,0,65,0,80,10,65,20,50,20"
NOHREF>

[bookmark: ExampleCreatingaClientSideButtonB]Example: Creating
a Client-Side Button Bar

Let's pull this all together into an example. You can create a
client-side version of the button bar you used as an image map
in Chapter 12. Figure 17.3 shows that
graphic again.

Figure 17.3: Button bar example.

The first step is to use an image map editing application to create
hot zones for the entire graphic. With a button bar, creating
a default zone is up to you. If you think it's possible for your
user to miss the other hot zones you define, and you want them
to go to a specific page if they do, then create a hot zone for
the entire graphic.

By necessity, all of the hot zones defined for the button bar
will be rectangles. Figure 17.4 shows the map definition file
to work with.

Figure 17.4: Map definition information.

Now we'll start by creating a new HTML document that uses this
graphic as a client-side image map (see Listing 17.1).

Listing 17.1 client_map.html Inserting
a Client-Side Image Map

<BODY>

<H3> Welcome to My Home Page </H3>

<P> I'm just getting everything started, but you can use
the button bar

above>to go to a couple of different places, like my

News Page, my Email
Tutorial or to come back

to this Index. Note the above button bar requires a browser
capable of using client-side image maps.</P>

<MAP NAME="menu_map">

<AREA SHAPE="RECT" COORDS="0,0,88,37" HREF="index.html">

<AREA SHAPE="RECT" COORDS="91,0,191,37"
HREF="product.html">

<AREA SHAPE="RECT" COORDS="195,0,296,37"
HREF="service.html">

<AREA SHAPE="RECT" COORDS="300,0,393,37"
HREF="help.html">

</MAP>

</BODY>

First of all, it's nice to see that your map definition information
translates so nicely, isn't it? Second, notice that, even though
the map definition file gives 36
as the bottom coordinate for your first hot zone, with client-side
image maps you have the freedom to line that up with your others,
and choose 37 instead. Most
likely, you just clicked a pixel too high in the map editing program.
Figure 17.5 shows the final product.

Figure 17.5: Notice that the <MAP> data doesn't appear in the browser window of the client-side image map.

[bookmark: TotalImageMaps]Total
Image Maps

There are a few other things you can do with the
tag and client-side maps to make them more compatible and useful
for all of your browsers. As more and more browsers support client-side
maps, these suggestions may become less relevant. For now, though,
it's important to at least consider these options.

[bookmark: UsingBothSides]Using Both Sides

The first tactic you can take will allow both types of image map-client-side
and server-side-to coexist peacefully. If a browser is capable
of offering client-side maps, it will choose that route. If not,
it'll ignore the USEMAP attribute
and consult the Web server for a map server program's help. The
following example shows how it's done:

<IMG SRC="map.gif" USEMAP="#name"
ISMAP>

This is a basically a hybrid of the two systems. Any graphical
browser-client-side savvy or not-can handle this image map. All
you've got to do is set it up with both client-side data and a
map definition file as described in Chapter 12.
The following is an example:

<IMG SRC="mymap.gif" USEMAP="#map_data"
ISMAP>

[bookmark: AddingTextLinks]Adding Text Links

Another advantage of the client-side system is that it allows
you to create individual links that display as text using the
ALT attribute for the <AREA>
tag. For a while, you'll probably still need to supply text links
outside of your image map, since text-based browsers need to be
updated to recognize the <AREA>
tag, if only so that they can display the ALT
text.

From an earlier example, you can add the ALT
attribute like this:

<MAP NAME="menu_map">

<AREA SHAPE="RECT" COORDS="0,0,88,37" HREF="index.html"
ALT="To Index">

<AREA SHAPE="RECT" COORDS="91,0,191,37"
HREF="product.html" ALT="To Products">

<AREA SHAPE="RECT" COORDS="195,0,296,37"
HREF="service.html" ALT="To Service">

<AREA SHAPE="RECT" COORDS="300,0,393,37"
HREF="help.html" ALT="To Help">

</MAP>

Once this is fully supported by browsers, it should allow text-only
viewers access to the client-side map's links.

[bookmark: TheClickableImageFallback]The Clickable Image Fallback

Perhaps you want to offer a solution to browsers that can't accept
client-side image maps, but don't have access to your Web server
for offering a server-side map. In that case, you can make an
image both a client-side map and a clickable graphic. Just assign
the graphic as a whole to a link that explains that you're using
a client-side map, like in the following example:

In this example, if users click somewhere on the graphic, but
their browser can't deal with client-side maps, they'll be taken
to a page called error_map.html
where you can explain the problem to them, and perhaps offer a
series of clickable graphics or text links for them to use.

[bookmark: ExampleAComplexCompleteMap]Example: A Complex, Complete
Map

Let's take everything we've discussed and throw it together into
a complete client-side image map-complete, that is, with some
non-client-side failsafes. For this one, use a graphic that's
a little more exciting and appealing for your intro page interface.

Start by creating the graphic. Be as wild as you want, but remember
to keep the graphic itself fairly small (kilobyte wise) and remember
that you want your client-side map hot zones to be relatively
simple. Figure 17.6 shows the image.

Figure 17.6: A more complete Web interface for your client-side map.

Keep your hot zones basic geometric shapes and you won't be entering
coordinates for the rest of your life. Now, use a map editing
program to generate a map definition file, so you can get a basic
feel for the coordinates you'll need to enter (see fig. 17.7).

Figure 17.7: The map definition file for your Web interface.

Finally, with the information in hand, you can enter the HTML
in Listing 17.2 to activate this client-side map.

Listing 17.2 Activating the Client-Side Map with
Failsafes

<BODY>

Click here for text
menu

<HR>

<HR>

<H3>Today's News:</H3>

<P>Read our latest press
releases concerning

our Midwest exapansion.</P>

<P>Next week: chat with the CEO! Tuesday
at 9pm Eastern time, Mr.

Bigbucks is on IRC channel #bigchat on the Undernet.</P>

<HR>

<MAP NAME="client_map">

<AREA SHAPE="RECT" COORDS="9,13,331,51"
HREF="products.html" ALT="To Products">

<AREA SHAPE="RECT" COORDS="113,142,230,207"
HREF="about.html" ALT="About the Company">

<AREA SHAPE="CIRCLE" COORDS="49,171,37"
HREF="releases.html" ALT="Press Releases">

<AREA SHAPE="CIRCLE" COORDS="298,173,37"
HREF="support.html" ALT="To Support">

<AREA SHAPE="RECT" COORDS="0,0,342,216"
HREF="help.html" ALT="To Help">

</MAP>

</BODY>

Clearly, an image map is a quick way to take up a lot of space
on your Web page without a great deal of HTML and other text (see
fig. 17.8). This page allows any graphical browser access to the
image map, whether it chooses to process it as a client-side map
or a server-side map. You've also defined a link at the top for
a text-based menu that users can click if they're using a non-graphical
browser, or if they don't want to wait for the image map to download.

Figure 17.8: The into page in action.

		Note

		

For the map definition file in figure 17.8 to work properly as a server-side map, you should delete the last rectangle (your client-side default) and assign help.html as the official default value in the definition file.

[bookmark: Summary]Summary

An emerging standard for HTML 3.0 allows you to create client-side
image maps using the
tag and the USEMAP attribute.
These client-side maps define hot zones within the HTML document,
instead of relying on a special map server program.

Creating a client-side map can be made much easier if you use
a map editing program to determine the appropriate coordinates
for your particular graphic. With that information, you can create
the <MAP> container
element, which includes the information relevant to each hot zone.

You should keep the hot zone shapes fairly uncomplicated for client-side
maps, since there are only three shapes to work with, and the
hot zone coordinates have to be entered by hand. Past that, though,
you have a very powerful tool with client-side image maps that
eliminate the need for help from a Web server-based application.

[bookmark: ReviewQuestions]Review
Questions

		What's the main different between a server-side image map
and a client-side image map?

		Do client-side maps require map definition files?

		Why is it sometimes important to include HTML coding for both
client-side and server-side maps for the same image?

		True or false. Client-side maps required you to define your
own default hot zone.

		Which attribute to the
tag is used to create a link to the client-side map data? What
tag is used to contain that data?

		What are the three shapes for client-side hot zones?

		Why is it important for text-based browsers to be updated
to recognize the client-side image map specification?

		Why would it be advantageous to make an image both a "clickable"
image and a client-side map?

[bookmark: ReviewExercises]Review
Exercises

		Create two different map definition files for the same graphic,
and then compare them. Are the coordinates the exact same? If
not, what are the most appropriate coordinates?

		Create a client-side map with overlapping hot zones (as defined
in your <MAP> container).
Test it in a browser. Notice how the order of your <AREA>
tags really matter to your client-side map?

		Using a fairly simple graphic, create a client-side image
map without the help of a map definition file from a map editing
program. Just use simple shapes and try to estimate the appropriate
coordinates for hot zones.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch18.htm

Chapter 18

Other HTML 3.0 Proposals

CONTENTS[bookmark: CONTENTS]

		HTML Math
		Math Tags

		Other Math Tags

		The Banner Element

		Document-Defined Style Sheets
		The <STYLE> Tag

		The CSS Style Sheet Definition

		Example: Incorporating a Style Sheet

		External Style Sheets and Other Style Sheet Tags
		The <LINK> Tag

		Style Overrides

		Divisions and the ALIGN Attribute

		Example: Styles and the <DIV> Tag

		Summary

		Review Questions

		Review Exercises

Although the HTML 3.0 standard as a whole has been "tabled"
by the W3C, it looks like bits and pieces of it will continue
to trickle out as parts of the standard are agreed upon. This
can only be helped by the increased participation of the major
Internet software vendors in the W3C's standardization process.

While everything from the 1995 HTML 3.0 draft won't make it, there
are probably a few HTML 3.0 specifications that will be widely
accepted by popular Web browsers. HTML needs a good way for folks
to offer math functions on their Web pages, without resorting
to clipping images from screenshots of other programs. Also in
the works is the banner element, which has some similarity to
Netscape's frame tags. Finally, you'll take a quick look at how
HTML style sheets will most likely work and, hopefully, give designers
complete control over the way a Web page displays.

		Note

		

Again, you're working with a lot of theory in this chapter (and it's going to be tough to show you screen shots, since so few browsers exist that comply with HTML 3.0). If you'd like to skip ahead to something more concrete, feel free. But, as the standard

emerges, hopefully this chapter will have more relevance. Of course, HTML could always change dramatically from what is being laid out here. Your best bet is to check http://www.w3.org/ for developments.

[bookmark: HTMLMath]HTML Math

At the time of writing, it's a bit tough to pin down exactly what
the future holds for HTML 3.0 math functions. It seems certain
that a nice chunk of HTML designers would appreciate the ability
to create math functions in their HTML code (instead or resorting
to images of complex math); but the HTML 3.0 standard has expired,
and no other math-related proposals have appeared. What there
is of the math functions is sketchy, but this section should give
you a feel for how things might work.

The HTML 3.0 specification introduces a new tag, <MATH>,
which is a container tag that supports various other tags and
HTML shortrefs (shortcuts for some <MATH>
tags) to help you create mathematical formulae. The <MATH>
tag works something like the following:

$math formula/markup$

The actual tags used for creating <MATH>
formulae are still a little scarce, since the standard isn't exactly
universally accepting. Let's look at some of the more basic tags.

[bookmark: MathTags]Math Tags

Among the math tags that you can put your fingers on now are the
<SUB>, <SUP>,
<BOX>, and <OVER>
tags. These tags can go a long way to represent most algebraic
and some calculus-level formulae, although the list is by no means
exhaustive.

		Note

		

I haven't seen shortrefs used much elsewhere in HTML design, but they're quite common in the HTML math specifications. Shortrefs are just shorthand references for common HTML tags.

Also, all of these but <OVER>
are container tags. <SUB>
and <SUP> turn text
into subscripts and superscript, respectively. The shortref for
<SUB> is the underscore
(_), while the shortref for
<SUP> is the caret
(^). An example of these
would be the following:

<MATH>A₂=45³</MATH>

Or, it could be the following, using the shortrefs:

$A_2_=45^3^$

Unfortunately, none of the popular browsers I have available to
test can render these <MATH>
tags. I'm using a slightly more obscure browser called UdiWWW
for Windows (available on the Web at http://www.uni-ulm.de/~richter/udiwww/index.htm)
to view these HTML 3.0 specific <MATH>
elements in figure 18.1.

Figure 18.1: <MATH> rendering in future browsers.

The <BOX> tag is used
for invisible brackets, delimiters, and integral signs, and to
suggest that something is going to be placed over something
else. The <OVER> tag
does the actual placing, so that the following:

<MATH><BOX>f(x)<OVER>1+x</BOX></MATH>

would put f(x) over 1+x.
I'm not sure that the <BOX>
element is really necessary at this point, but I imagine, just
like good parenthesis in any mathematical equation, <BOX>
can't hurt (unless you use it in the wrong part of your equation).
The following is an example where <BOX>
is mandatory:

<MATH>∫_a_^b^<BOX>f(x)<OVER>1+x</BOX>
dx</MATH>

The shortref for <BOX>
is {, and for </BOX>,
it's }. So, you could enter
the above example as the following:

<MATH>∫_a_^b^{f(x)<OVER>1+x}
dx</MATH>

which is almost easy to look at (unless you had my experiences
with calculus in college). To see what all this might look like
in a browser, glance at figure 18.2.

Figure 18.2: Integration with MTML 3.0-style math tags.

		Note

		

Notice the &int symbol at the beginning of the example formula? That's the ISO entity, or special character code for an integration symbol. Other symbols relevant for math include
< (less-than sign) and > (greater-than sign). For more on ISO entities, consult the Web page http://www.uni-passau.de/~ramsch/iso8859-1.html.

[bookmark: OtherMathTags]Other Math Tags

Other math tags are available in the HTML 3.0 standard that perform
more specific tasks. These <VEC>,
<BAR>, <DOT>,
<DDOT>, <HAT>,
and <TILDE> tags are
container tags designed to affect certain variable names or parts
of a formula by placing a particular symbol over the enclosed
character or text. Respectively, they add a vector, bar, dot,
double-dot, hat, or tilde above the enclosed text.

An example might be the following:

<MATH><HAT>O</HAT>
= <DOT>A</DOT></MATH>

which would render in a browser similar to figure 18.3.

Figure 18.3: Viewing other math tags in UdiWWW.

Two other tags allow you to create roots in your formulae: <SQRT>
and <ROOT>. Both are
container tags, and <ROOT>
includes an empty tag, <OF>,
that allows you to define the radix of the root function. The
following:

<SQRT>1 + x</SQRT>

and

<ROOT>3<OF>1 + x</ROOT>

are both possible between <MATH>
tags, forcing the browser to render these with a root bracket
in the appropriate place, as in the following example (see fig.
18.4):

Figure 18.4: Using the <SORT> and <ROOT> tags.

<MATH>¹<ABOVE>5
+ 3</ABOVE></MATH>

The final tag is the <TEXT>
tag, which simply allows you to add regular text within a <MATH>
container. It's often combined with the <SUP>
or <SUB> tags (and
<ABOVE> or <BELOW>)
to allow you to describe variables or formula elements, like the
following:

<MATH>1<OVER><TEXT>The
sum of all x's</TEXT></MATH>

[bookmark: TheBannerElement]The
Banner Element

If you're familiar with Netscape's frames concept at all, then
the <BANNER> tag of
the HTML 3.0 standard is something you might find interesting.
Essentially, the <BANNER>
container is used to fix a portion of your HTML page so that it
doesn't scroll with the rest of the document. This gives you the
ability to put a corporate logo, for instance, or navigation buttons
(even an image map) in a portion of the screen that won't move,
even if the rest of the document extends past the viewable page.

The question is, will <BANNER>
live on? No popular browsers that I'm aware of support the tag,
and it may be too similar to Netscape's frames to survive, since
frames can also be used elsewhere on the page and they can access
different URLs (effectively dividing a page to display more than
one Web site at a time). Check http://www.w3.org/ and elsewhere
before incorporating the <BANNER>
element into your pages.

If you accidentally memorize how to use the <BANNER>
tag, and it turns out not to be supported-well, I can hardly blame
you, because it's not a terribly complicated tag. It follows the
format:

<BODY>

<BANNER>

banner text and HTML markup

</BANNER>

rest of HTML page

</BODY>

The <BANNER> tag is
fairly straightforward. An example of the <BANNER>
tag is the following:

<BANNER>

</BANNER>

<H2>Computer Technical Support</H2>

<P>The following are some of the companies that offer tech
support on

the Web:</P>

 Compaq

 IBM

 Apple

 Packard Bell

 HP

 NEC

 Compudyne

 Toshiba

 Sony

Once you have enough information on the page to cause it to scroll,
you'll see that the banner section doesn't scroll along with the
rest of the text.

[bookmark: DocumentDefinedStyleSheets]Document-Defined
Style Sheets

The age-old debate in the HTML world (okay, so the debate's a
year-and-a-half old) is the push and pull between designers who
want control over the display of their pages and the standard-bearers
who want the widest possible audience for Web pages. Up until
now, it's been something of a stand-off, with companies like Netscape
adding non-standard HTML-like references to their browsers' capabilities,
while the standards organizations have ignored or repudiated those
attempts.

The new world order of HTML standard creation may have finally
changed that a bit. The W3C now comprises representatives of both
camps-both the HTML standard-creators and the strongest corporate
players in Web creation tools. So, the two philosophies have begun
to merge, and style sheets seem to be one of their answers.

Put simply, a style sheet is a designer-suggested mechanism for
the layout of a page. The magic of style sheets is that they can
become almost infinitely complicated from the standpoint of the
designer. You can decide minute details like character spacing,
color, font families, and other desktop publishing-type decisions.
At the same time, however, not rendering these decisions is up
to the individual user and browser, so that minimal information
is lost, and the majority of browsers can view your information
from whatever platform they choose.

Let's take a cursory look at style sheets. Although part of the
now-expired HTML 3.0 standard, the current thinking in style sheets
is about three weeks old as of this writing. Will it change? I
can almost guarantee it. I'll try to pick the parts that seemed
destined to remain intact.

		Note

		

There are at least four different ways to start adding style sheets to your Web documents in the current working draft. In fact, style sheets are considerably more complicated than nearly any other aspect of HTML. Why? It's my belief that this is laying
the groundwork for more advanced programs to make the leap into HTML design. Right now, the power of most desktop publishing programs is lost on Web design. In a few years, as the style sheet standards formalize and come into practice, I believe you'll
begin to see fewer people using text editors for Web creation, and more professional-level page layout programs being brought to the game.

[bookmark: TheSTYLETag]The <STYLE>
Tag

It seems to me that the <STYLE>
tag is the easiest to understand when it comes to style sheets
in HTML, and I'd like to talk about it first. You're in the <HEAD>
section of your document now, and you'll use the <STYLE>
container to define some of the style elements you want to add
to our Web page. The basic format is the following:

<HEAD>

<TITLE>Doc title</TITLE>

<STYLE TYPE="MIME type">

HTML tag.class {special formatting}

...

 {special formatting}

</STYLE>

</HEAD>

Looks like this will require some explaining. For your purposes,
the TYPE attribute of the
<STYLE> tag will always
accept the MIME type text/css.
That stands for the cascading style sheets (CSS)
standard for Web style, and it is basically just a standard that
defines what sort of things you can do to text, images, and background
on your Web page. It defines the special formatting codes you'll
use within your <STYLE>
definition.

HTML tag refers to
any of the HTML you've learned thus far. Nearly all of them can
be given a .class which creates
a unique instance of this particular tag. When that class is specified
in the body portion of your document, the special formatting will
be used for that particular instance of the HTML tag.

Let's look at an example:

<HEAD>

<TITLE>My Styled Page</TITLE>

<STYLE TYPE="text/css">

 H1.italic { font-style: italic }

 P.red_caps { color: red; font-style: small-caps }

</STYLE>

</HEAD>

Now, with these style definitions, you've created new classes
of the familiar <H1>
and <P> tags named
italic and red_caps,
respectively. When you want these special instances to occur in
our HTML document, use the CLASS
attribute to the standard HTML tag. Therefore, the following would
create the special cases for our HTML tags within the document
itself:

<H1 CLASS="italic">This
header is italicized</H1>

<P CLASS="red_caps">This text should be in red,
and all small-caps.</P>

		Tip

		

Class names are completely of your choosing. Keep them short and descriptive and avoid spaces (use the underscore if necessary). Also avoid common HTML words and tag names, just for clarity.

Notice that the original pseudo-code example offered another new
tag, the tag.
 is basically
a designer-defined tag that allows you to create a special case
for emphasizing certain text in your document. It works just like
the tag except
for one small detail-it has no HTML 2.0 counterpart. So, browsers
that don't recognize style sheets won't interpret the
element in any way. If you used a pre-existing tag, other browsers
would only see half of your formatting.

Consider this example. In the <HEAD>
section, you define :

<STYLE TYPE="text/css">

 SPAN { font-style: small-caps }

</STYLE>

Now, in the body of your document, you can do the following:

<P>Welcome to
my home page on the Web. I'm glad you could find the time to drop
by and see what we've got going today.</P>

In a style sheet-capable browser, you'll see small caps used for
an attractive, printed-style introduction to your paragraph. In
older browsers, the text is unaffected.

[bookmark: TheCSSStyleSheetDefinition]The CSS Style Sheet Definition

Having seen how certain style elements can be defined for your
Web page, you might be interested in learning all of the different
style changes you can make to your documents. There are two things
you should recognize about this.

First of all, the CSS style sheet definition is only one of infinite
possible style sheet definitions. That means that anyone can create
a style sheet definition, give it a MIME name like text/bob,
and create a browser that includes all of the programming required
to render the elements of that style sheet. This can get very
tedious to learn and design by hand, which is part of the fodder
for my argument that style sheets are the beginning of the end
of simple (unassisted) HTML layout.

Fortunately for you, the W3C (along with the corporations behind
popular browsers) have just announced at the time of writing that
the CSS will be the first standard for style sheets. That, at
least, gives you common ground to work with when you set out to
design Web pages for the general public. And, of course, the magic
of style sheets is that if a browser can't use them, it won't.
No basic information is lost.

The second major point is this: the current working draft of the
CSS style sheet definition is over 40 pages long-and it's basically
full of possible style properties. That means things go much deeper
than { color: red } in CSS.
I'll touch on some of the high points, but if you get very deep
into style sheets, you'll want to consult http://www.w3.org/pub/WWW/TR/WD-css1.html
for the latest CSS Level 1 developments and changes.

Table 18.1 offers some of the more likely CSS defined style properties
and their possible values or value types.

Table 18.1 CSS-defined Style Properties

		Property		Value
		Example(s)

		font-family
		name of font		Helvetica, Serif, Symbol

		font-size
		number/percentage		12pt, +1, 120%

		font-weight
		number/strength		+1, light, medium, extra bold

		font-style
		name of style		italic, small caps, small caps italic

		font		combination of above 		12pt Serif medium small caps

		color		word/hex number		red, green, blue, FF00FF

		background
		color/blend/file		paper.gif, red, black/white

		word-spacing
		number+units		1pt, 4em, 1in

		text-spacing
		number+units		3pt, 0.1em, +1

		text-decoration
		word 		underline, line through, box, blink

		vertical-align
		word/percentage		baseline, sup, sub, top, middle, 50%

		text-align
		word		left, right, center, justify

		text-indent
		number/percentage		1in, 5%, 3em

		margin
		number		0.5in, 2em

		list-style
		word/URL		disc, circle, square, lower alpha

		white-space
		pre/normal		pre, normal

You can probably figure out what most of these do, but I want
to point out something about a few of them.

The FONT property is basically
a shorthand reference for the four properties that precede it
in the table. You can simple use any of the related values for
FONT, effectively describing
its entire appearance in one tag. With any font tag, you probably
want to be as generic with font names (like Helvetica or Courier)
as possible, since the user's browser will have to decide what
that font name's closest counterpart is on the user's system.

The possible values for COLOR
include black, red, white, green, blue, yellow, brown, gray, orange,
and purple. You can also add "light" or "dark"
to any of these colors. Also, remember that you're acting on a
particular tag (most of the time) and that color
most often refers to text color. It can be used with any text-related
tag, like <BLOCKQUOTE>,
as in the following example:

<STYLE TYPE="text/css">

 BLOCKQUOTE.helv_red { font-family: helvetica; color:
red }

</STYLE>

And, you'd call it just like any other CLASS
of an HTML tag:

<BLOCKQUOTE CLASS="helv_red">Blockquote
class</BLOCKQUOTE>

The properties VERTICAL-ALIGN
and TEXT-ALIGN give Web designers
the much-desired control over centering and justifying text in
a document.

The BACKGROUND property is
most often used in conjunction with the <BODY>
tag, although you can technically change the background of nearly
element. The background can be a color, two colors (blended in
the background), or a URL to a graphic file. You can also include
both color and file, so that a background color is used if the
file isn't found. Here's an example:

<HEAD>

<TITLE>Background Page</TITLE>

<STYLE TYPE="text/css">

 BODY.back { background: "http://www.fakecorp.com/back.gif"
white/blue }

</STYLE>

<HEAD>

<BODY CLASS="back">

[bookmark: ExampleIncorporatingaStyleSheet]Example: Incorporating
a Style Sheet

For the most part, a style sheet should be secondary to the communicative
nature of your text and graphics. Ideally, this is a page that
would work for both HTML 2.0 users and users with style sheet-capable
browsers. Let's put together a small style sheet and HTML page.

Save a new HTML document from your template and enter Listing
18.1.

Listing 18.1 style1.html Creating
a Style Sheet

<HTML>

<HEAD>

<TITLE>Style Sheet Example</TITLE>

<STYLE TYPE="text/css">

 BODY.back {background: "paper.gif" white}

 H2.ital {text-style: italic}

 H3.center {text-align:
center}

 P.center {text-align: center}

 SPAN {font: 14pt sanserif
small-caps; color: blue}

</STYLE>

</HEAD>

<BODY CLASS="back">

<H1>About BigCorp</H1>

<H2 CLASS="ital">Taking Over the World, One Step
at a Time</H2>

<HR>

<H3 CLASS="center">About our Company</H3>

<P CLASS="center">

"Domination of the world is only
the first step,"were the

immortal words of BigCorp founder, Mr. Bigbucks. "If it were
that simple,

I would have a much better golf game."</P>

<P>But that's hardly the extent of BigBuck's ambition. From
humble starts,he's taken on the textiles, electronics, automotive,
computer and political-graft indsutries with a "kill-or-at-least-maim"
attitude.</P>

</BODY>

</HTML>

Once you've got that entered, you meet up with the second half
of the example. Now I just want you to load the page and see what
parts (if any) of the style sheet your browser is capable of displaying.
Depending on how quickly browsers begin to incorporate style sheets,
a more mainstream browser (like Netscape Navigator or MS Internet
Explorer) may display this page just as completely.

To view the page, use the Open File command in your browser. Then
check to see how your page looks.

[bookmark: ExternalStyleSheetsandOtherStyleSh]External
Style Sheets and Other Style Sheet Tags

Let's talk a little more about some of the other new elements
you can use, and how you can use a single style sheet for more
than one page on your site. To use an external style sheet, you
need to drop back to the <LINK>
tag which was first discussed in Chapter 10.

[bookmark: TheLINKTag]The <LINK>
Tag

In this case, <LINK>
will serve a more specific purpose for your Web page than it has
in previous discussions. Using the REL
attribute for the <LINK>
tag, you can add the STYLE
elements from the linked page to the current page. Predefined
style classes can then be used in the current HTML markup.

This version of the <LINK>
tag works like this:

<LINK TITLE="link_doc_title"
REL=stylesheet HREF="URL" TYPE="text/css">

The TYPE can accept any style
sheet type you might be interested in using-we're sticking with
CSS. The TITLE should be
the same as the remote file's title and the HREF
URL needs to be an URL to the document that includes the <STYLE>
definition that you also want to use for the current page. An
example might be:

<LINK TITLE="MY STYLE" REL=stylesheet
HREF="my.style" TYPE="text/css">

So what type of file are you linking to? If you prefer, you can
simply link to a common HTML file that defines the style for your
Web site. Even your index page can serve as this common style
page, if it includes a <STYLE>
definition.

Or, you can create a document that includes nothing but a <STYLE>
container and style page definitions. HTML and head/body tags
aren't required since the <LINK>
tag is essentially "replaced" in the current document
with the <STYLE> information.
And the <LINK> tag
is already in the appropriate place for that <STYLE>
information-between the <HEAD>
tags.

[bookmark: StyleOverrides]Style Overrides

With either a <LINK>
tag or a <STYLE> tag
defined in the head of your document, you can use not only the
currently defined classes for creating styles, but also overrides
to change the style of nearly any HTML tag. How does this work?
It's similar to defining style classes, but you instead use the
STYLE attribute with any
legal HTML tag. The following is an example:

<P STYLE="text align: center">
This paragraph is centered, even if it

doesn't have a CLASS defined that centers text.</P>

The following text is <EM STYLE="color: blue">blue
and emphasized.

<OL STYLE="list-style: lower-roman">

 Each list element

 Is numbered with lowercase

 Roman numerals

You can see where the flexibility of style sheets is almost getting
out of control. Although you can call these overrides for
your current style sheet, the truth is that you can use these
STYLE-attributed HTML tags
anytime that you want to-as long as you've defined the text/css
type through a <STYLE>
or <LINK> tag in the
head of your document. So, if you'd prefer to generate your style
elements on-the-fly, you can define a <LINK>
or empty <STYLE> tag
that does little more than define the TYPE
as text/css.

[bookmark: DivisionsandtheALIGNAttribute]Divisions and the
ALIGN
Attribute

The style sheet standard also creates another tag, the <DIV>
(division) tag, that allows you to assign attributes to a particular
part of your document. <DIV>
is a container tag that applies different styles to anything,
including images, placed between the two tags. Ultimately, it
gives the designer another level of organization for your Web
page. If you think of a <DIV>
as one level below the <BODY>
tag, you're on the right track.

The <DIV> tag works
like this:

<DIV CLASS="class_name"
ALIGN="direction">

...HTML markup...

</DIV>

Notice that the <DIV>
tag can accept the same CLASS
attribute that most other HTML tags can take when used with a
style sheet. This allows you to create a division of your HTML
pages that accepts particular style properties. In addition, the
<DIV> tag can take
the attribute ALIGN, which
can accept LEFT, CENTER,
RIGHT, or JUSTIFY.

		Note

		

Many browsers began accepting the <DIV> tag and ALIGN attribute early in the original HTML 3.0 draft's lifespan. This is the most appropriate way to center a page or portion of the page. When possible, use this tag instead of the
Netscape-specific <CENTER> tag. (More on that in Chapter 19.)

Let's take a look at the <DIV>
tag in action:

<DIV ALIGN="CENTER">

<H3>The XJ906 Mega-Notebook</H3>

<P>We can't be more proud of our latest addition to our
notebook line-up,

the XJ906. Available with a number of processors (all daughterboard

upgradable) and many memory configurations (up to 64 MB) the most
impressive aspect of the XJ906 has to be its cutting-edge approach
to multimedia.</P>

6x CD-ROM (internal, sliding-tray)

2 PCCard 2.0 slots

16-bit stereo sound and built-in speakers

Hardware MPEG support

NTSC Video In/Out Ports

Available docking station

</DIV>

<H5>Copyright 1996.</H5>

Here, finally, is an HTML 3.0 tag you can view in the most popular
browsers (see fig. 18.5). You can use the <DIV>
tag with style sheets in the following example.

Figure 18.5: The <DIV> tag centers items in Netscape Navigator.

[bookmark: ExampleStylesandtheDIVTag]Example: Styles and the
<DIV>
Tag

Let's incorporate everything you've learned so far about style
sheets and the <DIV>
tag. You'll still define a minimal style sheet in the head of
your document, but you'll use overrides for the bulk of the text.
You'll also use the <DIV>
tag to apply styles and global alignment.

Create a new HTML document based on your template, then enter
something similar to Listing 18.2.

Listing 18.2 style2.html Using
the <DIV>
Tag With Styles

<HTML>

<HEAD>

<TITLE>Advance Style Sheets</TITLE>

<STYLE TYPE="text/css">

 H2.mycaps {font-style: small-caps}

 BODY.back {background: "paper.gif" white/light
blue}

 SPAN {font-style: small-caps}

</STYLE>

</HEAD>

<BODY CLASS="back">

<H1 STYLE="text-align: center"> Micheal T. Williamson
</H1>

<H2 CLASS="mycaps">Objective</H2>

<DIV ALIGN="CENTER">

<P STYLE="font: 14pt italics">I'm interested in
a management-level position with an exceptional graphics design/Internet
firm. I'm looking for a growth position that takes advantages
of my writing, computer and graphic design skills.</P>

</DIV>

<H2 CLASS="mycaps">Skills</H2>

<DIV STYLE="margin: 1.5in">

<UL STYLE="list-style: square">

Writer. Skilled as a technical and
product copy writer, with

education in English, technical writing, creative writing and
advertising

copy writing. Experience includes work with successful PR firms
and

advertising firms.

Technology. A Master's Degree in
Management Information Systems has given me the background in
computing that allows me a great understanding of the magic behind
the machines. A relentless effort to stay "current"
has me reading 5-10 periodicals a week related to the industry.

Internet. The emphasis in the last
few years on the Internet

played to some skills I developed in pursuit of my Master's degree,
including experience with some of the earliest implementations
of HTML. Since that time I've been responsible for the development
of five major HTML projects, including the original BigCorp site
in 1994.

</DIV>

</BODY>

</HTML>

You get the idea. You can notice two things from this listing,
both related to the style sheets and <DIV>
tags discussed in this chapter. First, they are both very flexible
and offer unprecedented control over page layout. Second, they
can really fill up an HTML document fast. It may be best to define
a style sheet and use the CLASS
attribute whenever possible. Overrides for every element can be
overkill-but, then again, there's a lot you can do to make you
pages better looking.

[bookmark: Summary]Summary

A number of HTML 3.0 proposals are currently fighting for survival
in the W3C and other places where HTML standards are created.
With the demise of the original HTML 3.0 standard, current HTML
3.0 level components are being standardized one at a time. So,
the future of math tags, the banner element, and style sheets
are still up in the air.

Math tags will most likely be implemented because they fill a
need in the HTML world for a convenient way to represent mathematical
formulae without requiring the designer to use images created
by other programs. The banner element might not be so lucky, since
it has a lot in common with the frames tags proposed by Netscape.

Style sheets do look like they'll survive, but they'll also be
somewhat complicated to implement. At their most basic, they offer
designers unprecedented control over the look of their Web pages.
At their most complicated, they'll probably require sophisticated
applications (along the same lines as desktop publishing programs)
for precision layout.

[bookmark: ReviewQuestions]Review
Questions

		What are shortrefs?

		The <BOX> tag is
the HTML equivalent of what mathematical symbols?

		True or false. HTML math tags are used to solve math problems
in HTML documents.

		What does ∫ represent?

		What would <TILDE>e</TILDE>
look like?

		Is the <BANNER>
tag used to scroll text and graphics across the top of a page?

		What are style sheets for? What makes them a fairly new concept
in HTML design?

		What does "CSS" stand for? What is it, and what
makes it different from the HTML style sheet standard?

		How do you define a style sheet "class?" How are
classes used?

		Why is the
tag different from other HTML tags? Why is it similar to the <DIV>
tag?

		Consider this property definition: {
background: white/blue }. What will this background
look like?

		Why would you want to use the <LINK>
tag instead of the <STYLE>
tag to define a style sheet?

		What Netscape HTML tag can be replaced in most cases with
the <DIV> tag?

[bookmark: ReviewExercises]Review
Exercises

		Use math tags to represent the formula: 5
> 4 <= 4.

		Using math tags, create a formula that divides a fraction
by a whole number.

		What would <ROOT>4<OF>2
* w</ROOT> look like?

		Using client-side image maps from Chapter 17,
use the <BANNER> tag
to keep a client-side map fixed at the top of your Web page.

		Create a style sheet that renders the <H2>
tag in a blue Sans Serif font in all caps. Also force that tag
to align to the right side of the browser. Create a <P>
tag that "justifies" Serif, black text. Use just these
two tags and the appropriate style sheet elements to generate
an "official" looking report.

		In the above example, add a <H1>
level title to the report, but don't use style sheet classes or
overrides.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch19.htm

Chapter 19

Netscape HTML

CONTENTS[bookmark: CONTENTS]

		Should You Use Netscapisms?

		Centering, Blinking, and Background Tags
		Background and Foreground Colors

		Example: Netscape Colors and Alignment

		Manipulating Text with Netscape HTML
		<NOBR> and <WBR>

		The and <BASEFONT> Tags

		Example: Putting Fonts in Their Place

		Netscape Attributes for HTML Tags
		The <HR> Tag

		HTML Lists

		The Tag

		Example: Netscape Attributes at Work

		Client-Pull Tags and Attributes

		Sumary

		Review Questions

		Review Exercises

If you've been on the Web for any amount of time at all, chances
are you've come across a page or site that suggests that its pages
are "best viewed in Netscape Navigator" or something
similar. Since the Netscape 1.1 version in mid-1995, the Netscape
Navigator Web browser has been capable of supporting "extensions"
to the HTML standard language. Extensions are essentially HTML-like
commands that were originally only viewable by Navigator users.

Whether or not that was a good business decision is still being
played out in the industry, although Netscape is clearly a dominant
force among Web technology companies. What you should be more
concerned with here in this chapter is whether or not you should
use these special features-commonly called Netscapisms.

[bookmark: ShouldYouUseNetscapisms]Should
You Use Netscapisms?

For your purposes here, I'm going to describe Netscapisms as HTML-like
extensions that run counter to the theories and guidelines that
govern development of the HTML standard. For instance, the tables
standard that you worked with in Chapter 15
owes a great deal to Netscape's early implementation of tables.
That's not a Netscapism. The <BLINK>
tag (to create blinking text) and the <CENTER>
tag are Netscapisms, because they don't have any proposed counterpart
in the HTML standard-and, perhaps more importantly, they are tags
with no function but aesthetics.

Whether or not you use these Netscapisms in your Web pages is
completely up to you. I'll try to refrain from value judgments,
although I must say the <BLINK>
tag is annoying! Aside from that, though, I'll just leave you
with the following thoughts:

		Netscape-only tags should go hand-in-hand with a "Netscape-only"
warning. Tell your users when you've used tags that can only
be viewed in Netscape-or any other browsers. In fact, you should
probably tell users you're using HTML 3.0 tags or MS Internet
Explorer commands, as well.

		Consider creating alternate pages. It's not overwhelmingly
difficult to create two versions of your site: an HTML 2.0 compliant
site and a site with Netscape or HTML 3.0 additions. You can also
create a "front door" that allows users to choose which
they would prefer to view.

		Tip

		

You might want to make your HTML 2.0 site a low-graphics site, too, so that lower bandwidth users can choose that one over your highly-graphical Netscape-only site.

		Use HTML 3.0 whenever reasonable. It's difficult to
keep up with the HTML 3.0 standard, which is why many people just
keep listening to Netscape. But, when you have the opportunity
(e.g., using <DIV ALIGN="CENTER">
versus <CENTER>), use
the "standard" tag.

		Make sure you don't lose information. Frankly, most
Netscapisms do very little to communicate information; they, instead,
format it a bit more attractively. If you do use Netscapisms,
make sure you're not using them in a way that means your other
users are missing out on something important.

[bookmark: CenteringBlinkingandBackgroundTags]Centering,
Blinking, and Background Tags

You've seen tags very similar to these. Once the HTML style sheet
standard has been universally accepted, it'll be time to put these
guys to sleep. Each one has a style sheet alternative and, for
centering and backgrounds, there are similar HTML 3.0 alternatives
that have been rolled into the most popular browsers. Many browsers
will still support Netscape-style centering and backgrounds (for
backward compatibility, and to catch up to Netscape); but, if
it seems style sheets are finally in vogue, switch over and ignore
these.

The <CENTER> tag is
used to center just about anything-graphics or text-in the browser
windows. It works like this:

<CENTER>

...HTML markup...

</CENTER>

It's a container tag that works just about like the <DIV
ALIGN="CENTER"> tag, except that the
<CENTER> tag can't
do anything else, while the <DIV>
tag is useful for style sheets. An example of <CENTER>
would be the following:

<CENTER>

<P>If you're ready to visit BigCorp, click here

.</P>

</CENTER>

This looks like figure 19.1 in a browser.

Figure 19.1: Using the <CENTER> tag in Netscape Navigator.

<BLINK> works in much
the same way. As a tag, it's designed to make text more annoying
by forcing a cursor-style reverse field to blink on and off on
top of words contained by this tag. The following is an example:

<BLINK>Real Hot Sale Item!</BLINK>

Unfortunately, I can't show it to you in a browser, since a picture
in this book can't show you the blinking. Too bad, huh?

[bookmark: BackgroundandForegroundColors]Background and Foreground
Colors

Netscape uses a different formula (different from the style sheet
method) for adding colors to the background of your pages. Using
the BGCOLOR attribute for
the <BODY> tag, you
create a background color by specifying a 6-digit hexadecimal
number. This attribute takes the following format:

<BODY BGCOLOR=#rrggbb>

...HTML document...

</BODY>

The rrggbb
number represents the two-digit hexadecimal number for red, green,
and blue values of the color you want added to the background
of your document. An example of this is the following which would
turn the background of your page black:

<BODY BGCOLOR="#000000"

Similarly, FFFFFF would be
a white background, FF0000
would be red, 00FF00 would
be green, and so on.

		Note

		

Here's a quick refresher in hex numbers. Hexadecimal means base-16, as opposed to base-10 (normal counting numbers), so each column in a hex number represents a multiple of 16, not ten. The right-most column (we called it the "one's place" in
grade school) needs single-digit numbers past nine in order to allow us to represent hex numbers.

Unfortunately, our numbering system doesn't have single digits past nine. (Ten, which is past nine, is a two-digit number in base-10.) So, we use letters-the first six of the alphabet. An F in the right-most column represents the value 15, and an F in the

16's place represents 240 (15¥16). So, the hex number FF is equal to 255 (240+15).

Once you've changed the background colors in your document, you
may need to change the foreground (text) colors to make them readable.
The default for most graphical browsers is black text, aside from
hypertext links. If you change your background color so that it's
also black, you'll have a communications problem.

		Tip

		

There are a number of pages on the Web to help you pick Netscape colors for backgrounds and links. Try http://www.bga.com/~rlp/dwp/palette/palette.html and http://www.echonyc.com/~xixax/Mediarama/hex.html to start.

To change the text color in Netscape HTML, you use the TEXT
attribute to the <BODY>
tag, which takes the following format:

<BODY TEXT="#rrggbb">

...HTML document...

</BODY>

In this code, rrggbb
represents another series of three two-digit hex numbers. An example
appropriate for the black background would be the following which
would turn the text white:

<BODY TEXT="#FFFFFF">

It's also possible to change the colors used to represent hypertext
links in Netscape HTML, using three different attributes: LINK,
VLINK, and ALINK.
These represent an unvisited link, a visited link, and an active
link, respectively.

To change these, you'd use the following format:

<BODY LINK="#rrggbb"
VLINK="#rrggbb" ALINK="#rrggbb">

...HTML document...

</BODY>

Once again, the numbers are three two-digit hex numbers that represent
the red, green, and blue values of the desired color. The default
values are blue for LINK,
purple for VLINK, and red
for ALINK. These values may
also be overridden by the user if they've set different colors
in Netscape's General Preferences dialog box.

		Note

		

How can you see an "active" link? If you notice, a link turns a different color right after you've clicked it-basically, just so you know you've been successful in selecting it. The ALINK value is also the color of a hypermedia link
while the file is downloaded to the user's computer.

[bookmark: ExampleNetscapeColorsandAlignment]Example: Netscape
Colors and Alignment

Let's use some of the Netscapisms to create a page in the best
Netscape-only tradition. You can create a new page complete with
a background color, foreground color, new colors for links, and
some centering. You might even use the blink tag.

Save a new HTML document from your template and enter something
similar to Listing 19.1.

Listing 19.1 door.html Adding
Color and Alignment to Netscape Pages

<BODY BGCOLOR=#000000 TEXT=#FFFFFF
LINK="5555FF" VLINK="00FF00" ALINK="FF5555">

<CENTER>

<H2><BLINK>Welcome!</BLINK></H2>

<P>I'm glad you could make it to the labyrinth of terror!
We pride ourselves here on the darker side of the Web with using
some of the most hideous and amazing colors, textures and HTML
extensions ever conceived

If you're interesting in entering the labyrinth, click

here. If you're
wondering what all the fuss is about, and everything looks pretty
normal to you, then you're probably better off viewing our HTML 2.0 pages.</P>

<HR>

<H3><BLINK>Be Very Afraid!!!</BLINK></H3>

</CENTER>

</BODY>

Clicking one of the links (even though it probably won't actually
work for you unless you change the example's URLs) should allow
you to see the different link colors. Hopefully, it will be light
blue before you click it, light red as you're clicking it, and
bright green after it's been visited. Otherwise, the page should
look something like figure 19.2, aside from the blinking.

Figure 19.2: An outrageous page as viewed through Netscape.

[bookmark: ManipulatingTextwithNetscapeHTML]Manipulating
Text with Netscape HTML

Again, the point of many Netscape commands is to directly affect
the appearance of text. Outside of style sheets, this is something
that HTML tries to avoid doing, preferring to leave the manipulation
to the individual browser. But Netscape, in catering to appearance-motivated
designers, lets you make those decisions for yourself. Not all
of these tags are going to make it in any HTML 3.0 specifications,
so if you find you must use them, I suggest warning your users
that Netscape-compatibility is required.

[bookmark: NOBRandWBR]<NOBR>
and <WBR>

The <NOBR> tag won't
allow text to wrap when it meets with the end of the browser screen.
This is occasionally useful, especially in situations where your
user might be confused by a line wrap. This is a container tag
that accepts text and markup between its tags. Its format is as
follows:

<NOBR>test and markup</NOBR>

Now, this doesn't necessarily mean that users will need to scroll
their browser window in order to see the text-in many cases, they'll
just need to expand the browser window. (Or, make it considerably
smaller to force the entire length of <NOBR>
text to the next line.) This might be useful for addresses, programming
code, a line of numbers, or similar text. The following is an
example:

<NOBR>1234 Main Street * St. Louis,
MO * 29000</NOBR>

The <WBR> tag is used
in conjunction with the <NOBR>
container for creating a line break when you know exactly
where you want one to occur (if it needs to be broken by the edge
of the Navigator window). It can also be used outside of the confines
of the <NOBR> tag to
let Netscape know where it's okay to break up a particularly long
word.

<WBR> doesn't usurp
the responsibilities of
-it's
only a suggestion. If Netscape needs to break a line of text (or
a particularly long word), then it will do so. If it doesn't need
to break at the <WBR>,
it won't. An example would be:

<P>When I move this Web site the
new address will be

http://www.fakecorp.com<WBR>/main/mperry/public/index.html.
Look for a

hyperlink soon!</P>

Since Netscape Navigator would interpret that address as one word,
it allows you to suggest where it should be broken if the address
would otherwise overlap the browser window.

		Note

		

For lines that always break where you want them to, the <PRE> tag is still your best bet (e.g., lines of poetry). The
 tag might work well, too, if you're not trying to line things up visually.

[bookmark: TheFONTandBASEFONTTags]The
and <BASEFONT>
Tags

Another ability unique to Netscape HTML (outside of style sheets)
is specific control over the size of fonts. The general HTML theory
is to allow a browser to decide what fonts will be larger than
others, although it's safe to assume, for instance, that graphical
browsers will render <H1>
text larger than <H2>,
etc.

Netscape, however, offers up the
and <BASEFONT> tags,
which take the SIZE attribute
to change the size of browser fonts, regardless of the tags used.
<BASEFONT> changes
the font size for an entire document relative to the default.
 can then be
used to set individual font sizes within the document. They're
formatted like this:

<BASEFONT SIZE="number">

You'll want to use an incremental number (for example, +2)
for the SIZE attribute to
the tag when
you're using the <BASEFONT>
tag to set the default. The
tag can be used just about anywhere in regular text. For instance:

<BASEFONT SIZE="4">

<P>We're having a SALABRATION!</P>

You can use
as often as you'd like. Just remember that as a general rule,
the more you use it, the more annoying it is (see fig. 19.3).

Figure 19.3: Overuse of the tag.

[bookmark: ExamplePuttingFontsinTheirPlace]Example: Putting
Fonts in Their Place

Let's see what Netscape's control over fonts and other interface
elements allows you to accomplish on a Web page. Start with a
new document from your template and enter Listing 19.2.

Listing 19.2 font.html Using
the
Tag

<BODY>

<BASEFONT SIZE="4">

<H2>In the interest of science...</H2>

<P>It's been my experience lately that, in studying the
concept

ASTRIOANGLANGIUM<WBR>POROPHATE as dilligently as I have,
I've caused quite a stir in the scientific world. I must say that
I've been surprised at how quickly the entire concept of lower-being
brain transplant into humanoids has caused the world in general
to take up arms against me, although I, frankly, cannot conceive
of a rational explanation for it. It seems that trainable, workable,
intelligent humanoids would make the perfect servants, virtually
eliminating the need to keep regular humans alive. That saves
precious natural resources. I would, of course, be left alive
to rule this world.<P>

<P>I can only guess that the outcry is a result of my closely-guarded
formula. I now release it to the world:</P>

<NOBR>X + (W*T) ^ 2 / 567.34cd_constant
-

(T * X^.4) / ROOT(Wy + Xy) * 70%(Ry * Ty - Rf) = Secret Formula
Answer</WOBR>

<P>Go ye, then, and attempt to duplicate my work. I will
destroy all of you with my brilliance!</P>

</BODY>

It might be a bit disturbing to come across this page in real
life, but let's see how it renders in Netscape (see fig. 19.4).
Notice the use of <WBR>
in the completely made up scientific jargon word, to suggest to
Netscape where it would be okay to break that word. We've also
used NOBR to keep the math
formula from breaking.

Figure 19.4: Font manipulation with Netscape tags.

		Note

		

Just to avoid confusion, the above example does not attempt to use HTML 3.0 math tags to render the math formula.

Plus, as an added bonus, the basefont comes across as a little
too big-just to give it that mad scientist feeling.

[bookmark: NetscapeAttributesforHTMLTags]Netscape
Attributes for HTML Tags

Most of the Netscape additions that have been discussed thus far
have been new tags, but Netscape also works its magic through
attributes that can be added to existing HTML tags. In general,
these attributes simply give you more visual control over an existing
HTML tag by allowing you to choose width, height, and other special
characteristics.

[bookmark: TheHRTag]The <HR>
Tag

This tag generally returns a horizontal rule in HTML, and it still
does in Netscape, but Netscape-specific attributes give you more
control over the appearance of the rule.

By default, the <HR>
tag displays as a shaded, engraved-looking line. Thanks to Netscape,
you can change this with the SIZE,
WIDTH, ALIGN,
and NOSHADE attributes. They're
added as follows:

<HR SIZE="number"
WIDTH="number/percentage" ALIGN="direction"
NOSHADE>

The numbers for SIZE and
WIDTH are in pixels, while
WIDTH can also accept a percentage
of the available browser window that you'd like to see using the
<HR> span. ALIGN
can accept LEFT, RIGHT,
or CENTER. The NOSHADE
attribute stands on its own.

Let's look at a few examples:

<HR SIZE="5">

<HR WIDTH="75%" ALIGN="CENTER">

<HR NOSHADE>

In Netscape Navigator, these horizontal rules look like figure
19.5.

Figure 19.5: Netscape's attributes for <HR> in action.

[bookmark: HTMLLists]HTML Lists

Here's another cosmetic change that Netscape allows you to make
with attributes to standard HTML 2.0 tags. The attribute TYPE
can be used to change the type of bullet or number used by an
 or
HTML list. It takes the following format:

<OL TYPE="number style">

<UL TYPE="bullet style">

For ordered lists, the TYPE
value can be A for capital letters, a for lowercase
letters, I for large roman numerals, or i for small
roman numerals. For UL lists, the possibilities are DISC,
CIRCLE, or SQUARE.

Within lists, the
element can accept the attribute VALUE,
which allows you to renumber lists as you go along. An example
might be a list that you'd like to start with the number five:

<LI VALUE="5"> Item numbered 5

 Item numbered 6

 Item numbered 7

Used in conjunction with the TYPE
attribute for the
tag, the VALUE attribute
would also allow you to start with different alphabetic or roman
characters, such as with the following:

<OL TYPE="A">

<LI VALUE="5"> Item E

 Item F

 Item G

<LI VALUE="1"> Item A

 Item B

As shown in this example (results are shown in figure 19.6), you
can even change the numbering/lettering values within the list,
and it will pick up the counting from there.

Figure 19.6: Renumbering lists with Netscape attributes.

[bookmark: TheIMGTag]The
Tag

The tag wins
the prize for being the most heavily attributed by Netscape (at
least currently). You can add the attributes ALIGN,
WIDTH, HEIGHT,
BORDER, VSPACE,
and HSPACE to ,
all of which enhance the appearance of the graphics in your Web
documents.

Actually, the ALIGN attribute
itself isn't new to you-it's available in both HTML 2.0 and 3.0.
Netscape does have the following additional values for it, though,
which can be used to more precisely align graphics and text:

		TEXTTOP.
Aligns graphics to the top of a line of text. This is as opposed
to the TOP value, which aligns
the graphic to the top of the line (which could include another
graphic, and hence be much higher).

		ABSMIDDLE.
Aligns the image with the absolute middle of the current line
of text.

		BASELINE.
Aligns the image with the baseline value of the current line of
text.

		ABSBOTTOM.
Aligns the graphic with the absolute bottom of the current line
of text. (Absolute bottom means it takes into consideration the
descending letters in the line of text, like y, g,
q, etc.)

You may notice that Netscape's added values are used to align
the image to the text, which runs counter to our understanding
of the ALIGN attribute up
until now. For that reason, among others, I recommend sticking
to either the HTML 2.0 or 3.0 specification for . Not only is the HTML version consistent,
but, in most cases, these Netscape values are just overkill.

WIDTH and HEIGHT
generally appear together, as in the following format:

<IMG SRC="URL" WIDTH="number"
HEIGHT="number">

Both number
placeholders are the desired dimensions of the graphic file. This
is useful for the following two reasons:

		It allows Netscape to create space for the graphic without
rendering it first, which speeds the display of the page.

		It allows you to resize the graphic to a desired width and
height.

		Tip

		

Resizing graphics in this way doesn't change the size of the graphic file or the time it takes to download it. For best speed, use a graphics application to create thumbnails instead of the HEIGHT and WIDTH attributes.

To change the size of the border (or to add one to graphics that
aren't also hyperlinks), you can use the BORDER
attribute. This attribute also accepts a number in pixels, so
that the following example results in a rather thick border around
the image, as shown in figure 19.7:

Figure 19.7: The BORDER attribute.

Finally, remember that using the LEFT
and RIGHT values for ALIGN
(which are available in Netscape as well as in HTML 3.0) causes
your image to change from an inline image to a "floating"
image. Netscape offers the attributes VSPACE
and HSPACE to add additional
space around a floating image, so that text doesn't press up against
the image. These attributes take the following format where number
is in pixels:

<IMG SRC="URL" ALIGN="LEFT/RIGHT"
VSPACE="number" HSPACE="number">

The VSPACE number "pads"
the image above and below, while HSPACE
adds white space to the left and right.

[bookmark: ExampleNetscapeAttributesatWork]Example: Netscape
Attributes at Work

This example will concentrate on the added attributes and attribute
values in Netscape HTML. You can do some interesting things with
lists, horizontal rules, and images.

First, create a new document from your template and enter Listing
19.3.

Listing 19.3 Netscape Attributes to Common HTML
Tags

<BODY>

<CENTER>

<H2>About My Family</H2>

</CENTER>

<H3>Me -- Richard Thompson</H3>

<IMG SRC="doomed.gif" ALIGN="RIGHT" HSPACE="4"
VSPACE="4">

<P>Hi, I'm Richard and I'm 12 years old. I like to play
baseball, hang out, listen to music and play with my best friends
Bill and Mike. I guess school is okay, but I have more fun at
the Y, where I'm on the Sidekickers soccer team, which won second
place last year at the city tourney. I'm into computers and video
games, and I spend a lot of time on the Web. My favorite game
right now is Doomed, like in the picture.</P>

<H3>Dad -- Robert Thompson</H3>

<HR SIZE="3" WIDTH="50%" ALIGN="CENTER">

<P>My Dad, Bob, works at BigCorp Inc. as a Sales Manager.
Basically what he sells is computer stuff, although he doesn't
really do it so much unless the customers are really big serious
ones like Ford or GM or something. He travels a lot, but he brings
me home cool computer stuff, too. He takes off for vacations in
the summer mostly, and last summer we went fishing in Oklahoma.
I didn't think there was much reason to go to OK, but the fishing
was cool, and we stayed in a little cabin that didn't have phones
or TV.</P>

<HR SIZE="3" WIDTH="50%" ALIGN="CENTER">

<H3>Sister -- Julie Thompson</H3>

<P>My sister isn't really a whole lot like me in that she
is a brat. I think we'd get along better if it wasn't for this
list.

List about Julie:

<UL TYPE="SQUARE">

 She's a dork

 She's not good at sharing

 She keeps saying that Rusty is her dog, but he's not
cause she's too young

 She doesn't understand anything about cars

 She doesn't throw a baseball very far

Of course there's other stuff, but I don't want to drag her through
it on the Web.</P>

<HR SIZE="3" WIDTH="50%" ALIGN="CENTER">

<H3>This page looks coolest in Netscape
Navigator.</H3>

</BODY>

Some of Netscape's added attributes are useful, but this is essentially
a page you could create with HTML 3.0 standard elements. That's
not to say that Netscape isn't good for tweaking the appearance
of your page, though (see fig. 19.8).

Figure 19.8: Your Netscape enhanced example.

[bookmark: ClientPullTagsandAttributes]Client-Pull
Tags and Attributes

Client-pull is another concept that began with Netscape, but should
catch on with other browsers (Microsoft Internet Explorer already
supports it). The client-pull tag and attributes allow you to
automatically load another HTML page after a predetermined amount
of time. You can also use these tags to reload, or "refresh,"
the same HTML document over and over.

The client-pull concept introduces you to the <META>
tag, which is used in the head of your document. For client-pull,
the <META> tag takes
the attributes HTTP-EQUIV
and CONTENT. Client-pull
follows this format:

<HEAD>

<META HTTP-EQUIV="REFRESH" CONTENT="seconds;
URL="new URL">

</HEAD>

Unfortunately, this is a little messy compared to most HTML tags,
so we'll have to wade through it. The HTTP-EQUIV
attribute always takes the value REFRESH
in client-pull; it only loads a new document if the CONTENT
attribute includes an URL. Otherwise, it refreshes (reloads) the
current document.

The CONTENT attribute accepts
a number for the amount of time you want the browser to wait before
the next page is loaded (or the current page is refreshed). Then
it accepts a colon and the statement URL=,
followed by a valid URL for the page that should be loaded automatically.

Here's an example that just refreshes the current page after waiting
ten seconds:

<HEAD>

<META HTTP-EQUIV="REFRESH" CONTENT="10">

</HEAD>

And, in this example, we'll use client-pull to load a new page
after waiting 15 seconds:

<HEAD>

<META HTTP-EQUIV="REFRESH" CONTENT="15; URL="http://www.fakecorp.com/index.html">

</HEAD>

One of the best uses for client-pull is as part of a "front
door" page to your site. You can assume that a user's browser
that accepts the client-pull commands is also capable of rendering
Netscape-specific commands. Users with browsers that don't recognize
client-pull can click another link on the page to allow them to
view regular HTML 2.0 pages.

[bookmark: Sumary]Summary

Netscapisms are, as defined in this chapter, Netscape-specific
HTML codes that go against the "no direct manipulation"
theory of standard HTML. These HTML-like tags allow you to directly
control things like font size, text alignment, and image alignment.

In some cases, these Netscape ideas have been incorporated into
HTML 3.0 level specifications-although not always in the same
exact way. When possible, you should use the "official"
HTML tags for these functions. Style sheets described in Chapter 18
are especially effective replacements for many of the Netscapisms.

When you do decide to use a Netscape-specific tag, you should
be careful that you warn your users of such. Many users will not
be able to view those tags, so you need to make sure that the
tags are not being used to communicate something that will be
lost on others. If this is the case, it may even be in your best
interest to create separate HTML 2.0-compliant and Netscape-specific
sites.

[bookmark: ReviewQuestions]Review
Questions

		What is the HTML 3.0 substitute for Netscape's <CENTER>
tag?

		What do the six-digit numbers used for Netscape background
colors represent? What numbering system is this?

		What is the ALINK attribute
to the <BODY> tag used
to set?

		What, according to the text, is the most annoying tag ever
conceived?

		Does the <WBR>
tag require the <NOBR>
tag? Does it do the same exact thing that

does?

		True or false. Setting the BASEFONT
value to something other than one changes the size of all fonts
in the document?

		Does the SIZE attribute
for require
either a plus (+) or minus (-) sign?

		True or false. The NOSHADE
attribute for the <HR>
tag accepts a percentage as its value.

		Can you change numbering and bullet styles in the middle of
lists?

		What attributes to the
tag are used to add extra space between the image and text.

		What attribute and attribute values create a floating image
when used with the
tag?

[bookmark: ReviewExercises]Review
Exercises

		Create an HTML style sheet based alternative to the <BLINK>
tag.

		Translate the following numbers to hexadecimal: 1, 35, 256.

		Using the text from a poem or song, render a verse three different
ways, using the <PRE>
tag, using
 to
end each line, and using the <NOBR>
and <WBR>. What is
the difference between each?

		Take the words "Catch a Wave" and using the SIZE
attribute with the
tag, make the C very large and each letter smaller until
you get to the e, which should be the smallest letter.

		Create a horizontal line that's three pixels high, takes up
50 percent of the browser window, and is right justified.

		Use the different attributes for list tags to create a full-fledged
outline, using large roman numerals for the main headings, capital
letters for the second level, regular numbers for the third level,
and lowercase letters for the forth level.

		Using client-pull, create a "front door" page that
automatically loads a Netscape-specific index page for browsers
compatible with client-pull. The page should also include a link
to HTML 2.0 pages for browsers that don't recognize client-pull.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch2.htm

Chapter 2

The World Wide Web and Web Servers

CONTENTS[bookmark: CONTENTS]

		What's the World Wide Web?

		The Hypertext Concept: Web Links
		Example: Thinking in Hypertext

		The Web Page

		The Web Site

		Example: A Corporate Web Site

		Hypermedia: Text and Graphics on the Web
		Helper Applications

		Common Multimedia Formats

		Internet Services and Addresses
		Internet E-mail

		UseNet Newsgroups

		Gopher and WAIS

		FTP

		Summary

		Review Questions

		Review Exercises

Probably the most important thing to remember about the World
Wide Web and the Internet in general is that they are global in
scale and often a very cooperative venture. Information on the
Web tends to be distributed around the world, and it's just as
easy for you to access a site in New Zealand or Japan as it is
to access Web information in your own state.

The basic reason for learning HTML is to create pages for the
World Wide Web. Before you start, though, you'll want to know
a little about how this whole process works. We'll begin by taking
a look at Web browsing programs, then we'll talk about how the
World Wide Web works, and we'll discuss some of the terms associated
with surfing the Web. Finally, we'll round out the discussion
by talking about the Internet in general and the different services
available on the Internet and how they interact with the Web.

[bookmark: WhatstheWorldWideWeb]What's
the World Wide Web?

The World Wide Web is an Internet service, based on a common set
of protocols, which allows a particularly configured server computer
to distribute documents across the Internet in a standard way.
This Web standard allows programs on many different computer platforms
(such as UNIX, Windows 95, and the Mac OS) to properly format
and display the information served. These programs are called
Web browsers.

		Note

		

Notice that the Web is composed of different sites around the world. A site is basically just a collection of HTML documents that you can access with your Web browser. HTML documents offered for viewing by Que Corporation
(http://www.mcp.com/que), for instance, are organized in a site. I personally have created a Web site that people can visit to read about me, my books, and writing services.

The Web is fairly unique among Internet services (which include
Internet e-mail, Gopher, and FTP) in that its protocols allow
for the Web server to send information of many different types
(text, sound, graphics), as well as offer access to those other
Internet services. Most Web browsers are just as capable of displaying
UseNet newsgroup messages and Gopher sites as they are able to
display Web pages written in HTML (see fig. 2.1).

Figure 2.1 : Here's a Gopher site as displayed through Netscape Navigalor.

This flexibility is part of what has fueled the success and popularity
of the Web. Not only do the Web protocols allow more interactive,
multimedia presentations of information, but the typical Web browser
can also offer its user access to other Internet resources, making
a Web browser perhaps a user's most valuable Internet application.

		How the World Wide Web Began

		

The Web protocols were first created by Tim Berners-Lee when he was with the European Laboratory for Particle Physics (also know as CERN). His initial goal was to allow other physics groups and labs to collaborate over the Internet, but others soon began
implementing the protocols for their own uses.

Mosaic, the first graphical browser for the Web, appeared in 1993, at a time when there were not many more than 50 HTTP (Web) server computers running in the world.

The arrival of Mosaic and similar browsers caused an explosion in the popularity of the Web (and arguably, of the entire Internet) because of their ability to display graphics and other multimedia elements. Within nine months, the number of Web servers had

jumped to over 300.

In 1994, the World Wide Web Consortium (W3C) was formed by interested corporate and educational entities to combine their resources and continue creating standards for the Web. The W3C continues to be largely responsible for negotiating standards and
creating technology to enhance data transfer on the Web.

[bookmark: TheHypertextConceptWebLinks]The Hypertext Concept:
Web Links

Unlike any other Internet service or protocol, the World Wide
Web is based on a concept of information retrieval called hypertext.
In a hypertext document, certain words within the text are marked
as links to other areas of the current document or to other
documents (see fig. 2.2). The basic Windows help engine (and many
other online help programs) uses this same hypertext concept to
distribute information.

Figure 2.2 : Typical hypertext links in a Web document.

As you can see in the figure, links can be text or graphics. The
user moves to a related area by moving his or her mouse pointer
to the link and clicking once with the mouse button. This generally
causes the current Web document to be erased from the browser's
window, and a new document is loaded in its place.

		Note

		

Links can point to another part of the same document, in which case clicking the link will cause the browser to move to a new part of the currently displayed document.

Consider then, that this hypertext concept will affect the way
that information is presented and read on the Web. A normal printed
book (like this one) presents its information in a very linear
way. Hypertext, on the other hand, is a little more synergistic.

On the World Wide Web, this synergy can be taken to an extreme.
For instance, you might use hypertext to define a word within
a sentence. If I see the following example on a Web page:

The majority of dinosaurs found in this
region were herbivores, and surprisingly docile.

then I can assume that the word herbivores is a hypertext
link. That link might take me to a definition of the word herbivore
that this particular author has provided for his readers. This
link might also take me to a completely different Web site, written
by another person or group altogether. It might take me to a recent
university study about herbivores in general, for instance, or
a drawing of a plant-eating dinosaur done by a ten-year-old student
in Australia.

[bookmark: ExampleThinkinginHypertext]Example: Thinking in
Hypertext

For just a moment, imagine you're reading a hypertext document
instead of a printed page.

If, for instance you were reading a Web page about my personal
hobbies, you'd find that one of the things that interests me most
is private airplanes. Clicking that link might take you
to a new Web site dedicated to the discussion of personal aircraft,
including a link to Cessna Aircraft's Web site. Once there,
you could read about Cessna's particular offerings, prices, and
perhaps a testimonial offered by a recent satisfied customer.
Clicking this link whisks you away to that customer's personal
Web site, where you read his accolades for Cessna, and then notice
he's a professor at Yale, and has provided a link for more
information. Clicking the Yale link takes you to the university's
Web site, where you can see different sorts of information about
registration, classes, research projects, alumni, faculty, and
other interesting tidbits.

This offers important implications for HTML writers. For one,
you've got to take into consideration this particular style of
presenting information. Also, building a good Web site often means
being aware of other offerings on the Web, and creating links
to other people's pages that coincide with or expand upon the
information you're presenting.

[bookmark: TheWebPage]The Web Page

The World Wide Web is composed of millions of Web pages,
each of which is served to a browser (when requested) one page
at a time. A Web page is generally a single HTML document, which
might include text, graphics, sound files, and hypertext links.
Each HTML document you create is a single Web page, regardless
of the length of the document or the amount of information included
(see fig. 2.3).

Figure 2.3 : A typical Web page as viewed through Netscape Navigator.

The Web page in figure 2.3, for example, contains more information
than can be shown on the screen at one time, but scrolling
down the page (by clicking the scroll bar to the right of
the browser window) reveals the rest of that particular Web document-note,
though, that scrolling doesn't present you with a new Web page.

		Tip

		

Most browser programs have a text box at the top of the screen that tells you the name of the HTML document being displayed. HTML document names will end with the extension .HTM or .HTML.

[bookmark: TheWebSite]The Web Site

A Web site, then, is a collection of Web pages under the control
of a particular person or group. Generally, a Web site offers
a certain amount of organization of its internal information.
You might start with an index or default page for
a Web site, and then use hypertext links to access more detailed
information. Another page within the Web site may offer links
to other interesting sites on the Web, information about the organization,
or just about anything else.

Web site organization is an important consideration for any HTML
designer, including those designing and building corporate Web
sites. The typical corporate Web site needs to offer a number
of different types of information, each of which might merit its
own Web page or pages.

[bookmark: ExampleACorporateWebSite]Example: A Corporate Web
Site

The typical corporate Web site will start with an index page that
quickly introduces users to the information the site has to offer.
Perhaps index is a misnomer, as this page will usually
act as a sort of table of contents for the Web site (see fig.
2.4).

Figure 2.4 : This corporate index page others links to different parts of the Web site.

The rest of the pages within a hypothetical corporate Web site
will be accessed from a similar index page, allowing users to
move directly to the information they want. If users are interested
in getting phone numbers and addresses for a company, for instance,
they might click a link that takes them to an About the Company
page. If they're interested in the company's products, they'd
click another link that would take them to a product demo page
(see fig. 2.5).

Figure 2.5 : Organizational chart for a basic corporate Web site.

By organizing the site in this way, the designer makes sure that
users can get to every Web page that's part of the site, while
allowing them to go directly to the pages that interest them most.

		Intranets vs. the Internet

		

Another use of HTML and Web technology worth talking about is the growing popularity of intranets, or Internet-like networks within companies. In the Web organizational chart discussed in this section, notice

that most of the information presented is geared toward the external users.

This same technology can be applied to Web sites for internal uses, allowing employees to access often used forms, company news, announcements, and clarifications. For instance, the Human Resources department might make available job listings and addresses

on the Internet, but would discuss changes to the company's health insurance policies on their intranet.

In fact, many companies are even using HTML to create "front ends" to corporate databases and other shared resources. Using a Web browser application, employees can access data stored on the company's internal network. This takes some programming

expertise (usually using CGI-BIN scripts, discussed in this book), but the majority of the work is done in HTML.

Fortunately, designing intranet sites and Internet sites isn't overwhelmingly different. The skills you'll gain in this text will be equally applicable to both. The only real difference is a question of organization and the type of information you'll want

to offer on your intranet-generally, it's the sort of thing that's not for public consumption.

[bookmark: HypermediaTextandGraphicsontheWeb]Hypermedia:
Text and Graphics on the Web

With graphical browsers such as NCSA Mosaic and Netscape Navigator,
the hypertext concept of the Web was introduced to the world of
multimedia, resulting in the hypermedia links that are possible
in HTML.

Now, this really isn't much different from the hypertext links
we talked about in the previous section-the only difference is
that hypermedia links point to files other than HTML documents.
For instance, a hypermedia link might point to an audio file,
a QuickTime movie file, or a graphic file such as a GIF- or JPEG-format
graphic (see fig. 2.6).

Figure 2.6 : Hypemedia links are simply hypertext links that lead to non-HTML documents.

		Tip

		

A hypermedia link can be identified by the fact that the associated file has something other than an .HTM or .HTML extension.

Because of the flexibility of the Web protocol, these files can
be sent by a Web server just as easily as can an HTML document.
All you need to do is create the link to a multimedia file. When
users click that link, the multimedia file will be sent over the
Web to their browser programs.

[bookmark: HelperApplications]Helper Applications

Once the multimedia file is received by the user's Web browser,
it's up to the browser to decide how to display or use that multimedia
file. Some browsers have certain abilities built in-especially
the basics, such as displaying graphics files or plain ASCII text
files. At other times, browsers will employ the services of a
helper application (see fig. 2.7).

Figure 2.7 : Examples of Web browser helper applications.

Most of these helper applications will be add-on programs that
are available as commercial or shareware applications. The browser
will generally need to be configured to recognize particular types
of multimedia files, which, in turn, will cause the browser to
load the appropriate helper application. Once loaded, the downloaded
multimedia file will be fed to the helper applications, which
can then play or display the multimedia file.

[bookmark: CommonMultimediaFormats]Common Multimedia Formats

Although it seems that multimedia formats are constantly being
added and improved for the Web, some of the more common types
of multimedia files are listed in Table 2.1 with their associated
file extensions. This list isn't exhaustive, but it should give
you an idea of the types of files that can be distributed on the
Web.

Table 2.1 Multimedia Formats Common to the
Web

		File Format		Type of File
		Extension

		Sun Systems sound		audio		.au

		Windows sound		audio		.wav

		Audio Interchange		audio		.aiff, .aifc

		MPEG audio		audio		.mpg, .mpeg

		SoundBlaster VOiCe		audio		.voc

		RealAudio		audio		.ra, .ram

		CompuServe GIF		graphics		.gif

		JPEG (compressed)		graphics
		.jpg, .jpeg

		TIFF		graphics		.tif, .tiff

		Windows Bitmap		graphics		.bmp

		Apple Picture		graphics		.pict

		Fractal Animations		animation
		.fli, .flc

		VRML		3D world animation		.wrl

		MPEG video		video		.mpg, .mpeg

		QuickTime		video		.mov, .moov, .qt

		Video For Windows		video		.avi

		Macromedia Shockwave		multimedia presentation
		.dcr

		ASCII text		plain text		.txt, .text

		Postscript		formatted text
		.ps

		Adobe Acrobat		formatted text
		.pdf

Not all of these different file formats necessarily require a
special helper application. Many sound helpers will play the majority
of different sound files, for instance, and some graphics programs
can handle multiple file types. For the most part, you will need
different helper applications for the various video, animation,
and formatted text file types.

[bookmark: InternetServicesandAddresses]Internet
Services and Addresses

Aside from being hypertext-based and capable of transferring a
number of multimedia file formats, the Web is unique in its ability
to access other Internet services. Being the youngest of the Internet
services, the Web can access all of its older siblings, including
Internet e-mail, UseNet newsgroups, Gopher servers, and FTP servers.
Before we can access these services, though, we need to know what
they do and how their addressing schemes work.

[bookmark: InternetEmail]Internet E-mail

Internet e-mail is designed for the transmission of ASCII text
messages from one Internet user to another, specified user. Like
mail delivered by the U.S. Post Office, Internet e-mail allows
you to address your messages to a particular person. When sent,
it eventually arrives in that person's e-mail box (generally an
Internet-connected computer where he or she has an account) and
your recipient can read, forward, or reply to the message.

Internet e-mail addresses follow a certain convention, as follows:

username@host.sub-domain.domain.first-level domain

where username is the name of the account with the
computer, host is the name of the computer that
provides the Internet account, sub-domain is an
optional internal designation, domain is the name
assigned to the host organization's Internet presence, and first-level
domain is the two- or three-letter code that identifies
the type of organization that controls the host computer.

An example of a simple e-mail address (mine) is tstauffer@aol.com,
where tstauffer is the username, aol is the domain,
and com is the first-level-domain. com is
the three-letter code representing a commercial entity.
This e-mail address describes my account on the America Online
service, which is a commercial Internet site. (See Table 2.2 for
some of the more common first-level domain names.)

Table 2.2 Common First-Level Domain Names

		First-level domain		Organization Type

		.com		Commercial

		.edu		Educational

		.org		Organization/Association

		.net		Computer Network

		.gov		Government

		.mil		Military Installation

		.ca		Canadian

		.fr		French

		.au		Austrailian

		.uk		United Kingdom

		.jp		Japanese

You may have also noticed that my address doesn't include a host
name or a sub-domain. For this particular address, it is unnecessary
because America Online handles all incoming Internet e-mail through
a gateway. Once it receives the e-mail, it may indeed send it
to another computer within its online service, but this is an
internal operation that doesn't require a specified host in the
Internet address.

Consider todd@lechery.isc.tamu.edu. This is an address
I had a few years ago when I worked at Texas A&M University.
(I no longer receive e-mail at this address.) Notice how it uses
all of the possible parts of an Internet address. todd
is the username, lechery is a host computer (in this case,
an actual, physical computer named "lechery"), isc
is a sub-domain name that represents the computers in the Institute
for Scientific Computation, tamu is the domain name for
all Internet-connected computers at Texas A&M University,
and edu is the three-letter code for educational,
which is the type of organization that Texas A&M is considered
to be on the Internet.

		When is a Host a Server?

		

The Internet community uses the words host and server when talking about the type of computers you'll encounter. But what do these names mean?

I like to use the analogy of a party. At a party, a host or hostess will welcome you into his or her home and point you to the various things you can do at the party. He or she will show you where to put your coat, point you to the refreshments, and tell
you about their home.

Now, depending on how large or lavish the party is, you may also have servers. Servers will perform more specific tasks, like bringing you beverages or food, opening the door, taking your coat, or moving furniture around. At a small party, the host may act

as a server. At a larger party, the host will coordinate the servers.

That's how hosts and servers work on the Internet. A host computer is generally a computer that allows its local users to gain access to Internet services. It may also allow other users to gain access to information in its organization.

Depending on the size of the organization's Internet site, however, the host often doesn't serve that information itself. Instead, it relies on server computers that have more specific functions, like serving

HTML documents, serving shareware programs, or serving UseNet news. These servers will be accessed through the host, though, so it's really only important to know the host's address on the Internet-just like in the real world.

[bookmark: UseNetNewsgroups]UseNet Newsgroups

The next Internet service we'll talk about is UseNet newsgroups.
These are the discussion groups on the Internet, where people
gather to post messages and replies on thousands of topics ranging
from computing to popular entertainers, sports, dating, politics,
and classified advertising. UseNet is a very popular Internet
service, and most Web browsers have some built-in ability to read
UseNet discussion groups.

		Note

		

Although you'll hear the word "news" a lot when you talk about UseNet, there isn't an overwhelming number of newsgroups that offer the kind of news you expect from a newspaper or CNN. In general, UseNet is comprised of discussion groups like the

forums on CompuServe or the message areas on America Online.

Like Internet e-mail, UseNet discussion groups have their own
system of organization to help you find things. This system uses
ideas and syntax that are similar to e-mail addresses, but you'll
notice that UseNet doesn't require that you find specific hosts
and servers on the Internet-just a particular group. UseNet newsgroup
names use the following format:

first-level name.second-level.third.forth...

The first-level name indicates the type of UseNet
group this is, the second narrows the subject a bit, and the address
continues on until it more or less completely describes the group.
For instance, the following are both examples of UseNet newsgroup
addresses:

co.general

comp.sys.ibm.pc.misc

The first-level name co means this is a local UseNet group
for the Colorado area, and general shows that it's for
discussion of general topics. comp is a common first-level
name that suggests this is an internationally available newsgroup
about some sort of computing issue (see Table 2.3). The other
levels of the name tell you more about the group.

Table 2.3 Common UseNet First-Level Newsgroup
Names

		First-Level Name		Description

		alt		Alternative groups

		biz		Business issues

		clari		Clarinet news stories

		comp		Computing topics

		misc		Other general discussions

		news		General news and help about UseNet

		rec		Recreational topics

		sci		Scientific discussions

		soc		Social issues

		talk		Debate-oriented groups

[bookmark: GopherandWAIS]Gopher and WAIS

Gopher has been described as the poor man's Web, and it's definitely
true that Gopher is a precursor to some of the Web's capabilities.
Gopher is a system of menu items that link sites around the world
for the purpose of information retrieval. This isn't a hypertext
system like the Web, but it is similar to the Web in that it's
designed for document retrieval (see fig. 2.8).

Figure 2.8 : Accessing Gopher menus with TurboGopher for Mac.

While Gopher can only offer access to text files and allow you
to download files using the FTP protocol, it is still used occasionally
by academic, government, and similar sites. Fortunately, your
Web browser can easily offer Gopher access too, so there's no
need to have a separate application.

WAIS, or Wide Area Information Servers, are basically
database servers that allow you to search databases that are attached
to Gopher menus. Library databases, academic phonebooks, and similar
information are kept in WAIS systems.

Gopher and WAIS both generally require that you have the exact
address of the Gopher server available to you. These addresses
are in the following form:

host.sub-domain.domain.first-level domain

This works essentially like an e-mail address without a username.
All the Gopher application needs to know is the exact Internet
location of the Gopher server computer you'd like to talk to.
An example might be marvel.loc.gov. This takes you
to a Gopher menu for the Library of Congress.

[bookmark: FTP]FTP

The File Transfer Protocol (FTP) is the Internet service that
allows computers to transfer binary files (programs and documents)
across the Internet. This is the uploading/downloading
protocol that you might use to obtain copies of shareware or freeware
programs, or that might be useful for downloading new software
drivers from a particular computer hardware company.

Using a model identical to the Gopher system, FTP addresses use
the following format:

host.sub-domain.domain.first-level domain

Like Gopher addresses, an FTP address is simply the Internet address
of a particular host computer. In fact, the same host address
can be used to serve you both Gopher documents and FTP file directories,
based on the type of protocol your access software requests. The
following example is the FTP address for downloading support and
driver files for Apple Macintosh computers and Apple-created Mac
and Windows software:

ftp.support.apple.com

In most cases, FTP connections also require some sort of login
procedure, which means you'll need a username and password from
the system administrator to gain access. The majority of public
FTP sites, however, are anonymous sites, which allow anyone access
to their files. For these sites, the username is generally anonymous,
and you're asked to enter your e-mail address for the system's
password.

		Note

		

Many Web browsers can access only anonymous FTP sites. You may still need a dedicated FTP program to access FTP sites that require an account username and password.

[bookmark: Summary]Summary

The World Wide Web is the youngest and most unique of the Internet
services. Its protocols allow it to transmit both text and multimedia
file formats to users, while also enabling Web browsers to access
other Internet services. The Web is based on a concept called
hypertext, which means that text within the paragraphs on a Web
page is designed to act as links to other Web pages. There is
no hierarchy on the Web, which is only loosely organized by this
system of links.

Other services that can be accessed via the Web include Gopher,
WAIS, UseNet, e-mail, and FTP. Each of these older Internet services
has its own scheme for formulating addresses. Most of these services
require a server computer of some sort to allow Internet applications
to access their information. These server computers have specific
addresses on the Web which you need to know in order to contact
them.

[bookmark: ReviewQuestions]Review
Questions

		The Web protocols are considered flexible by Internet standards.
Why?

		What does hypertext mean? Where else might the typical
computer user encounter hypertext?

		True or false. Hypermedia links are hypertext links to newswire
stories.

		What makes a Web site different from a Web page?

		What is the purpose of having helper applications?

		Why are file extensions important to Web browsers?

		Among UseNet, Internet e-mail, Gopher, and FTP, what two Internet
services use similar addressing schemes?

		What should you enter as the password to an anonymous FTP
Site?

[bookmark: ReviewExercises]Review
Exercises

		If you have an Internet account or an account with an online
service, use your e-mail address to determine your service's domain
name and first-level domain.

		If you have an FTP application, see if your ISP offers an
FTP site. Try the address: ftp.ispdomain.first-level
domain. An example might be ftp.service.net.

		Using your Web browser, attempt to connect to a Gopher address
like marvel.loc.gov. What happens?

[image:][image:][image:][image:]

HTML By Example/ch20.htm

Chapter 20

Netscape Frames

CONTENTS[bookmark: CONTENTS]

		The Idea Behind Netscape Frames

		Creating Frames
		The <FRAME> Tag

		Example: A Simple Frame Document

		Attributes for <FRAME>

		The <NOFRAMES> Tag

		Example: Frames and No Frames

		Targeting Frame Windows
		The NAME Attribute

		Targeting Frame Windows

		Example: A Reason to Use Frames

		Advanced Targeting
		<BASE> Targets

		"Magic" Targets

		Thoughts on Using Frames
		The Elegant Frame Interface

		Summary

		Review Questions

		Review Exercises

One of the most exciting Netscape-only additions to HTML recently
has been the frames specification. Although submitted to the W3C,
frames, for now, remain almost exclusively Netscape-only. (Keep
watching the W3C to see when that may change. Even if it remains
a Netscape standard, more browsers should begin supporting frames.)

		Note

		

Late in the writing of this book, Microsoft announced that Internet Explorer 3.0 had begun alpha testing, and that it would support the Netscape frames specification. Other browsers are sure to follow.

Frames aren't overwhelmingly difficult to add to your pages, although
they do require a slight shift in thought. Although they seem
similar to tables at first, frames are considerably more powerful.
So much so, in fact, that frames can even divide your Web page
so that it is accessing more than one URL at a time.

[bookmark: TheIdeaBehindNetscapeFrames]The
Idea Behind Netscape Frames

Netscape frames are basically another way you can create a unique
interface for your Web site. By dividing the page into different
parts-each of which can be updated separately-there becomes a
number of different interface elements you can offer. Even a simple
use of the frame specification lets you add interface graphics
or a corporate logo to a site, while the rest of your page scrolls
beneath it (see fig. 20.1).

Figure 20.1 : A simple frames interface

Using frames in this way takes you one step closer to the ideal
Web interface, because it makes it as intuitive and universal
as possible. Frames are ideal for the following:

		Table of Contents (TOC). By placing the TOC in a "column"
on your Web page, people can click around your site or your documentation
pages without being forced to constantly move "back"
to the contents page. Instead, users simply click a new content
level in the static frame.

		Fixed interface elements. As mentioned previously,
you can force clickable graphics, logos, and other information
to stay in one fixed portion of the screen, while the rest of
your document scrolls in another frame.

		Better forms and results. Frames also enable you to
create a form in one frame and offer results in another frame.
This is something we're beginning to see extensively with Web
search pages (look to fig. 20.2). With the search text box always
available, you're free to change search phrases or pinpoint your
search more quickly, without moving back in the hierarchy of the
Web pages.

[bookmark: CreatingFrames]Creating
Frames

Probably most unique among the HTML-style tags so far is the <FRAMESET>
tag. This container is required for frames-style pages-but it
also replaces the <BODY>
tag completely on these pages. When you use frames then, you're
committed to using them completely-you can't just add frames to
part of your page. On a typical page, <FRAMESET>
is added like this:

<HTML>

<HEAD>

...HEAD markup...

</HEAD>

<FRAMESET>

...Frames and other HTML markup...

</FRAMESET>

</HTML>

The <FRAMESET> tag
can accept two attributes: ROWS
and COLS. Both attributes
accept either numerical values (size in pixels), percentages,
or a combination of both. The value *
can also be used to suggest that a particular row or column should
take up the rest of the page. The number of rows or columns is
suggested by the number of values you give the attribute. These
attributes take the following format:

<FRAMESET ROWS="numbers,percentages,*"
COLS="numbers,percentages, *">

An example like the following would create two rows: one 50 pixels
long and another row that took up the rest of the page:

<FRAMESET ROWS="50,*">

(This would be useful for a page that displays a fixed map or
graphic at the top.) The following example would create a Web
interface with two columns: one on the leftmost 25 percent of
the screen and one on the other 75 percent:

<FRAMESET COLS="25%,75%">

This would be a good way to set up a documentation (or FAQ) site,
that offered contents in the first frame and actual text and examples
in the second, larger frame.

Each <FRAMESET> statement
will work with one attribute or the other. That means you can
only create a frameset with either rows or columns. In order to
create rows within columns (or vice-versa), you can nest <FRAMESET>
statements. For instance, the following will create a page with
two columns:

<FRAMESET COLS="25%,75%">

 <FRAMESET ROWS="50%,50%">

 </FRAMESET>

 <FRAMESET ROWS="10%,90%">

 </FRAMESET>

</FRAMESET>

The first column will be divided into two rows that take up 50
percent of that column a piece. The second column will be divided
into two rows, the first taking ten percent and the second taking
the rest of that column. Although this doesn't display anything
in and of itself, it creates logical breaks in the page that look
like figure 20.2. You'll come back to nesting <FRAMESET>
tags as you develop more advanced frame interfaces in this chapter.

Figure 20.2 : The logical breaks created by nested <FRAMESET> tags.

[bookmark: TheFRAMETag]The <FRAME>
Tag

The <FRAME> tag is
used within the <FRAMESET>
container to determine what will actually appear in a particular
frame. Each <FRAME>
tag is an empty tag-and it's not unlike the
tags you add to HTML lists. It's simply there, within the <FRAMESET>
container, to determine what URL or name is associated with the
particular frame it defines. It takes the following format:

<FRAMESET COLS/ROWS="numbers">

<FRAME SRC="URL">

...

</FRAMESET>

The SRC attribute is used
to tell the frame what URL should be loaded in that frame. For
instance, the following would create two frame rows-one that loaded
the URL index.html at the
top of the Web page and one that loaded the URL help.html
at the bottom of the page (see fig. 20.3):

Figure 20.3 : The <FRAME> tag assigns URLs to each frame window.

<FRAMESET ROWS="50%,50%">

<FRAME SRC="index.html">

<FRAME SRC="help.html">

</FRAMESET>

By using the <FRAME>
tag, you create what's known as a frame window. Each window
corresponds to a "row" or "column" definition
in the <FRAMESET> tag,
but nothing is drawn or displayed until an appropriate <FRAME>
tag is used to define each individual window.

[bookmark: ExampleASimpleFrameDocument]Example: A Simple Frame
Document

You'll essentially create the same document that was shown in
the previous figure, but you should feel free to play with the
numbers a bit to see how different percentages and even different
attributes to <FRAMESET>
changes how the page displays. Enter Listing 20.1 in your text
editor.

Listing 20.1 smpframe.html Simple
Frame Document

<HTML>

<HEAD>

<TITLE>Frame Example</TITLE>

</HEAD>

<FRAMESET ROWS="25%,75%">

<FRAME SRC="menu.html">

<FRAME SRC="help.html">

</FRAMESET>

</HTML>

While you're at it, you also need to create some files to put
in those frames. If you have some HTML documents hanging around,
you can rename menu.html
and help.html to any HTML
file you'd like to load. For this example, any HTML document names
will work (see fig. 20.4).

Figure 20.4 : Loading separate HTML documents into a frame-based page.

If you'd like to experiment further, try changing the <FRAMESET>
tag in Listing 20.1 to the following:

<FRAMESET COLS="25%,75%">

Or, change the percentages to see how that affects your layout.

[bookmark: AttributesforFRAME]Attributes for <FRAME>

Aside from SRC, the <FRAME>
tag can accept the attributes NAME,
MARGINWIDTH, MARGINHEIGHT,
SCROLLING, and NORESIZE.
All of these but NAME are
appearance-oriented. Let's deal with them first and come back
to NAME in a moment.

MARGINWIDTH and MARGINHEIGHT
are used to control the right/left margins and the top/bottom
margins of the text and graphics within a frame, respectively.
Each takes a numerical value in pixels. For example:

<FRAME SRC="text.html" MARGINWIDTH="5"
MARGINHEIGHT="5">

This creates a five pixel border between the contents of text.html
and the frame edges.

SCROLLING can accept the
values yes, no,
and auto and is used to determine
whether or not scroll bars will appear in the frame window. The
default value is auto, and
this is probably the best to use in most cases. Since users have
all different screen resolutions and available browser window
space, even short documents will sometimes need to be scrolled.

The NORESIZE attribute doesn't
require a value assignment, and is used to keep the user from
resizing a frame window. (Frame windows can be resized by dragging
the frame with the mouse in the viewer window.)

An example of SCROLLING and
NORESIZE would be:

<FRAME SRC="text.html" SCROLLING="yes"
NORESIZE>

[bookmark: TheNOFRAMESTag]The <NOFRAMES>
Tag

This container tag is used to contain HTML markup intended for
browsers that do not support the frames specification. Text and
HTML tags inside the <NOFRAMES>
container are ignored by frames-capable browsers. All others should
generally ignore the other frames tags (which they won't recognize),
but display the text in between the <NOFRAMES>
tags. The following is an example:

<FRAMESET ROWS="25%,75%">

<FRAME SRC="menu.html">

<FRAME SRC="index.html">

<NOFRAMES>

<P>This page requires a Frames capable browser to view.
If you'd prefer,

you can access our HTML
2.0 compliant pages

to view this information without the frames interface.</P>

</NOFRAMES>

</FRAMESET>

[bookmark: ExampleFramesandNoFrames]Example: Frames and No
Frames

Now we'll create another example, this time using the attributes
and additional tags you've seen since the last example. Create
a new HTML document and enter Listing 20.2 (use your own HTML
document names for <FRAME SRC>
if desired).

Listing 20.2 frames2.html Frames
and No Frames

<HTML>

<HEAD>

<TTLE>Frames Example #2</TITLE>

</HEAD>

<FRAMESET COLS="25%,75%">

<NOFRAMES>

<P>If you are seeing this message, then your browser isn't
capable of viewing Frames. Please access our HTML
2.0 compliant Web pages.</P>

<P>If you like, you can go directly to these pages in our
site:

Product pages

Support pages

Help page

</NOFRAMES>

<FRAME SRC="index.html" MARGINWIDTH="5"
MARGINHEIGHT="2" SCROLLING="no">

<FRAME SRC="info.html" MARGINWIDTH="5"
MARGINHEIGHT="2" NORESIZE>

</FRAMESET>

</HTML>

Notice that you've used the attribute NORESIZE
with the <FRAME> tags
for the second column. What's interesting about this is that it
forces the first column to also be non-resizable, since the columns
share a common frame border (see fig. 20.5). This is the case
with any <FRAME> tag.

Figure 20.5 : The <FRAME> and <NOFRAME> tags in action.

Experiment with different values for the <FRAME>
attributes and see what makes a big difference in terms of margins,
scrolling, and resizing. Also, if you have access to a browser
that isn't frames-capable, load the page and see how the <NOFRAMES>
markup looks (see fig. 20.6).

Figure 20.6 : The <NOFRAME> HTML message

[bookmark: TargetingFrameWindows]Targeting Frame Windows

So far, you've seen that frame windows offer you the ability to
load URLs independent of one another, so that you can present
two (or more) different HTML pages in the same browser window.
But what good is this to you? In many cases, it may be useful
to offer multiple documents at once.

For instance, with what you know now, you could use frames to
add a button bar image map to the top of every HTML page you create.
But that would get tedious-each link would have to point to a
new frame document that would then load the button bar and the
next document.

But what if you could just leave the button bar in the top frame
window and load a new document in the other window? You can do
just that, if you know a little about targeting.

[bookmark: TheNAMEAttribute]The NAME
Attribute

First, you need to name your frame windows-at least, you have
to name the windows you might want to change. This is accomplished
with the NAME attribute to
the <FRAME> tag, which
takes the following format:

<FRAME SRC="original URL"
NAME="window_name">

This shouldn't look too foreign to you, as it's a little like
the way that the NAME attribute
works for <A NAME>
links. Once the frame window has a distinct name, you can access
it directly from other frame windows. An example of this is the
following:

<FRAME SRC="index.html"
NAME="main_viewer">

Although you can pretty much name your frame window anything you
want, there is one restriction: you can't start the name with
an underscore character (_).
If you do, the name will be ignored. But, there's a good reason
for that.

The underscore is used to signal a number of "magic"
target names. You'll get to those after you learn how to target
regular browser windows.

[bookmark: argetingFrameWindows]Targeting Frame Windows

With your frame successfully named, you're ready to target the
name with a hypertext link. This is accomplished with the TARGET
attribute to a typical <A>
anchor tag. It follows this format:

<A HREF="new_URL"
TARGET="window_name">link text

The new_URL is the
new document that you want to have appear in the frame window.
The window_name is
the same name that you used to name the frame windows with the
NAME attribute to the <FRAME>
tag. An example would be the following:

<A HREF="products.html"
TARGET="main_viewer">View Products

[bookmark: ExampleAReasontoUseFrames]Example: A Reason to Use
Frames

Now, you finally have a good excuse for using frames. Let's create
a document with two frames (in rows). In the top frame, you can
put a quick HTML menu of possibilities. In the second frame, put
most of the information from your Web site. That's where you'll
display the actual pages you've created. The top frame will just
be for static controls.

This will take two different listings, and both need to be complete
Web documents (see Listings 20.3 and 20.4).

Listing 20.3 control2.html Links
for the Top Frame

<HTML>

<HEAD>

<TITLE>Controls</TITLE>

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

Index
Page |

Products
|

Customer
Service |

Tech
Support |

About
Us

</DIV>

</BODY>

</HTML>

That's the control document (save it as control2.html).
Now, you'll create the main frame document that will contain both
this control document (at the top) and whatever other documents
it feels like tossing at the other frame, called big_window.

Listing 20.4 frames.html The
Frames Document

<HTML>

<HEAD>

<TITLE>BigCorp World</TITLE>

</HEAD>

<FRAMESET ROWS="10%,90%">

<FRAME SRC="controls.html" SCROLLING="no"
NORESIZE>

<FRAME SRC="index.html" NAME="big_window">

</FRAMESET>

</HTML>

Save the second file as frames.html-that's
the one you'll load in your browser window. Notice that you've
told the second frame (the one named big_window)
to load index.html initially.
While an empty frame is possible, you generally don't want to
do that-things work better with a default page in every frame.
You've also chosen certain attributes for the first frame. That's
just personal preference, but I'd rather have my viewer resize
their browser window to see all of the controls, so I won't allow
that window to scroll.

		Tip

		

Whenever possible, view your pages to make sure they're not abnormally wide or that you're forcing users to scroll constantly to read your pages.

Finally, you can load frames.html
in Netscape (see fig. 20.7). If all goes well, you should be able
to click the menu items in the top frame, and change the content
in the bottom one!

Figure 20.7 : Up
top, it's always contro12.html;
but below, it's
an ever-changing URL.

[bookmark: AdvancedTargeting]Advanced
Targeting

Other link-related tags have been updated to accept a TARGET
attribute along with the anchor tag. For instance, client-side
image maps have their AREA
tag updated to accept a target window, so that an area defined
to access a certain link loads that page into the target. This
is the format:

<AREA SHAPE="shape"
COORDS="numbers" HREF="URL"
TARGET="window_name">

Likewise, you can add a TARGET
attribute to the <FORM>
tag. Remember that it's the <FORM>
container tag that tells the browser the URL for the script that
is required to process the form data. In that same tag, you can
also specify a target window for the results that are received
from the server. If you want users to be able to use your form
repeatedly (to allow them to generate different results), you
can leave both the form and the results in separate frames. This
attribute takes the following format:

<FORM ACTION="Script_URL"
TARGET="window_name">

		Note

		

Just in case you're wondering why you haven't learned about these attributes before (like in the client-map and target chapters), it's because they don't necessarily exist. That is, a browser has to be specifically programmed to add these attributes to
older tags. If a browser is programmed to deal with frames (and it happens to follow this early Netscape specification), then the browser programmers will add support for these tags. In other browsers, they'll (hopefully) just be ignored.

[bookmark: BASETargets]<BASE>
Targets

The last example you went through (Listing 20.4) would have been
a great candidate for this one type of target. What if you want
the majority of your links to point to a particular frame window?
In the early example, you created a file called control2.html
that had nothing but hypertext links. Each one of those links
required a TARGET attribute
that pointed to the big_window.
You could have made that easier with a <BASE>
tag in the head of your document. Use this format:

<HEAD>

<BASE TARGET="window_name">

</HEAD>

A good example of this for the previous example would be:

<BASE TARGET="big_window">

You don't have to specify the target window in each individual
anchor in an HTML document that has this tag in its head. Now
all links will default to the target defined in the <BASE>
tag.

		Note

		

If you do use TARGET attributes, they will override the <BASE> tag for that particular link.

[bookmark: MagicTargets]"Magic" Targets

Here's why you can't name frame windows with something that starts
with an underscore. The "magic" target names all start
with an underscore, which signals to the browser that they should
treat this link extra special. The following are some examples:

		TARGET="_blank"-The
URL specified in this link will always be loaded in a new blank
browser window.

		TARGET="_self"-This
is used for overriding a <BASE>
tag, and forcing a link to load in the same window
that it's clicked in.

		TARGET="_parent"-This
causes the document to load in the current window's parent-generally,
the frame window immediately preceding in the <FRAMESET>
definition. If no parent exists, it acts like "_self".

		TARGET="_top"-The
document is loaded in the topmost frame of the current browser
window.

Basically, these magic targets are designed to let you break out
of the current <FRAMESET>
structure in some way. Experiment with them to see how you can
move around to different windows.

[bookmark: ThoughtsonUsingFrames]Thoughts
on Using Frames

I personally have two problems with the frame interface, and both
of them revolve around those browser control buttons that one
gets used to after a few years of working on the Web.

First, using a frame-based document as an interface for your Web
site makes the Back and Forward buttons on the user's Web browser
program nearly useless. As far as the browser is concerned, no
completely new pages have been loaded. So, if you click Back,
you'll go to the site you visited before you loaded the frames
document-no matter how long or far you've been surfing inside
the frames.

The answer to this is simple. Take special care that you're providing
your user with enough controls to move around in your Web site.
If you're using a specific frame window for controls, remember
to give your user as many links in that window as possible. Let
them go directly to the main pages of your site and never bury
a user five or six pages deep without giving them an easy way
back.

The second problem is related. If you've ever spent any time accessing
a site that uses a frames interface, you'll notice that the URL
reported by the browser doesn't ever change. If you used a document
called frames.html for instance,
then the URL will reflect that for the entire time that a user
accesses your site.

This many not seem like a problem, except that it defeats the
bookmark option of many browsers and makes it impossible to cut-and-paste
URLs into other applications (at least currently). The solution
is simple-put the URL for each page somewhere in the document,
perhaps somewhere close to the bottom of the page in a smaller
font (use <H5> or <H6>).
Hopefully, browsers will implement more elegant solutions in the
near future. In fact, Netscape's Atlas version (in beta testing
at the time of writing) is rumored to be an answer to some of
these issues.

[bookmark: TheElegantFrameInterface]The Elegant Frame Interface

Now I'm not a huge fan of using a great number of frames, although
I've seen some snazzy implementation of three or four frames on
a page. Let's use three different frame windows. One will hold
a client-side graphic for your site, one will offer a "table
of contents" page, and one will display the actual information
for your site.

You'll need a fixed window for the client-side map and two dynamic
windows. One will load the parts of the table of contents, and
one will load the information pages. Use Listing 20.5 for the
client-side map.

Listing 20.5 control3.html HTML
for a Client-Side Map

<HTML>

<HEAD>

<TITLE>Control Map</TITLE>

<BASE TARGET="toc_window">

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

</DIV>

<MAP NAME="control">

<AREA SHAPE="rect" COORDS="0,0,61,22" HREF="index_toc.html">

<AREA SHAPE="rect" COORDS="62,0,146,22"
HREF="prod_toc.html">

<AREA SHAPE="rect" COORDS="146,0,222,22"
HREF="serv_toc.html">

<AREA SHAPE="rect" COORDS="222,0,296,22"
HREF="supp_toc.html">

<AREA SHAPE="rect" COORDS="296,0,359,23"
HREF="about_toc.html">

</MAP>

</BODY>

</HTML>

Notice that this graphic isn't designed to change the main window.
It's going to change the documents that show up in your table
of contents window. Each of the TOC documents should be a simple
HTML list of links that shows the branch that the users have traveled
down. For instance, let's create the document serv_toc.html
(see Listing 20.6).

Listing 20.6 serv_toc.html A
Sample TOC Document

<HTML>

<HEAD>

<TITLE>Service Contents</TITLE>

<BASE TARGET="main_window">

</HEAD>

<BODY>

 Main
Products Page

 Software

 Hardware

 Furniture

 Accessories

</BODY>

</HTML>

See what I'm getting at here? The image map will change these
controls, and then these links will change the main frame window.
It gives a nice, easy interface to the whole site. Now let's create
the frames page which we'll call main.html
(see Listing 20.7).

Listing 20.7 main.html The
Main Frames Interface

<HTML>

<HEAD>

<TITLE>BigCorp on the Web</TITLE>

</HEAD>

<FRAMESET ROWS="15%,85%">

<FRAME SRC="controls.html" SCROLLING="no"
NORESIZE>

 <FRAMESET COLS="30%,70%">

 <FRAME SRC="index_toc.html" NAME="toc_window"
MARGINWIDTH="3"

 MARGINHEIGHT="3">

 <FRAME SRC="index.html" NAME="main_window"
MARGINWIDTH="3"

 MARGINHEIGHT="3">

 </FRAMESET>

</FRAMESET>

</HTML>

This one doesn't take up much space. Here's what you've done.
The first <FRAMESET>
created two rows-one for image map and one for the rest of the
page. In that bottom row, you used another <FRAMESET>
to create two columns within that row. The smaller is for the
table of contents pages. In the other frame window, you put all
of the main HTML documents. Get it? Look at figure 20.8 to see
how the whole thing looks in Netscape.

Figure 20.8 : A three way interface is attractive, but it can be tough to manage.

		Note

		

For this example to work well, you may need to create some other files like index_toc.html, or rename files to work in your main window.

[bookmark: Summary]Summary

Netscape frames are an elegant, if currently Netscape-specific,
way to load multiple Web pages in a single browser window. Creating
frames requires a few new tags, including the <FRAMESET>
container and the <FRAME>
empty tag. <FRAMESET>
containers can be nested to create columns within rows for multiple
frame windows on a single page.

Dealing with frames also introduces the concept of "targeting,"
which means naming frame windows and using the attribute TARGET
to point anchor tags toward the named window. With targeting,
however, comes the power of frames. With these two concepts, you
can create detailed, elegant interfaces for your Web pages that
really help you get a lot of information across quickly.

[bookmark: ReviewQuestions]Review
Questions

		What makes <FRAMESET>
unique among the tags you've learned so far?

		True or false. A single <FRAMESET>
can create either rows or columns for your page, but not both.

		What does this page look like in a browser?

<HTML>

<HEAD>

<TITLE>Test</TITLE>

</HEAD>

<FRAMESET COLS="25%, 75%">

<FRAMESET ROWS="100%">

</FRAMESET>

<FRAMSET ROWS="50%, *">

</FRAMESET>

</FRAMESET>

</HTML>

		What's the default setting for the SCROLLING
attribute to the <FRAME>
tag?

		Why does text in between <NOFRAMES>
appear in non-frame browsers, but not in frame-capable browsers?

		What is the one rule for naming frame windows with the NAME
attribute to the <FRAME>
tag?

		Aside from the anchor tag, what two other tags can accept
the TARGET

attribute?

		Why does using the <BASE TARGET>
tag and attribute make targeting frame windows easier?

		True or false. "Magic" targets are shortcuts for
more complicated TARGET statements.

		What two problems do frames cause for your user?

[bookmark: ReviewExercises]Review
Exercises

		Use the <BASE> tag for the following:

 <A HREF="index.html"
TARGET="main_window">Index

 Feedback

 Survey

</BODY>

		Create a frames document with two frames-one for a fixed image
map interface and the other to act as a target for the pages of
a Web site. Create the image map so that it targets the main frame
window with new pages from the site.

		Now, put the client-side image map at the bottom ten percent
of the page, with the Web site pages targeted at the top.

		Using clickable graphics, create an interface in a frame window
along the left side of your page. On the right side, display the
pages that are loaded by the form buttons. Make sure each clickable
graphic appears below the one before it.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch21.htm

Chapter 21

Internet Explorer Extensions

CONTENTS[bookmark: CONTENTS]

		Backgrounds and Fonts
		<BGSOUND>

		Font Color and Typeface

		Example: A Study in Absurdity

		IE Extensions for Tables

		IE Extensions to
		DYNSRC and CONTROLS

		LOOP and START

		Summary

		Review Questions

		Review Exercises

Not to be outdone by Netscape and others, Microsoft Internet Explorer
adds a number of HTML-type tags and attributes that further enhance
your ability to layout and customize your pages. It's difficult
to say which browser offers support for more off-the-wall extensions-it
basically depends on who's come out with the most recent version.
There's a browser war on, and you can bet that standard HTML features
won't be moving fast enough for Microsoft and Netscape.

In fact, at the time of this writing, Microsoft had just released
an alpha (developers-only) version of Internet Explorer 3.0, which
promises to support Netscape-style frames, the HTML 3.0 <INSERT>
tag, and HTML 3.0 style sheets. All of these have been discussed
in earlier chapters, but it's significant to note that a major
force in the industry has decided to support these tags. (Of course,
I can't make any guarantees concerning the final Internet Explorer
3.0 product.)

		Note

		

Using the extensions in this chapter probably warrants a "best viewed in Internet Explorer" or similar line of text on your page. But how can you tell if an extension is Internet Explorer only? You can track changes to Internet Explorer's HTML
support, including tags created by Microsoft, at http://www.microsoft.com/ie/author/htmlspec/html_toc.htm on the Web.

[bookmark: BackgroundsandFonts]Backgrounds
and Fonts

Internet Explorer (IE) adds a number of extensions to the <BODY>
tag, generally to affect the appearance of the background itself.
IE also adds support for background sounds (sounds that are played
by the browser as the page loads).

The BGPROPERTIES attribute
can be used in conjunction with BACKGROUND
specified by HTML 3.0. In IE-compatible browsers, this forces
the background to work like a "watermark," which Microsoft
defines as a background graphic that doesn't scroll. The only
value for BGPROPERTIES is
"fixed." The following is an example:

<BODY BACKGROUND="PATTERN.GIF"
BGPROPERTIES="fixed">

As always, <BODY> is
a container tag, so you'll need a </BODY>
tag at then end of your HTML markup for this page.

The <BODY> tag can
accept two other attributes in IE-compatible browsers: LEFTMARGIN
and TOPMARGIN. Each of these
accepts a value in pixels, specifying the amount of white space
between the left and top sides of the browser window (respectively)
and your text or graphics. For example:

<BODY LEFTMARGIN="30" TOPMARGIN="30">

[bookmark: BGSOUND]<BGSOUND>

If you'd like your page to play a sound as the page loads into
your user's browser, you can add that capability with the <BGSOUND>
tag. You'll generally want to put it near the top of the <BODY>
section of your HTML document, but that's only for your benefit-it'll
load as it's recognized by the browser.

The <BGSOUND> tag is
an empty tag that accepts two attributes: SRC
and LOOP. SRC
is used to specify the sound file that you want played. LOOP
determines how many times you want the sound played, and can have
a number for a value or the word "infinite" for constant
playing. <BGSOUND>
takes the following format:

<BGSOUND SRC="URL"
LOOP="number/infinite">

An example of this might be:

<BGSOUND SRC="intro.au"
LOOP="2">

In IE, the sound file can be a sound sample (.au
or .wav files) or a MIDI
(.mid or .midi)
format sound file. Other browsers, if they support <BGSOUND>,
may vary in their ability to play certain types of sounds.

		Tip

		

Be careful with LOOP="infinite". A constantly repeated sound, especially a system sound, might confuse your user into thinking there's something wrong with his or her computer. (Or it may just annoy your user.)

[bookmark: FontColorandTypeface]Font Color and Typeface

IE adds two attributes to Netscape's
tag: COLOR and FACE.
Actually, you may remember that you were able to change the overall
text color in Netscape. In IE, you can change the color for a
single word (or even individual letters, if you've got a lot of
time on your hands).

		Note

		

Unless everyone in the world has switched to IE by the time you read this, recognize that clever use of color and font faces can communicate something that is lost on other HTML users. When possible, use either the HTML style sheet or standard HTML markup

to change font appearance and emphasize text.

To change the color of a font in the middle of your document's
text, use the
container with the COLOR
attribute, like this:

<FONT COLOR="#rrggbb/color
name">new color text

The COLOR attribute can accept
either three two-digit hex numbers to describe a color, or a color
name itself. For example, both of the following result in red
text:

This
is red text

This is also red
text

The FACE attribute can be
used to change the actual typeface used in the IE browser window.
Because different systems can offer different fonts, this attribute
allows you to offer a list of font names. Each name will be tried
in succession until a matching font name is found. The FACE
attribute takes the following format:

<FONT FACE="name, name2,
name3,...">

Look at the following example:

<FONT FACE="Arial, Helvetica,
Times Roman">

Your browser will attempt to use the font Arial, and then fall
back to Helvetica and Times Roman until it finds a font match
on the user's computer system. If none of the fonts are found,
a default font is used.

[bookmark: ExampleAStudyinAbsurdity]Example: A Study in Absurdity

Without being too coy here (and letting on that I'm not terribly
fond of these IE tags), I'd like to create an example that not
only makes use of these tags, but overuses them. One of the biggest
problems with these IE tags is that they are so browser-specific
that you can get yourself in trouble. Let's create a page that,
when loaded in your copy of IE, will make you want to immediately
unload it.

		Note

		

If you want to download a copy of IE, you can get it from http://www.microsoft.com/ie/ie.htm. There's no UNIX version (just various Windows versions and one for Macs) which is probably a good

thing. If you're like me, you'd have a hard time trying to figure out what font names to use in UNIX for the tag.

To start, create a new HTML document and enter Listing 21.1.

Listing 21.1 ie_ext.html Fonts,
Sounds, and Background with IE Extensions

<BODY BACKGROUND="logo.gif"
BGPROPERTIES="fixed">

<BGSOUND SRC="beep.wav" LOOP="infinite">

<H2>Welcome to <FONT

COLOR="green">BigCorp!</H2>

<P> <FONT COLOR="#FF00FF" FACE="Arial,
Helvetica">If you've got Internet

Explorer, then you're probably having the experience of your life.
There's

nothing wrong with your system,

We've just added a little noise to help make your stay more pleasant!</P>

<HR>

<P>
Click below if you're

ready to go somewhere else within our site!

Head over to our Product
pages

Learn a little more
About

BigCorp

Need some help? Try Tech
Support

Wanna
buy something?

Customer Service
is a click away.

</P>

</BODY>

Take a look at figure 20.1 for an example screenshot of this listing,
but a graphic can't do it justice. To truly experience this, you'll
need to load it in your own copy of Internet Explorer. Also, change
beep.wav to any other annoying
sound you happen to have lying around and are able to copy to
the same directory as your HTML document.

Figure 21.1 : This page is a poster-child for conservative use of IE HTML extensions.

[bookmark: IEExtensionsforTables]IE
Extensions for Tables

Internet Explorer fully implements the HTML 3.0 standard for tables
(described in Chapter 15), with some additional
attributes, again targeted to users that would prefer to have
more control over the appearance of the table. I personally like
these extensions a little more than the others we've seen from
IE. Why? Because the table standard is already geared directly
to the graphical browser community. These additions make them
even more attractive, without to much effort. Other browsers will
probably support these extensions quickly.

Most interesting is the BGCOLOR
attribute, which can be used to change the background color of
rows or columns. The BGCOLOR
attribute accepts three two-digit hex numbers or a color name
and works with the <TABLE>,
<TR>, and <TD>
tags (see Listing 21.2).

Listing 21.2 IE Table Extensions

<TABLE BORDER="1" CELLSPACING="2"
CELLPADDING="2">

<TR><TH>JOB</TH><TH>MONDAY</TH><TH>TUESDAY</TH><TH>WEDNESDAY</TH>

<TR BGCOLOR="#000022"><TH>Clean</TH><TD>Mike</TD><TD>Bill</TD><TD>Sue</TD>

<TR><TH>Cook</TH><TD>Sue</TD><TD>Mike</TD><TD>Bill</TD>

<TR BGCOLOR="#000022"><TH>Wash</TH><TD>Bill</TD><TD>Sue</TD><TD>Mike</TD>

</TABLE>

As you can see in figure 21.2, you can do more than just change
the background color of tables for aesthetic reasons. As accountants
and engineers have known for years, it's easier to communicate
information in tables when you're able to shade different rows
to make it clear what data is related to what other data and headers.

Figure 21.2 : Using color in IE tables.

The other attributes, BORDERCOLOR
and BORDERLIGHT, are used
to change the color of the border in IE tables. They must be used
with the BORDER attribute
to the <TABLE> tag
(or the <TR> or <TD>
tag if you want to change border colors in mid-table). Both accept
either three two-digit hex numbers or a color name. The following
is an example:

<TABLE BORDER="3" BORDERCOLOR="blue"
BORDERLIGHT="lightblue">

The BORDERCOLOR value affects
the top portion of IE's 3D style table border. The BORDERLIGHT
value changes the "lower" (shadow) part of IE's border.
Basically, these values just let you toy with the 3D effect on
IE table borders. Listing 21.3 shows another example using the
above line of code.

Listing 21.3 Border Colors with IE Tables

<TABLE BORDER="1" CELLSPACING="2"
CELLPADDING="2" BORDERCOLOR="blue"

BORDERLIGHT="lightblue">

<TR><TH>JOB</TH><TH>MONDAY</TH><TH>TUESDAY</TH><TH>WEDNESDAY</TH>

<TR><TH>Clean</TH><TD>Mike</TD><TD>Bill</TD><TD>Sue</TD>

<TR><TH>Cook</TH><TD>Sue</TD><TD>Mike</TD><TD>Bill</TD>

<TR><TH>Wash</TH><TD>Bill</TD><TD>Sue</TD><TD>Mike</TD>

</TABLE>

[bookmark: IEExtensionstoIMG]IE
Extensions to

Chapter 16 discussed the <INSERT>
tag, designed for adding inline multimedia objects to your Web
pages. IE has it's own version, which will probably be de-emphasized
as <INSERT> becomes
more widely accepted. It is possible, with IE-specific attributes,
to add an inline video clip or VRML world with extensions to the
 tag.

		Note

		

I'd suggest using the <INSERT> tag instead of these extensions to the tag as <INSERT> becomes more popular. Check with the W3C, Netscape, and Microsoft IE Web sites to get a feel for whether or not popular

browsers are supporting <INSERT>.

[bookmark: DYNSRCandCONTROLS]DYNSRC
and CONTROLS

IE accepts the attribute DYNSRC
along with an URL to indicate the video clip you want displayed
by the user's browser. You can also include a SRC
attribute for ,
thus allowing it to display a standard graphic file for browsers
that don't support DYNSRC.
These attributes take the following format:

<IMG SRC="graphic URL"
DYNSRC="video URL">

Currently, the video URL
needs to be a .avi video
file. The graphic URL
can be any typically accepted graphic format, like GIF or JPEG.
An example would be the following:

In addition,
will also accept the attribute CONTROLS,
which displays a set of video controls under a video clip, if
present. CONTROLS, then,
requires that the DYNSRC
attribute also be present. For example:

<IMG SRC="moon.gif" DYNSRC="moon.avi"
CONTROLS>

In Internet Explorer, this adds video controls to the inline clip,
as shown in figure 21.3.

Figure 21.3 : An inline .avi file in IE.

[bookmark: LOOPandSTART]LOOP
and START

Two other attributes for
also affect the way your video clip will play-LOOP
and START. LOOP
allows you to choose the number of times that the video will play
once started. START allows
you to decide how it will be started.

LOOP accepts either a number
or the value "infinite." For instance, in the following
example, the video will play three times in a row once it is started:

<IMG SRC="earth.gif" DYNSRC="earth.avi"
LOOP="3">

To start the video clip, you can use the START
attribute. This takes either FILEOPEN
or MOUSEOVER as its value.
FILEOPEN instructs the video
to begin when the page is loaded. MOUSEOVER
starts the video when the user moves the mouse pointer over it.
The following example will start the video clip when the mouse
pointer is moved over it by the user, and play the video three
times in a row:

<IMG SRC="earth.gif" DYNSRC="earth.avi
LOOP="3" START="MOUSEOVER">

[bookmark: Summary]Summary

Not to be left out of the race, Microsoft's Internet Explorer
adds HTML-like extensions much like Netscape. Also, like Netscape,
many of these tags are designed to enhance designers' control
over the page, or to increase their ability to deal with new multimedia
technology.

With IE, this means more control over font faces, font colors,
background colors, table border colors, and the addition of tags
to support background sounds. Extensions to the
tag also allow you to play certain video files "inline"-that
is, without a helper application.

[bookmark: ReviewQuestions]Review
Questions

		Which of the following is not an attribute for the <BODY>
tag: BGPROPERTIES, BGSOUND,
LEFTMARGIN, RIGHTMARGIN.
Which of the four is an actual tag?

		What type of sound files can be used as a background sound?

		Aside from a color name, what else can the COLOR
attribute to the
tag accept as a value?

		How often can you change the color or the font in an IE document?

		What is the LOOP attribute
used for with background sounds?

		With what HTML table tags can the BGCOLOR
attribute be use?

		What tag will eventually be substituted for the combination
of the tag and
the DYNSRC attribute in IE?

		How is it possible to start a IE video clip by pointing the
mouse at it?

[bookmark: ReviewExercises]Review
Exercises

		Create a page that plays a background sound three times, while
displaying a background image as a watermark.

		Change the colors in each letter of the word Congratulations
using IE HTML extensions.

		Change the font of each letter in the word Welcome
using IE HTML extensions.

		Using tables HTML tags, create a table that puts squares of
different colors on the page, but without any table lines or borders.

		Using a border, force the border lines to disappear into the
background color of an HTML table.

		Add an AVI video clip to your page, and have it play twice
as the page loads, without showing controls.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch22.htm

Chapter 22

Using Java and JavaScript

CONTENTS[bookmark: CONTENTS]

		Adding Java Applications to Your Web Pages
		The <APPLET> Tag

		The <INSERT> Tag

		Example: Adding Java Applets

		Creating JavaScript Programs
		The <SCRIPT> Tag

		Hiding Code

		Example: Hello World

		Functions
		Declaring Your Functions

		Calling a Function

		Example: Calling All Declarations

		Handling Events
		Returning Values

		Possible Events

		Example: Event Handling, Part One

		Example: Event Handling, Part Two

		Summary

		Review Questions

		Review Exercises

We should start this chapter by making a distinction between Java
and JavaScript. Java is an object-oriented, compiled (at runtime),
full-fledged programming language in the spirit of C++. It is
designed for the more advanced programmer, with its strength being
the ability to run in a "virtual machine" that can be
created by a Web browser. Java, then, is similar to the programming
languages used to build full-fledged applications that can be
run on PCs, Macs, and UNIX machines. It's well-suited for the
Internet, but not necessarily exclusive to the Web.

JavaScript, on the other hand, is a less complex, interpreted
scripting language similar to AppleScript, Visual Basic Scripting,
and similar languages. JavaScript is similar in some ways to Java,
but it doesn't require the programmer to understand or implement
the complicated object-oriented syntax or worry about programming
issues like variable typing and object hierarchies.

In fact, Java and JavaScript are different enough that you can
think of them with different titles depending on your ability.
It's convenient to think of creating programs in Java as programming,
and you can call creating scripts in JavaScript authoring.

		Note

		

Java programming is outside of the scope of this book. (I'd suggest Java by Example or Special Edition Using Java from Que.) In this chapter, you'll learn about adding Java programs to your HTML pages, and then look at the basics of
JavaScript authoring.

[bookmark: AddingJavaApplicationstoYourWebPag]Adding
Java Applications to Your Web Pages

There are two basic ways to add Java applets (programs)
to your Web pages. The first is an HTML-like extension that Netscape
and other companies rolled into their browsers as the Java language
first became popular. For a while, at least, this will be the
preferred way of adding applets. The other method, based on the
HTML 3.0 suggested <INSERT>
tag, is still under discussion at the time of writing but should
eventually replace the more proprietary <APPLET>
tag.

[bookmark: TheAPPLETTag]The <APPLET>
Tag

This first method adds the HTML-like tag <APPLET>
container tag. Along with the <APPLET>
tag is the <PARAM>
tag, used to offer certain parameters to the browser concerning
the applet (like the speed at which something should display,
initialize, and so on). <APPLET>
accepts the attributes CODE,
CODEBASE, HEIGHT,
and WIDTH.

An <APPLET> tag follows
the general format:

<APPLET CODEBASE="applet_path_URL"
CODE="appletFile.class" WIDTH="number"
HEIGHT="number">

<PARAM NAME="attributeName" VALUE="string/number">

...

Alt HTML text for non-Java browsers

</APPLET>

CODEBASE is the path (in
URL form) to the directory on your server containing the Java
applet. CODE takes the name
of the applet. This file always ends in .class,
to suggest that it's a compiled Java class. CODE
should always be just the filename since CODEBASE
is used to find the path to the Java applet.

		Tip

		

Notice that CODEBASE and CODE work together to create a complete URL. So, for a relative URL, CODEBASE isn't required if the applet is in the same directory as the Web page.

The WIDTH and HEIGHT
attributes accept the number in pixels for the Java applet on
your Web page.

An example of the first line of <APPLET>
would be the following:

<APPLET CODEBASE="http://www.fakecorp.com/applets/"
CODE="clock.class"

HEIGHT="300" WIDTH="300">

<PARAM> is a bit easier
to use than it may seem. It essentially creates a variable, assigns
a value, and passes it to the Java applet. The applet must be
written to understand the parameter's name and value. NAME
is used to create the parameter's name; it should be expected
by the applet. VALUE is used
to assign the value to that particular parameter. It could be
a number, bit of text, or even a command that causes the applet
to work in a particular way.

		Note

		

Understanding the <PARAM> tag might enable you to use freeware/shareware Java applets on your own pages. By passing your own parameters to general purpose applets, you may find them useful for your particular Web site.

A simple <PARAM> tag
is the following:

<PARAM NAME="Speed" VALUE="5">

In this case, the Java applet will have to recognize and know
what to do with a variable named Speed
with a value of 5.

The alternative HTML code in the <APPLET>
container allows you to offer HTML text to browsers that aren't
Java-enabled. A Java-aware browser will ignore the markup (and
display the applet window instead), while non-Java browsers will
ignore everything but the markup. So an example would be the following:

<APPLET CODE="counter.class"
HEIGHT="20" WIDTH="20">

<P>You need a <I>Java-aware</I> browser to see
this counter!</P>

</APPLET>

This will display the text, instead of the applet, when it encounters
a browser that doesn't support Java.

[bookmark: TheINSERTTag]The <INSERT>
Tag

As you may remember from Chapter 16, the
<INSERT> tag is the
current thinking by the W3C for adding inline multimedia elements
to Web pages. In fact, it's designed to work for Java applets
as well, as most browsers work with applets in a way similar to
inline video and animations.

The basic format for the <INSERT>
tag (as it regards Java applets) is as follows:

<INSERT CLASSID="Java:filename.class"

 CODE="URL/filename.class"

 WIDTH="number"

 HEIGHT="number"

 ALIGN="direction">

<PARAM NAME="name" VALUE="number/string">

</INSERT>

For the most part, this works a lot like the <APPLET>
tag, except that it does away with the CODEBASE
tag, instead requiring that you use a full URL for the CODE
attribute. (This makes more sense in terms of the HTML conventions
you've learned in the past.) The CLASSID
is a MIME type name, which is required for all <INSERT>
tags. HEIGHT and WIDTH
are just numbers that represent pixels for the applet window on
your Web page. ALIGN works
as it does for other <INSERT>
elements.

The <PARAM> tag for
<INSERT> elements is
essentially the same as the <PARAM>
tag you used previously for the <APPLET>
tag. Your Java applet will still need to recognize and deal with
the incoming data. The
tag, as with other <INSERT>
elements, allows you to add the URL to an image that can display
in browsers that aren't Java-enabled.

An example might be:

<INSERT CLASSID="Java:counter.class"

 CODE="http://www.fakecorp.com/applets/counter.class"

 WIDTH="20"

 HEIGHT="20"

 ALIGN="LEFT">

<PARAM NAME="Speed" VALUE="5">

<IMG SRC="nojava.gif" ALT="This applet requires
a Java-enabled browser">

</INSERT>

[bookmark: ExampleAddingJavaApplets]Example: Adding Java Applets

This example is designed to do two things: reinforce the ways
you can add Java applets to your Web pages, and test your browser
for Java capabilities. If your browser supports Java, it'll be
interesting to see which method it prefers for adding Java applets.

To begin, create a new HTML page and add the code in Listing 22.1.

Listing 22.1 addjava.html Adding
Java Applets to a Web Page

<BODY>

<H3>This applet has been added using the APPLET tag:</H3>

<APPLET CODE="Clock2.class" HEIGHT="150"
WIDTH="150">

{<P>You need a <I>Java-aware</I> browser to
see this clock!</P>}

</APPLET>

<HR>

<H3>This applet was added using the <INSERT> tag:</H3>

<INSERT CLASSID="Java:Clock2.class"

 CODE="Clock2.class"

 WIDTH="150"

 HEIGHT="150"

 ALIGN="LEFT">

<IMG SRC="no_work.gif" ALT="Looks like Insert
doesn't work!">

</INSERT>

</BODY>

Save this file as clock.html.
To get this to work correctly, you'll need a Java applet. You
can use an applet written by Rachel Gollub of Sun Microsystems,
clock2.class which is available
on the included CD-ROM. Make sure it's in the same directory as
clock.html. Then load the
page in your browser to test it (see fig. 22.1).

Figure 22.1 : Here's what works and what doesn't in my copy of Netscape Navigator (Mac 2.0 Java beta).

[bookmark: CreatingJavaScriptPrograms]Creating
JavaScript Programs

Now let's move on to JavaScript, the smaller Java-like scripting
language available in Netscape Navigator and other programs. Unlike
Java, JavaScript programs are generally written right in HTML
pages. You'll start with how to add JavaScript code to a Web page
and then look at how these programs are created.

[bookmark: TheSCRIPTTag]The <SCRIPT>
Tag

The <SCRIPT> tag is
used to add JavaScript commands to your HTML pages. <SCRIPT>
is a container tag that can accept the attribute LANGUAGE,
which allows you to specify the scripting language used (JavaScript
is generally the default). Here's how it works:

<SCRIPT LANGUAGE="lang_name">

script code

</SCRIPT>

Remember that LANGUAGE is
optional-you probably won't need to use it while authoring JavaScript,
but it can't hurt.

[bookmark: HidingCode]Hiding Code

While it's possible that old browsers (those that don't recognize
JavaScript) will just skip over the <SCRIPT>
tag, it's also possible that the browser will attempt to interpret
your script commands or other text as HTML markup. To keep this
from happening, you can embed the script commands in HTML comments.
You might try something using the HTML comment tags like the following:

<SCRIPT>

<!--

script commands

-->

</SCRIPT>

This works fine for the non-Java browser. Unfortunately, the JavaScript
will choke when it sees -->,
since it will try to interpret that as scripting code. So you
need to comment the comment.

In fact, it's always a good idea to create comments within your
script that allow you to document what you're doing in your programming.
Unfortunately, you've just told Java-enabled browsers that HTML
comments (between <SCRIPT>
tags) contain active script commands. So how can you add comments
for the benefit of the script? Like this:

<SCRIPT>

<!--

script command // One-line comment

...script commands...

/* Unlimited-length comments must be

ended with */

// comment to end hiding -->

</SCRIPT>

Looks like you can fill a decent-sized page with nothing but comments,
eh? Notice that you've solved the HTML comment problem with a
single-line JavaScript comment. Single-line comments start with
two forward slashes and must physically fit on a single line with
a return at the end. Multi-line comments can be enclosed in between
an opening comment element (/*)
and a closing comment element (*/).

[bookmark: ExampleHelloWorld]Example: Hello World

Although you haven't learned how to do anything with a script
yet, I'll throw one quick command at you for the purpose of getting
your first JavaScript page to work. It's document.write,
and it's something called a method in JavaScript. It's
basically a variable that does something automatically. In this
case, it prints text to your Web page.

Create a new HTML document and enter Listing 22.2.

Listing 22.2 hiworld.html "Hello
World" JavaScript Document

<HTML>

<HEAD>

<TITLE>Hello World JavaScript Example</TITLE>

</HEAD>

<BODY>

<H3>The following text is script generated:</H3>

<SCRIPT LANGUAGE="JavaScript">

<!--

/* Our script only requires

one quick statement! */

document.write("Hello World!") // Prints words to Web
document

// end hiding-->

</SCRIPT>

</BODY>

</HTML>

Save this document, and then load it in the browser of your choice.
If your browser is capable of dealing with JavaScript, then your
output should look something like figure 22.2. If it's not, then
you'll just see the header text.

Figure 22.2 : Your first JavaScript program.

		Tip

		

If your browser can't see the JavaScript example, I suggest getting the latest copy of Netscape Navigator for testing your work in this chapter.

[bookmark: Functions]Functions

The basic building block of a script in JavaScript is the function.
A function is basically a "mini-program." Functions
start by being "passed" a particular value; they work
with that value to make something else happen and then "return"
a new value to the body of your program.

In JavaScript, there are two times you need to work with functions.
First, you need to declare the function. This means that you're
defining how the function will work. The browser, when it loads
a page, will make note of the different functions that you may
use in your script.

The second step is to call the function in the body of your script.
Generally, your script will be just a series of function calls.
There isn't a whole lot of calculating done in the body of your
script. You send a value out to a function to be computed and
then receive the results back in the body of your script.

[bookmark: DeclaringYourFunctions]Declaring Your Functions

A good rule, although it's not necessary, is to declare your functions
in the head of your document. The function declaration needs to
appear between <SCRIPT>
tags, but you can have more than one set of <SCRIPT>
tags in an HTML document. A single set of <SCRIPT>
tags doesn't necessarily define an entire script-it just sets
script elements apart from other HTML tags. Function declarations
look like the following:

<SCRIPT>

<!--

 function function_name(value_name) {

 ...function code...

 return (new_value)

}

// end hiding -->

</SCRIPT>

The value_name for
the function is just the variable name that you assign to the
passed value for the duration of the function. When the body of
your JavaScript document calls this function, it will generally
send along a value. When that value gets to the function, it needs
a name. If the function is designed to perform simple math, for
instance, you might call the passed value old_num.

Also, notice that the entire calculating part of the function
is between braces. An example of a function declaration might
be the following:

<SCRIPT>

<!--

 function get_square(old_num) {

 new_num = (old_num * old_num)

 return (new_num)

}

// end hiding -->

</SCRIPT>

In the example, you've created a function called get_square
which accepts a value, names it old_num,
and then squares that value and assigns it to a variable named
new_num. At least, that's
what the function is supposed to do. It won't do it yet, because
this is just a declaration. It doesn't even know what actual values
to work with until you call the function.

[bookmark: CallingaFunction]Calling a Function

You call the function from the body of your script, which is generally
in the body of the document. It doesn't really matter where you
declare functions (although, as mentioned, it's best to declare
them between the <HEAD>
tags), but it is best to put the function calls of your script
close to the parts of your document where they're needed (this
will become more obvious as you work with JavaScript). A function
call is basically formatted like the following (and always appears
between <SCRIPT> tags):

function_name(value);

In this function call, the function_name
should be the same function name that you used in the function
declaration, while the value
can be anything you want to pass to the function. In the previous
example, this value
was to be renamed old_num
and then squared. So it would make sense to put a number in the
parentheses of that particular function call. In fact, you can
put almost anything in the parentheses-a variable name, an actual
number, or a string of text-as long as the function is designed
to accept such a value. For instance, the get_square
function will work equally well if you use:

number = 5;

num_squared = get_square (number);

or

num_squared = get_square (5);

By the way, if something looks strange to you here, it might be
the way I'm naming variable names-especially if the last time
you did any programming was a number of years ago. The following
would work just as easily:

x = 5;

y = get_square (x);

Does that make you more comfortable?

Remember, though, that you should be passing a value that the
function expects. If you pass a string of text to a function designed
to perform math functions, you won't get anything useful.

Notice also that, in the previous three examples, the function
is on the right side of an assignment, represented by the
equal sign. This may take a little leap of thought, but JavaScript
does two things with function calls. First, the call is used to
pass a value to the function. Then, when the function returns
a value, it "takes the place" of the original function
call.

Look at the following example:

num_squared = get_square (5);

After the math of the get_square
function is completed and the value is returned, the entire function
call (get_square (5)) is
given a value of 25. This,
in turn, is assigned to the variable num_squared.

[bookmark: ExampleCallingAllDeclarations]Example: Calling All
Declarations

You know enough now to build a fairly simply little script. You'll
use document.write again,
with a function declaration and a function call. In this script,
you'll do some simple math and track the results in your browser
window.

Create a new HTML document and enter Listing 22.3.

Listing 22.3 simpmath.html Using
JavaScript for Simple Math

<HTML>

<HEAD>

<TITLE>Simple Math</TITLE>

<SCRIPT>

<!--

 function simple_math(num) {

 document.write("The call passed ",num,"
to the function.
");

 new_num = num * 2; //
multiple the value by 2

 document.write(num, " * 2 equals ",new_num,"
");

 return new_num; //
return new_num to the function call

}

// end hiding -->

</SCRIPT>

</HEAD>

<BODY>

<H3>Let's watch some simple math:</H3>

<SCRIPT>

<!--

 x = 5;

 document.write("The starting number is ",x,"
");

 new_x = simple_math(x);

 document.write("The function returned the number
",new_x,"
");

// end hiding -->

</SCRIPT>

</BODY>

</HTML>

And that's pretty much it. Notice that document.write
lets you track the progress of your number as it moves from the
function call through the function itself and back down to the
main part of your script. You can see this working by focusing
on the order of the output in figure 22.3.

Figure 22.3 : The results of your script.

[bookmark: HandlingEvents]Handling
Events

Well, you've created a complete script, but it can't do much.
That's because the strength of JavaScript, more than anything
else, is in event handling. That is, it's best at responding
to something a user does on your page. This is generally done
in response to some HTML tag. Here's the basic format for an event
handler:

<TAG event_handler="JavaScript
code">

<TAG> can be just about
any form or hyperlink tag. Most other tags don't have the ability
to accept input from the user. The event_handler
is the browser's code for some action by the user. The JavaScript
code will most often be a function call.

For instance, you could use an input textbox to send data to a
function you've written, as with the following code:

<INPUT TYPE="text" NAME="number"
SIZE="4">

<INPUT TYPE="button" NAME="Calculate" onClick="result
=

compute(this.form.number.value)">

In this example, you're responding to the event created when the
user clicks the input button. When that happens, the value this.form.number.value
is sent to a function called compute.
Notice that the variable this.form.number.value
is JavaScript's object-oriented way of storing the value of the
textbox named number in the
first statement.

[bookmark: ReturningValues]Returning Values

Let's dig a little deeper into how the object-oriented storage
thing works. Your average object is usually just a bunch of grouped
variables. For instance, a typical browser has a JavaScript object
called this, which (in our
example) means "variables for this page." Within this
is a subcategory called form
which means "the form variables." So the name this.form
is basically where "the form variables for this page"
are stored.

		Note

		

Actually, this is a special keyword in JavaScript, used to refer to the current object. In the case of our example, the current object is, in fact, where the "variables for the page" are stored. We'll discuss the correct use of
this a bit more in Chapter 23, "JavaScript Objects and Functions."

When you use the NAME attribute
to an <INPUT> tag,
you're creating another variable within this object. For instance,
NAME="mynumber"
creates this.form.mynumber.
The value of this variable is stored at this.form.mynumber.value.

Let's look at that last example again:

<INPUT TYPE="text" NAME="number"
SIZE="4">

<INPUT TYPE="button" NAME="Calculate" onClick="result
=

compute(this.form.number.value)">

Now, the neat trick here is that you don't necessarily have to
pass the specific value to a function in order to use it. All
you need to do is send the name of the object that you want the
function to concentrate on. That way, it can deal with more than
one value from that object.

Consider this. You've just gathered this.form.number.value
from the textbox. Now you want to send that to a function. You
can make the function call like this:

<INPUT TYPE="button" NAME="Calculate"
onClick="result = compute(this.form)">

You've also cleverly designed the function to work with this value.
So your function will look something like the following:

function compute(form) {

 new_number = form.number.value;

 new_number = new_number * 2;

 return (new_number);

}

The function received what's known as a pointer to the
object responsible for storing information about this page. Once
the function has its hands on that pointer (which the function
calls form), it's able to
access data within that function by using the object variable
scheme, as in form.number.value.
Get it?

But this gets even cooler. If the function knows the pointer to
the data storage object, then it can also create new variables
within that object. So you can change a few more things:

<INPUT TYPE="text" NAME="number"
SIZE="4">

<INPUT TYPE="button" NAME="Calculate" Value="Click
Me"

onClick="compute(this.form)">

<INPUT TYPE="text" NAME="result" SIZE="8">

Now (in the second line), you're just telling the browser to run
the compute() function when
the Calculate button is clicked. But you're not assigning the
function to a value. So how do you get an answer for your user?
By using the object pointer. Here's the new function:

function compute(form) {

 new_number = form.number.value;

 form.result.value = new_number * 2;

 return;

}

In line three of the function declaration, notice the new variable
form.result.value. What happens
now is the function call sets the function in motion and passes
it the object pointer. The function creates its own new variable
within the object, called result,
and gives it a new value. When the function returns, the next
line of script is activated. That line is:

<INPUT TYPE="text" NAME="result"
SIZE="8">

Notice the NAME. Since there's
already a value assigned to this NAME,
that value will be displayed in the textbox (just as if it were
default text). In your case, it happens to be the answer (see
fig. 22.4). Here's the complete code again:

Figure 22.4 : Your textbox script, complete with a result.

<HTML>

<HEAD>

<TITLE>Compute A Number</TITLE>

<SCRIPT>

<!--

function compute(form) {

 new_number = form.number.value;

 form.result.value = new_number * 2;

 return;

}

// -->

</HEAD>

<BODY>

<INPUT TYPE="text" NAME="number" SIZE="4">

<INPUT TYPE="button" NAME="Calculate" Value="Click
Me"

onClick="compute(this.form)">

<INPUT TYPE="text" NAME="result" SIZE="8">

</BODY>

</HTML>

[bookmark: PossibleEvents]Possible Events

There are a number of different events that a typical browser
will recognize, and for which you can write handlers. Even the
simplest handler should call a function you've declared previously
and then elegantly return to that point in the Web document. Table
22.1 shows you some of the events for which there are associated
handlers (according the Netscape Navigator's documentation).

Table 22.1 Events and Their Event Handlers

		Event		Means…
		Event Handler

		blur		User moves input focus from form box
		onBlur

		click		User clicks form element or link
		onClick

		change		User changes a form value
		onChange

		focus		User gives a form box input focus
		onFocus

		load		User loads the page in the Navigator
		onLoad

		mouseover		User moves mouse over a link
		onMouseOver

		select		User selects form input field
		onSelect

		submit		User submits a form
		onSubmit

		unload		User exits the page
		onUnload

You can probably figure out what most of these do from the table.
And it should also make you realize how scriptable your Web page
really is. You can create alert dialog boxes, for instance, that
tell your user that a particular field is required-or that it
needs to be filled with a certain number of characters. You can
even say "Goodbye" to users as they leave your page,
perhaps displaying a phone number of other useful (albeit intrusive)
information.

[bookmark: ExampleEventHandlingPartOne]Example: Event Handling,
Part One

Let's start with the simple event I just mentioned-creating an
alert to say goodbye. As an added bonus, you'll learn how to create
an alert box, which is simply a dialog box that requires your
user to click OK to clear the box.

You may want to use an HTML document you've created previously.
Any document will do. Add Listing 22.4 to the head and body of
your page.

Listing 22.4 events1.html Handling
a Simple Event

<HTML>

<HEAD>

<TITLE>Saying Goodbye</TITLE>

<SCRIPT>

<!--

 function goodbye () {

 alert("For more information about BigCorp products\nPlease
call

 1-800-BIG-CORP");

 return;

 }

// end hiding -->

</SCRIPT>

</HEAD>

<BODY>

Click
here to leave.

</BODY>

</HTML>

I've re-introduced something else too (you originally saw it with
form processing and CGI scripts in Chapter 14).
It's the newline character \n
which allows you to add a newline in the middle of a text string
that's to be written to the browser or another interface element.

It is possible to have eliminated the function goodbye
with a simple line of script like the following:

onUnload="alert('For more information
about BigCorp products\nPlease call

1-800-BIG-CORP')"

Notice that this forces you to use the single quote character
for the alert text. If you prefer to script this way, that's okay.
But realize that it's generally considered poor programming technique
since it includes actual calculations in the interior of your
HTML code. For best results, you want to separate the calculations
into functions, which should all be stored in the head of your
document. Either way, it should look something like figure 22.5.

Figure 22.5 : Before the current link is followed, this alert will appear.

[bookmark: ExampleEventHandlingPartTwo]Example: Event Handling,
Part Two

Now letxs use event handling for something a little more complex
and perhaps more useful. One of the best uses of event handling
seems to be for verifying form data. You can use JavaScript to
hand off your data object pointer to a function, which can then
take a close look at what your user has entered and determine
if it's correct.

We'll try it for a ZIP code. You're simply going to make sure
that the user has entered five numbers. Enter Listing 22.5 in
a new HTML document.

Listing 22.5 events2.html Verifying
Form Data with JavaScript

<HTML>

<HEAD>

<TITLE>Data Checking</TITLE>

<SCRIPT>

<!--

 function zip_check (form) {

 zip_str = form.Zip.value;

 if (zip_str == "") {

 alert("Please enter a five digit
number for your Zip code");

 return;

 }

 if (zip_str.length != 5) {

 alert ("Your Zip code entry
should be 5 digits");

 return;

 }

 return;

 }

// end hiding -->

</SCRIPT>

</HEAD>

<BODY>

<H3>Please fill out the following form:</H3>

<FORM ACTION="http://www.fakecorp.com/cgi-bin/address_form">

<PRE>

Name: <INPUT TYPE="TEXT" SIZE="50"
NAME="Name">

Address: <INPUT TYPE="TEXT" SIZE="60" NAME="Address">

City: <INPUT TYPE="TEXT" SIZE="30"
NAME="City">

State: <INPUT TYPE="TEXT" SIZE="2"
NAME="State">

Zip: <INPUT TYPE="TEXT"
SIZE="5" NAME="Zip"

 onChange
= "zip_check(this.form)">

Email: <INPUT TYPE="TEXT" SIZE="40"
Name="Email">

<INPUT TYPE="SUBMIT" VALUE="Send it" onClick
= "zip_check(this.form)">

</FORM>

</BODY>

</HTML>

This event handling script checks an entry in the Zip box, using
the onChange handler to determine
when the user has moved on from Zip's textbox (either by pressing
Tab or clicking in another textbox with the mouse). Notice that
it's a good idea to place the Zip textbox before the E-mail box
since the user could just click the Submit button and skip past
your error check.

Also, by adding the onClick
event to the Submit button, you're able to catch them if they
happen to skip the Zip box completely. Now you've double-checked
their entry.

I've also cheated and introduced another new method. In the function
declarations, you may have noticed the following line:

if (zip_str.length != 5) {

variable.length
is a method that allows you to determine the length of any variable
in JavaScript. Since JavaScript does no variable typing (it doesn't
explicitly require you to say "this is a number" or
"this is text"), then any variable can be treated as
a string. In this case, even though the ZIP code could be interpreted
as a number, zip_str.length
tells you how many characters long it is.

The above snippet could be said "if the length of zip_str
does not equal 5, then…."
Notice that != is the "does
not equal" comparison. Similarly, ==
is the "does equal" comparison. Look at the following
snippet from the braces function declaration:

if (zip_str == "") {

This could be read as "if zip_str
equals nothing, then…." If the condition (zip_str
== "") is true, then the code specified
by the braces is performed.

		Tip

		

Be very careful that you use == for comparisons and = for assignments. If you've accidentally used (zip_str = ""), that means "make zip_str equal nothing." You've made it so that the condition is
always true since it's an assignment.

You'll learn more about conditions and JavaScript methods in the
next chapter. For now, let's just see this script in action, in
figure 22.6.

Figure 22.6 : Error checking with JavaScript.

[bookmark: Summary]Summary

Java and JavaScript are distinct entities-Java being a sophisticated
full-fledged programming language while JavaScript is a smaller,
easier-to-grasp scripting language.

There are two ways to add Java applets to your Web pages. The
first, using the <APPLET>
tag, is currently more pervasive. The second is the <INSERT>
tag, HTML 3.0's all-purpose tag for adding multimedia and applet
files to HTML documents.

JavaScript can be added directly to your HTML pages, fitting between
<SCRIPT> tags. Script
code should be hidden between HTML comment tags, to keep it from
being interpreted by non-JavaScript browsers.

There are two basic parts to any JavaScript script: the function
definitions and the function calls. Function definitions should
be in the head of your HTML document, while function calls can
appear anywhere you want in the <BODY>
of your document. Function calls can also appear as event handlers
in certain HTML tags. One of the strengths of JavaScript is error
checking for HTML forms.

Getting serious about JavaScript authoring requires an understanding
of the object-oriented methods used to store variables related
to your page. You can then pass pointers to these data objects
to your functions, which allow you to work with more than one
variable at once, creating scripts that accomplish more.

[bookmark: ReviewQuestions]Review
Questions

		Which of the tags, <APPLET>
or <INSERT>, is the
Netscape-specific way to add Java applets?

		Can Java applets be stored in the same directory as your HTML
pages?

		What is the <PARAM>
tag used for with <APPLET>
and <INSERT>?

		What attribute can the <SCRIPT>
tag accept?

		What do you call the type of JavaScript command that document.write
represents?

		In the following function declaration, where does the value
for number come
from?

function add_two (number) {

		What's wrong with the following script?

<SCRIPT LANGUAGE="JavaScript">

<!--

document.write("Hi!")

-->

</SCRIPT>

		What is the purpose of an event handler? What's an event?

		True or false. If a function call sends the value this.form,
then the function declaration must call the value form,
as in calculate (form).

		What is the full object-hierarchy style name for the value
created by <INPUT NAME="city">?

		Why is a blur event called a blur event?

		What method can be used to determine the length of a variable
string?

[bookmark: ReviewExercises]Review
Exercises

		Write a JavaScript script (and the HTML page) that asks for
the user's name and then tells the user how many characters are
in his/her name.

		Write a script and page that shows an alert box when the user
clicks an anchor link.

		Now, write a script that pops up an alert when the user clicks
the link, but doesn't move him or her to a new HTML document or
part of an HTML document. (For instance, clicking the word hypertext
brings up an alert with the definition of hypertext.)

		Write a script that pops up an alert when the user touches
a graphic with the mouse pointer. (Hint: make it a clickable graphic.
Suggestion: use a picture of a person and make the alert say "Stop
touching me, I'm ticklish," or something similar.)

		Write a script that determines whether or not a number entered
in a textbox is "798."

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch23.htm

Chapter 23

JavaScript Objects and Functions

CONTENTS[bookmark: CONTENTS]

		The JavaScript Object Model
		Methods

		Creating New Objects

		Example: Creating New Objects and Methods

		JavaScript Statements
		Comparison Operators and Conditions

		Boolean Operators

		if…else

		Loop Statements

		BREAK and CONTINUE

		Increments and Decrements

		Examples: Looping and Conditions

		Built-in Objects
		The String Object

		Example: Talking Decimals

		The Math Object

		Example: Rounding for Dollars

		Thoughts on JavaScript

		Summary

		Review Questions

		Review Exercises

In the last chapter, you learned enough JavaScript to accomplish
some pretty impressive things, like error checking on forms, creating
alert messages, and performing simple functions like math. In
this chapter, you get a little deeper into how JavaScript and
Netscape Navigator store values for scripting. Then you learn
how you can use this knowledge to do even more sophisticated things
with JavaScript.

		Note

		

This chapter assumes you have some experience with computer programming languages. JavaScript is a fairly simple scripting language for the "initiated," but this chapter may be less than useful if you've had no exposure to programming or script
authoring concepts.

[bookmark: TheJavaScriptObjectModel]The
JavaScript Object Model

An object, for the purposes of this discussion, is basically a
collection of properties. Often, these properties are variables,
but they can also be functions or JavaScript methods. Properties
within objects are accessed using the following notation:

objectName.propertyName

For instance, if you created an object called myComputer,
you might have properties called diskspace,
monitor, and cdspeed.
You could assign values to those properties like this:

myComputer.diskspace = "2.4 GB"

myComputer.monitor = "17-inch VGA"

myComputer.cdspeed = "6x"

What we've basically done is assign values to variables that happen
to all be associated with one another since they're part of my
computer (and myComputer).
So you could pass this object to a function using the following
function call:

<SCRIPT>

printSpec (myComputer);

</SCRIPT>

And then use the pointer to that object to access each of the
individual variables:

<SCRIPT>

function printSpec (computer) {

 document.write ("Disk space = " +
computer.diskspace + "
">);

 document.write ("Monitor = " + computer.monitor
+ "
");

 document.write ("CD Speed = " + computer.cdspeed
+ "
");

 return;

 }

</SCRIPT>

[bookmark: Methods]Methods

Methods, then, are basically functions associated with objects.
For instance, one of the methods we've used quite a bit is document.write,
which is really just a function provided by JavaScript that allows
you to write HTML code to the current document.

Notice, then that write is
the function, and document
is the associated object. Netscape Navigator and other JavaScript
browsers define certain basic objects, like document,
that are designed to make it easier for you to deal with the document
or window in question. You'll learn about some of those standard
objects later in this chapter.

You can even create your own methods by simply assigning a function
name to an object variable, following this format:

object.methodname
= function_name

[bookmark: CreatingNewObjects]Creating New Objects

You may remember that you used the keyword this
for an object reference in the last chapter. JavaScript offers
you the special keyword this,
which acts as a placeholder. It's used to represent the current
object involved in a function call. An example is the following:

<FORM NAME="MyForm">

<INPUT TYPE="Text" NAME="first" onClick="check(this)">

</FORM>

This sends a pointer to the current object to the function check.
In this case, the actual object is document.myform.first,
but the keyword this can
be used here since it's clear what the current object is.

That's part of how you create your own objects. It's done in two
steps. First, you need to define a function that outlines the
basic object you'd like to create. This is your own personal object
definition for this new type of object.

For instance, if you wanted to create a data object that could
be used to describe a person, you might use the following function:

function
person(name, height, weight, age)
{

 this.name = name;

 this.height = height;

 this.weight = weight;

 this.age = age;

 }

Notice the use of this. In
the case of this example here, this
refers to the object that's being created by another keyword,
new. Using new
is the second step in creating your new object. The following
is an example:

debbie = new person("Debbie",
5.5, 130, 27) ;

The keyword new creates a
new object. It also tells the object-creating function person
that the name of this new object will be debbie.
So when the function is called, debbie
will replace this and the
assignment will work like this:

debbie.name = "Debbie";

debbie.height = 5.5;

debbie.weight = 130;

debbie.age = 27;

Of course, you won't see any of this happen. But it's now possible
for you to access this data just like a regular object, as in
the following:

document.write("Debbie's age is:
",debbie.age);

[bookmark: ExampleCreatingNewObjectsandMethod]Example: Creating
New Objects and Methods

In this example, you'll create a script that not only creates
a new object but creates a method within that object. The object
will be designed to hold data concerning a user's purchase. The
method will be designed to generate a total of what is owed. You
can use HTML form tags to allow the user to enter the information.

You start out by defining all of your functions in the head of
the document

and then creating the form in the body. Create a new HTML document
and enter Listing 23.1.

Listing 23.1 method.html Creating
Objects and Methods

<HTML>

<HEAD>

<TITLE>Customer Purchases</TITLE>

<SCRIPT>

<!--

function customer (val1, val2, val3) {

 this.item1 = val1;

 this.item2 = val2;

 this.item3 = val3;

 this.getsum = getsum;

 }

function getsum (form) {

 var total = 0

 total = this.item1 + this.item2 + this.item3;

 form.Sum.value = total;

}

// -->

</SCRIPT>

</HEAD>

<BODY>

<H3> The amount of each puchase is: </H3>

<PRE>

Purchase 1: $5

Purchase 2: $10

Purchase 3: $12

</PRE>

<SCRIPT>

<!--

cust1 = new customer (5, 10, 12);

// -->

</SCRIPT>

<FORM NAME="form1">

<INPUT TYPE="BUTTON" NAME="Total" VALUE="Get
Total" onClick="cust1.getsum

(this.form)">

<INPUT TYPE="TEXT" NAME="Sum" SIZE="12">

</FORM>

</BODY>

</HTML>

Notice first that the function that defines the object, called
customer, uses the keyword
this to reference its individual
properties. When the new object is created, it's called cust1
and the new keyword passes
that name to the object creator. So, in the onClick
statement, you can then call the object's properties using cust1,
as in cust1.item1 or cust1.getsum.

In fact, cust1.getsum is
a special case-it's the method you're creating in this example.
All you have to do is assign the function getsum
as a property of your object and then you can call it using object
notation, as in cust1.getsum (this.form).
Notice that the function getsum()
is designed to accept a pointer to form data. See figure 23.1
for an example of how this will look in a browser.

Figure 23.1 : Your object and method example.

[bookmark: JavaScriptStatements]JavaScript
Statements

If you have any experience with programming languages, you'll
be familiar with JavaScript's small set of statements. JavaScript
includes the conditional statement if...else
and the loop statements for,
while, break,
and continue. You'll also
get to know some of the associated JavaScript operators.

		Tip

		

Remember that, in most cases, you'll use these statements in functions. These are the commands in JavaScript you'll use to actually process data.

The key to many of these statements is called the condition,
which is simply a bit of JavaScript code that needs to be evaluated
before your script decides what to do next. So before you look
at JavaScript statements, let's look at the conditions and operators
that JavaScript recognizes.

[bookmark: ComparisonOperatorsandConditions]Comparison Operators
and Conditions

Conditions are generally enclosed in parentheses, and they are
always a small snippet of code that is designed to evaluate as
true or false. For instance, the following is a conditional statement:

(x == 1)

If x does equal 1,
then this condition is valid.

And this is why it's important to recognize and use the correct
operators for conditions. For instance, an assignment always evaluates
to true, so that the following
condition:

(errorLevel = 1)

is always true since it's an assignment. Although it may seem
to make sense to use an equal sign in this instance, you actually
need to use the comparison operator == for this condition. (See
Table 23.1 for a listing of the comparison operators.)

Table 23.1 Comparison Operators in JavaScript

		Operator		Meaning
		Example		Is True When…

		==		equals		x == y
		x equals y

		!=		not equal		x != y
		x is not equal to y

		>		greater than		x > y
		x is greater than y

		<		less than		x < y
		x is less than y

		>=		greater than or equal to		x >= y
		x is greater than or equal to y

		<=		less than or equal to		x <= y
		x is less than or equal to y

So you have a number of different ways to create conditions by
using comparisons. Realize, too, that conditions are not necessarily
limited to numerical expressions. For instance, look at the following:

(carName != "Ford")

This will return the value false if the variable carName
has the value of the string Ford.

[bookmark: BooleanOperators]Boolean Operators

The other operators common to conditional statements are the boolean
operators. In English, these operators are AND,
OR, and NOT.
In JavaScript, AND is &&,
OR is ||,
and NOT is !.
An example of a condition is the following:

((x == 5) && (y == 6))

This condition evaluates to true only if each individual comparison
is true. If either comparison is false-or both comparisons are
false-the entire conditional statement is false.

On the other hand, the following conditional statement uses the
OR operator:

((x == 5) || (y == 6))

In this case, if either of the conditions is true, then the entire
statement is true. The statement is only false if both of the
conditions are false.

Finally, the NOT operator
changes the result of an expression, so that assuming

x == 5, you can create the
following conditional:

(!(x == 5))

NOT simply reverses the result
of the conditional statement. In this example, the entire condition
is false since (x == 5) is
true, and the NOT operator
reverses that.

[bookmark: ifelse]if…else

So how do you put these conditional statements and operators to
use? JavaScript offers the if...else
conditional statement as a way to create either/or situations
in your script. The basic construct is as follows:

if (condition) {

 script statements }

else {

 other statements }

The condition can
be any JavaScript that evaluates to either true or false. The
statements can be any valid JavaScript statements. For example:

if (x == 1) {

 document.write("X equals 1!");/

 return;

 }

 else {

 x = x + 1;

 }

The else and related statements
are not required if you simply want the if
state-

ments to be skipped and the rest of the function executed. An
example might be:

if (errorLevel == 1) {

 return (false);

 }

In this case, if the condition is false (e.g., errorLevel
does not equal 1), then the
rest of the function executes. If it is true, then the function
ends.

[bookmark: LoopStatements]Loop Statements

The next two statement types are used to create loops-script elements
that repeat until a condition is met. These loop statements are
FOR and WHILE.

A FOR loop follows the basic
construct:

for (initial_assignment; condition;
increment) {

 JavaScript statements

 }

You'll generally start a FOR
loop by initializing your "counter" variable. Then you'll
evaluate the counter to see if it's reached a certain level. If
it hasn't, then the loop will perform the enclosed statements
and increment your counter. If the counter has reached your predetermined
value, then the FOR loop
ends. For example:

for (x=0; x<10; x=x+1) {

 y = 2 * x;

 document.write ("Two times ",x,"
equals ",y,"
");

 }

You start by initializing a counter variable (x=1)
and then evaluating the counter in a conditional statement (x<10).
If the condition is true, then the loop will perform the enclosed
scripting. Then it will increment the counter-in this case, add
1 to it. When the counter
reaches 10 in your example,
the loop will end.

The WHILE loop is similar
to the FOR loop, except that
it offers a little more freedom. WHILE
is used for a great variety of conditions. The basic construct
is as follows:

while (condition) {

 vaScript statements

As long as the condition evaluates to true, the loop will continue.
An example is the following:

x = 0;

while (x <= 5) {

 x = x +1;

 document.write (X now equals ",x,"
")

 }

As long as the condition remains true, the WHILE
statement will continue to evaluate. In fact, the risk with WHILE
statements is that they can be infinite if the expression never
evaluates to false. A common mistake is the following:

while (x=5) {

 x = x +1;

 document.write (X now equals ",x,"
")

 }

The condition is actually an assignment, so it will always evaluate
to true. In this example, the loop would continue indefinitely,
and the output would always be

X now equals 6.

[bookmark: BREAKandCONTINUE]BREAK
and CONTINUE

Two other keywords, BREAK
and CONTINUE, can be used
in FOR or WHILE
loops to change the way the loop operates when certain conditions
occur. Notice that both of these are generally used with an if
statement.

An example of BREAK is:

for (x=0; x < 10; x=x+1) {

 z = 35;

 y = z / x;

 if (y == 7)

 break;

 }

BREAK will terminate the
loop when encountered. In this example then, the loop is terminated
when x is equal to 5
since 35 divided by 5
is 7. When the condition
(y == 7) evaluates to true,
the loop stops and you move on to the next script element.

CONTINUE is basically used
to skip a particular increment. For instance:

while (x < 10) {

 x = x +1;

 if (x == 5)

 continue;

 y = y + x;

 }

In this case, when the condition (x ==
5) evaluates to true, the CONTINUE
statement will cause the loop to move directly back to the WHILE
statement, thus skipping over the last line (y
= y + x). When the condition is false, the last line
will execute normally.

[bookmark: IncrementsandDecrements]Increments and Decrements

So far, you've seen me using statements like x
= x + 1 in many of these examples to increment the
values in your loop statements. JavaScript allows you to do this
in other ways, using unary operators. A unary operator
is an operator that requires only one operand, as in the unary
increment operator:

x++

In fact, you can increment with either x++
or ++x. The difference is
when the increment occurs, for instance, if x
equals 2:

y = x++

y will be assigned the value
2, then x
will be incremented to 3.
In the following example, though:

y = ++x

x will first be incremented
to 3, then y
will be assigned 3. This
is especially significant in loop statements. Where x++
would work in past examples, it should be noted that the following
will actually increment x
before performing the rest of the script elements:

for (x=0; x < 5; ++x) {

 x;

 }

In this case, the first assignment to y
would actually have a value of 1,
instead of 0.

Decrementing works the same way, with both x--
and --x as possibilities.
Both work similarly to x = x - 1,
except that --x will decrease
before being assigned or used in a loop statement.

It is also possible to assign variables at the same time you increment
or decrement. Generally, you would do this with an expression
like the following:

x = x + y

However, this is also possible with the unary operators +=
and -=. For instance, the
previous example could be written as:

x += y

Similarly, the following two expressions yield the same result:

y = y - 2

y -= 2

[bookmark: ExamplesLoopingandConditions]Examples: Looping and
Conditions

Let's create an example that incorporates the statements and operators
you've seen thus far. In this example, the user enters a number
on the page. If the number is within a certain range, it is accepted
and you move on. If not, then the user is given an alert and asked
to enter a new number.

The number will then increment or decrement until it reaches ten.
As it does so, it will print results to a text area on the screen.
The user will see the progress as the script counts toward ten.

Create a new HTML page and enter Listing 23.2.

Listing 23.2 condition.html Increment
or Decrement with Results

<HTML>

<HEAD>

<TITLE>Looping and Conditions Script</TITLE>

<SCRIPT>

<!--

 function countTen (user_num, form) {

 if ((user_num < 0) || (user_num >
20)) {

 alert("Please enter a
number between 0 and 20.");

 return;

 }

 while (user_num != 10) {

 if (user_num < 10) {

 addition
= "Adding 1...value is now " + (++user_num) + "\r\n";

 form.results.value
+= addition;

 }

 else {

 subtraction
= "Subtracting 1...value is now " + (--user_num) +

 "\r";

 form.results.value
+= subtraction;

 }

 }

 return;

}

// -->

</SCRIPT>

</HEAD>

<BODY>

<H3> Please enter a number between 0 and 20 </H3>

<FORM NAME="form1">

Your Number: <INPUT TYPE="TEXT" NAME="number"
SIZE="3">

<INPUT TYPE="Button" VALUE="Submit Number"
onClick="countTen (this.form.number.value, this.form)">

<HR>

<H4> The result: </H4>

<TEXTAREA NAME="results" COLS="60" ROWS="10"></TEXTAREA>

<INPUT TYPE="RESET" VALUE="Clear Form">

</FORM>

</BODY>

</HTML>

This may take some wading through, but it works-and it should
eventually make sense.

Starting in the body of the document, the form requests a number
from the user. When the user enters that number and clicks the
Submit button, that number's value and a pointer to the form object
are sent to the function declaration.

The first if statement determines
whether or not the number is between 0 and 20. If it isn't, an
alert is shown and the user is asked to enter another number.
If it is between 0 and 20, you move on to the WHILE
statement.

The WHILE statement will
only loop until the value of your number reaches ten. If the value
is not currently ten, then the if...then
statement will determine whether or not you need to increment
or decrement the number to move it toward ten. It then prints
the statement, incrementing or decrementing the number while,
at the same time, adding the text string to the form's results
property.

When the function returns, there's a new value for the TEXTAREA
named results. So those strings
are printed, and you can see what the script did to move the original
number toward ten (see fig. 23.2).

Figure 23.2 : The result of looping and conditions example.

		Note

		

This example introduces two miscellaneous scripting ideas. First, notice that you can use an addition sign (+) to piece together a string. "You and " + "me" results in the string "You and me". Also notice the

carriage return character \r\n. This carriage return varies from platform to platform. In Windows, use \r\n; UNIX and Macs use \n. (When you have to choose one, the Windows style works best.) In Chapter
30, "HTML Examples," you'll look at slightly more complicated examples that format correctly on all platforms.

[bookmark: BuiltinObjects]Built-in
Objects

In authoring scripts, there are a number of things you're likely
to do over and over again. Instead of forcing you to write your
own functions and create your own objects to achieve this, JavaScript
includes some of these often used calls in the language itself.
The built-in objects tend to store useful values or offer convenient
methods. The functions usually perform some fairly intensive calculating
that you'll often need to use.

[bookmark: TheStringObject]The String Object

We'll talk about two major built-in objects available to you in
JavaScript. The first is the string object, which helps you manipulate
your strings. The math object holds certain constant values for
you to use in your script and methods that make it a little easier
to perform some mathematical functions.

The first object, the string object, is interesting if only for
the fact that you don't actually have to use the notation string.property
to use it. In fact, any string you create is a string object.
You can create a string as simply as this:

mystring = "Here's a string"

The string variable mystring
can now be treated as a string object. For instance, to get a
value for the length of a string object, you can use the following
assignment:

stringlen = mystring.length

When you create a string (and JavaScript makes it a string object),
the value of its length is stored in the property length.
It also associates certain methods with the object, like toUpperCase.
You could change a string to all uppercase letters with the following
line:

mystring = mystring.toUpperCase

If the string had the value Here is a
string, this assignment changes it to HERE
IS A STRING. Table 23.2 shows some of the other methods
available with string objects.

Table 23.2 Methods for JavaScript String
Objects

		Method		Works
		Example

		anchor
		between tags
		mystring.anchor (section_name)

		big		between <BIG> tags
		mystring.big()

		blink		between <BLINK> tags
		mystring.blink()

		bold		between tags
		mystring.bold()

		charAt
		by choosing single letter at index 		mystring.charAt(2)

		fixed		between <TT> tags
		mystring.fixed()

		fontcolor
		between tags
		mystring.fontcolor("red")

		fontsize
		between tags
		mystring.fontsize(2)

		indexOf
		by finding index of certain letter		mystring.indexOf("w")

		italics
		between <I> tags
		mystring.italics()

		lastIndexOf
		by finding occurrence before indexOf
		mystring.lastIndexOf ("w")

		link		between tags
		mystring.link ("http://www.com")

		small		between <SMALL> tags
		mystring.small()

		strike
		between <STRIKE> tags
		mystring.strike()

		sub		between <SUB> tags
		mystring.sub()

		substring
		by choosing part of a string		mystring.substring (0,7)

		sup		between <SUP> tags
		mystring.sup()

		toLowerCase
		by changing string to lowercase		mystring.toLowerCase()

		toUpperCase
		by chaging string to uppercase		mystring.toUpperCase()

Most of these methods should be fairly self-explanatory-they allow
you to use the method to create and print text as if it were between
HTML tags. For instance, the following two script lines have the
same results:

document.write("<BIG>"
+ mystring + "</BIG>");

document.write(mystring.big);

Some of the other tags take some explaining-especially those that
deal with indexes. Every string is "indexed" from left
to right, starting with the value 0.
So in the following string, the characters are indexed according
to the numbers that appear under them:

Howdy, boy

0123456789

In this case, using the method howdystring.charAt(4)
would return the value y.
You could also use the method howdystring.indexOf("y"),
which would return the value 4.

[bookmark: ExampleTalkingDecimals]Example: Talking Decimals

Let's see how this string stuff can be useful. What you'll do
is a little bit of math involving decimal numbers, known to programmers
as "floats" because they include a floating decimal
point. The problem is, when you use dollars and cents decimals,
you can get in trouble with JavaScript because it tends to return
as many decimal places as possible. This is actually a bug (of
sorts) in certain Netscape versions, and it may be changed some
time in the future. In the meantime, you'll need to use these
string methods to display things correctly.

Create a new HTML page and enter Listing 23.3.

Listing 23.3 strings.html Numbers
as Strings in JavaScript

<HTML>

<HEAD>

<TITLE> Doin' Decimals </TITLE>

<SCRIPT>

<!--

 function sumValues (val1, val2, val3, form) {

 sum = val1 + val2 + val3;

 form.total.value = sum;

 return;

 }

 function findPoint (form) {

 tot = form.total.value;

 var point_idx = tot.indexOf(".");

 form.results.value = tot.substring (0,point_idx+3);

 return;

 }

// -->

</SCRIPT>

</HEAD>

<BODY>

<H3> The Sum of Your Purchases is:</H3>

<SCRIPT>

<!--

var pur1 = 4.95;

var pur2 = 10.95;

var pur3 = 12.50;

// -->

</SCRIPT>

<FORM>

<INPUT TYPE="Button" VALUE="Click to Compute"
onCLICK="sumValues

(pur1, pur2, pur3, this.form)">

<INPUT TYPE="Text" NAME="total" SIZE="10">

<INPUT TYPE="Button" VALUE="Click to Cut"
onClick="findPoint (this.form)">

<INPUT TYPE="Text" NAME="results" SIZE="10">

</FORM>

</BODY>

</HTML>

There are two things to notice here. First, when you use the substring
method, you need to add 3
to the index of the decimal point since the values for substring
tell the method where to start (e.g., index
0) and how far to go (e.g., point_idx
+ 3). For example:

mystring.substring (0, 7)

This doesn't mean "get all the characters and index 0 through
index 7." What it really means is "get 7 characters,
starting with index 0." So since it's counting from zero,
it will stop gathering characters at index
6.

Number two is simple: there's a problem with this script. It doesn't
round the value. In fact, using exactly the numbers in this example,
the total cheats you of nearly a full cent (see fig. 23.3). Use
this exact script for a million transactions and you have the
potential to loose $10,000! You'll look at rounding in the next
example.

Figure 23.3 : Taking a substring of a calculated value.

[bookmark: TheMathObject]The Math Object

The math object basically just holds some useful constants and
methods for use in mathematical calculations. The math objects
properties are mathematical constants like E,
PI, and LOG10E
(log, base 10, of E). You can use these by simply adding the name
as math's property, as in the following example:

var pi_value = Math.PI;

area = Math.PI*(r*r);

Table 23.3 shows you the various properties for PI.

Table 23.3 Properties for the Math Object

		Property		Value

		.PI		Pi (approx. 3.1416)

		.E		e, Euler's constant (approx. 2.718)

		.LN2		natural log of 2 (approx. 0.693)

		.LN10		natural log of 10 (approx. 2.302)

		.LOG10E
		base 10 log of e (approx. 0.434)

		.SQRT1_2
		square root of 1/2 (approx. 0.707)

		.SQRT2		square root of 2 (approx. 1.414)

The math object's methods are called like any other methods. For
instance, the arc sine of a variable can be found by using the
following:

Math.asin(your_num);

Table 23.4 shows the methods for the math object.

Table 23.4 Methods for the Math Object

		Method 		Result
		Format

		.abs		absolute value		Math.abs (number)

		.acos		arc cosine (in radians)		Math.acos (number)

		.asin		arc sine (in radians)		Math.asin (number)

		.atan		arc tangent (in rads)		Math.atan (number)

		.cos		cosine		Math.cos (num_radians)

		.sin		sine		Math.sin (num_radians)

		.tan		tangent		Math.tan (num_radians)

		.ceil		least integer >= num		Math.ceil (number)

		.floor		greatest int <= number		Math.floor (number)

		.exp		e to power of number		Math.exp (number)

		.log		natural log of number		Math.log (number)

		.pow		base to exponent power		Math.pow (base, exponent)

		.max		greater of two numbers		Math.max (num, num)

		.min		lesser of two numbers		Math.min (num, num)

		.round		round to nearest int		Math.round (number)

		.sqrt		square root of number		Math.sqrt (number)

[bookmark: ExampleRoundingforDollars]Example: Rounding for
Dollars

With the newly learned Math.round
method, maybe you can get that last example to round dollars correctly.
Create a new HTML document and enter Listing 23.4 (or make changes
on the last example, using Save As to change the name).

Listing 23.4 rounded.html Rounding
Decimal Numbers in JavaScript

<HTML>

<HEAD>

<TITLE> Rounding for Dollars </TITLE>

<SCRIPT>

<!--

 function sumValues (val1, val2, val3, form) {

 sum = Math.round ((val1 + val2 + val3)*100);

 form.total.value = sum * .01;

 return;

 }

 function roundTotal (form) {

 var tot = form.total.value;

 var sub_total = Math.round (tot * 100);

 tot_str = "" + sub_total;

 var point_idx = tot.indexOf(".");

 result_str = "";

 y = 0;

 x = 0;

 while (x <= (point_idx+2)) {

 if (x == point_idx &&
y == 0) {

 result_str
+= ".";

 y
= 1;

 }

 else {

 result_str
+= tot_str.charAt(x);

 x++;

 }

 }

 form.results.value = result_str;

 // form.results.value = totstr.substring (0,point_idx+3);

 return;

 }

// -->

</SCRIPT>

</HEAD>

<BODY>

<H3> The Sum of Your Purchases is:</H3>

<SCRIPT>

<!--

var pur1 = 4.96;

var pur2 = 11.13;

var pur3 = 13.15;

// -->

</SCRIPT>

<FORM>

<INPUT TYPE="Button" VALUE="Click to Compute"
onCLICK="sumValues

(pur1, pur2, pur3, this.form)">

<INPUT TYPE="Text" NAME="total" SIZE="10">

<INPUT TYPE="Button" VALUE="Click to Round"
onClick="roundTotal (this.form)">

<INPUT TYPE="Text" NAME="results" SIZE="10">

</FORM>

</BODY>

</HTML>

JavaScript does weird things with math, so it's difficult to make
this work exactly right. Here's my logic. Your values are passed
to sumValues like before,
and the same answer appears in the first textbox. (This is already
weird because adding numbers shouldn't give you this odd answer.
Unfortunately, this is the kind of trouble you run into with decimal
math on computers.)

When you click the second button, the form is sent to roundTotal,
and a subtotal is generated by multiplying the total by 100 and
rounding (remember, Math.round
rounds to the nearest integer). The subtotal is turned into a
string, and then the while
loop is implemented to find the right place for the decimal point
and replaced in the rounded number. Why not just multiply by .01?
Good idea, except you'd get a weird floating point number again-and
you'd have to start over again!

Take special notice that the following line turns tot_str
into a string variable with the value sub_total:

tot_str = "" + sub_total;

The alternative is the following:

tot_str = sub_total;

This assignment would make tot_str
a numerical variable, which wouldn't work in the subsequent while
loop. Figure 23.4 shows the whole thing in action.

Figure 23.4 : Finally, you've done some rounding.

[bookmark: ThoughtsonJavaScript]Thoughts
on JavaScript

Although JavaScript is a fairly easy language, it still can become
very involved, and there's no way you can cover the entire thing
in a few chapters. If you'd like to learn more about JavaScript,
I'd suggest starting with the JavaScript Authoring Guide
by Netscape Corporation at http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html.
If you don't have any programming experience, you might be better
off picking up a book designed to teach you JavaScript from the
ground up. Both Special Edition Using JavaScript and JavaScript
By Example are excellent titles from Que.

JavaScript is a very powerful way to make your Web site client-side,
in that it allows you to actually compute and process without
the help of a Web server and special handling (like that required
for CGI-BIN scripts). Even more powerful for this are full-fledged
Java applets, and you may be able to find some of those that will
help you do what you want on your page without much programming
at all.

[bookmark: Summary]Summary

Once you get deeper into the JavaScript object model, you can
start to see a number of easier ways to accomplish advanced scripting
issues. Objects can have both properties (variables) and methods
(functions) associated with them. The ability to store a number
of associated values and function calls in one object makes it
easier to group data and work with calculation in JavaScript.

JavaScript also includes a number of keywords and statements for
creating if...else and looping
statements. Using these takes some understanding of the comparison
operators used in JavaScript, as well as a look at the assignment
operators. These operators, which can be either binary or unary,
can be used to increment, decrement, multiply, assign, and compare
values or strings.

Loops can then be used to calculate something a number of times
until a condition changes. You can also use the BREAK
or CONTINUE statements to
perform special commands when a certain condition within a loop
is encountered.

JavaScript includes some of its own built-in objects, including
those for math and strings. Both have properties and methods associated
with them that make many common calculations easier.

[bookmark: ReviewQuestions]Review
Questions

		How can you assign the property at_bats
(with a value of 25) to the object player2?
(Assume the object already exists.)

		If document is an object,
what is write in document.write?

		What is substituted for the keyword this
in an object definition when a new object is created?

		True or false. To assign a new method to an existing object
requires the new keyword.

		What's the difference between (x
== 1) and (x = 1)?
Which of these always evaluates to true?

		What happens if you don't include an else
statement with an if condition
and the if condition is false?

		Consider the following:

for (x=0; x<5; ++x) {

 y = x;

}

The first time this loop executes, what is the value
of y?

		In the following example, what is the final value for y?

for (x=0; x<5; x++) {

 if (x == 4)

 continue;

 y += x;

}

		How can you piece two strings together?

		What string method would
you use to create a link to a new HTML document?

[bookmark: ReviewExercises]Review
Exercises

		Create a new object function called player
that creates the properties name,
hits, strikeouts,
atbats, and homeruns.

		Add a method to the above object definition that computes
the batter's batting average (hits/atbats).
(Baseball enthusiasts will please excuse the crudity of this model.)

		Write a script that defines a new player
object and outputs the batter's average in a form textbox.

		Write a script that defines a new player object and allows
the user to enter the name,
hits, strikeouts,
atbats, and homeruns
values in a text form. Then compute the average and print the
player's name and stats to a form textarea.

		Note

		

There's something you need to know for this example. The built-in function parseInt (string_variable, 10) can be used to change a string to an integer. The parameters for this function are the name of the string variable and the base
numbering system you want to use (i.e., ten for base-10 or decimal numbers). This is an important step because form values are always strings.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch24.htm

Chapter 24

Understanding VRML and Creating
VRML Objects

CONTENTS[bookmark: CONTENTS]

		VRML Standards

		How VRML Works on the Web
		VRML Worlds as Hypermedia

		Servers for VRML

		VRML Concepts
		The Basic Page

		Coordinates and Distances

		Example One: Starting Out

		Nodes

		VRML Primitives
		The Sphere

		Cylinders and Cones

		The Cube

		AsciiText

		Example: Occupying the Same Space

		Moving Your Primitives Around
		translation

		rotation

		scaleFactor

		The Separator Node

		Example: Moving and Flipping

		Summary

		Review Questions

		Review Exercises

Virtual Reality Modeling Language, or VRML, isn't technically
HTML at all, but the two are close cousins. Born out of a desire
for a more "human" interface to the Web, VRML is a readable,
ASCII-based description language for creating 3D interfaces to
the World Wide Web. Eventually, the point is to be able to create
rich multimedia 3D worlds for you to explore via the Web, perhaps
offering something useful in the process. That really hasn't happened
yet, but VRML is definitely the next level of "cool"
on the Web.

[bookmark: VRMLStandards]VRML Standards

VRML is still in its infancy, as the 1.0 standard was only fully
completed in the spring of 1995. As I write, version 1.1 is waiting
in the wings while version 2.0 is being held out as the next great
leap. Currently, VRML 2.0 may not even be based on the same basic
file format as VRML 1.0. Better, smaller, faster technology has
already overtaken the old standard.

Currently, VRML 1.0 has only limited support for things like "walk
through" interfaces. Right now, it's basically a way to render
3D polygons in a way that may or may not seem somewhat realistic
(see fig. 24.1). It does have the ability to embed hyperlinks
in objects, though, and VRML "worlds" are fairly easy
to create with nothing more than a text editor. So, we'll try
our hands at it.

Figure 24.1 : A VRML world on the web.

		Note

		

It may be wishful thinking, but VRML documents are generally called "worlds," perhaps because the word "document" seems rather two-dimensional. A single ASCII listing can be used to create a world, however.

What happens in the future remains to be seen. More than likely,
VRML will move quickly toward a standard that requires sophisticated
programs to render objects. The VRML 2.0 standard, only recently
decided, will incorporate more advanced commands and an optional
binary file format from Apple's QuickTime VR technology. Perhaps
some backward compatibility will remain, but I wouldn't count
on it. Unlike HTML documents, which are largely made up of text,
VRML worlds are almost completely graphical. The ability for normal
human beings to continue to render them seems unlikely. For now,
though, you can.

		The Past and Future of VRML

		

VRML was first conceived in the spring of 1994 at the first WWW Conference in Geneva. With the ambition of having a specification by the fall, an existing Web-friendly 3D file format was sought. It was found in the Open Inventor ASCII file format from
Silicon Graphics (SGI). VRML 1.0 went on to become a subset of this file format, with extensions for the purposes of adding hyperlink abilities.

In May 1995, the third and final draft of VRML 1.0 was completed, and work was begun by interested Web developers and applications developers to add VRML functionality to Web browsers, plug-ins, and authoring/rendering solutions.

With the growth in popularity, VRML 2.0 was sought to fill some of the gaping holes in VRML 1.0, like sound support, interaction with objects, and the ability to create "solid" objects that can't be walked through.

In late March of 1996, it was announced that the Moving Worlds proposal from SGI, including the last minute addition of binary file technology in the form of Apple Computer's 3DMF file format, would be the basis of the standard. While not exactly
backward-compatible with VRML 1.0, programs should be created to make changing 1.0 documents to 2.0 fairly straightforward.

While hopefully not overwhelmingly more complex, there's also a good chance that VRML 2.0 will be beyond the scope of typical Web authors who will instead rely on VRML 2.0 3D authoring utilities. This will be especially true when using the 3DMF file
format, which is a binary (non-ASCII) file format.

[bookmark: HowVRMLWorksontheWeb]How
VRML Works on the Web

Plug-ins are being developed for browsers that allow the user
to view VRML worlds as inline images, but this too is a young
industry. Currently, there is no standard way to embed VRML worlds
in Web pages, so plug-ins use their own HTML extensions. This
will perhaps be changed by the HTML 3.0 level <INSERT>
tag.

[bookmark: VRMLWorldsasHypermedia]VRML Worlds as Hypermedia

Generally, VRML worlds are simply another hypermedia link, used
to call a file of MIME type x-world/x-vrml
with the file extension .wrl
for "world." The following hypermedia link is an example
of a link to a VRML world:

Enter
Virtual Support

The VRML world would then be loaded into a helper application
designed to give the user access to the VRML world, including
controls for manipulating the VRML graphics in 3D (see fig. 24.2).
Double-clicking different objects will generally send a command
back to the browser, which can then move on to another URL.

Figure 24.2 : A VRML 1.0 world gives you some of the sensations of moving around in a video game.

In general, VRML browsers are configured as helper applications
that recognize the x-world/x-vrml
MIME type and are loaded whenever a link to a .wrl
file is clicked. The VRML browser can then pass links back to
the Web browser, so that new worlds (or Web pages) can be loaded
when items in the VRML world are selected.

[bookmark: ServersforVRML]Servers for VRML

Generally speaking, VRML doesn't require much interaction from
your server. Currently, there really aren't any VRML specific
servers, although this may change if downloading VRML "streams"
becomes popular. (Streams are "just-in-time" downloads
that display information as it's sent, like the popular RealAudio
radio feeds, for instance.)

One common problem with VRML worlds is that not all servers are
set up for the correct MIME type yet, which means users often
receive text of VRML worlds instead of a multimedia file that
automatically launches a helper or plug-in. If you have this problem
with your server, ask your server administrator to set up the

x-world/x-vrml MIME type
for filename extension .wrl.
Once they do that, you should have little trouble making your
VRML worlds available on your Web site.

[bookmark: VRMLConcepts]VRML Concepts

As I've said, it's possible to create a VRML world with nothing
more than a text editor and some know-how. VRML can get rather
complicated, but you can start out with the basics and see how
far you can get into Virtual Reality before you throw your hands
up.

[bookmark: TheBasicPage]The Basic Page

In your text editor, you'll need to start out with a new text
file. Type the following as the first line of your document:

#VRML 1.0 ascii

This tells VRML browsers what format you're using. (Later standards
will have a different first line.)

		Note

		

Most of the VRML browsers I've encountered are case-sensitive about this first line. Enter it exactly as above.

You can also use the # sign
to begin comments in your VRML document. For instance, the following
is a comment that will be ignored by the VRML browser, but useful
to you and others as documentation of your VRML commands:

This is the left front leg of the chair

[bookmark: CoordinatesandDistances]Coordinates and Distances

The other thing you need to do with VRML is switch over to a 3D
way of thinking. Many VRML objects and commands have coordinates,
which include X, Y, and Z components, usually in that order. On
your screen, X is left and right, Y is up and down, and Z is from
the back of your head to the back of the monitor.

These directions are also in positive and negative numbers from
a point directly in the middle of the screen or, at least, from
the active part of the VRML's display (see fig. 24.3.). Left is
negative from center, down is negative, and into the monitor is
negative.

Figure 24.3 : How coordinates work in VRML.

Distances in VRML are measured in meters, while angles are given
in radians. While VRML objects aren't actually rendered in meters
(you'd have trouble fitting them on a computer monitor), this
is a relative measurement. It allows something the size of .01
meters, for instance, to be a pencil, while something the size
of 1 meter might be a table top.

Radians are the angle (e.g., 45 degrees) divided by 180, times
Pi (approximately 3.14). Most browsers will accept best guess
radians, so multiplying by 3.14 for Pi is acceptable.

		Note

		

Remember radians? (Hey, I had to look them up.) To get the radians of an angle in degrees, divide the degrees by 180, and then multiply by Pi. For instance, a 360 degree angle, divided by 180 is 2. 2 times Pi gives you the answer-about 6.28
radians.

[bookmark: ExampleOneStartingOut]Example One: Starting Out

Just a short and sweet example. Starting with a new text document,
enter

Listing 24.1.

Listing 24.1 template.wrl Creating
your VRML Template

#VRML V1.0 ascii

#

#Comments about this

#world go here.

Don't forget to save it as your template. No big deal, right?
Remember, though, that you're dealing with something other than
the HTML page. This is a completely different format, with a different
template, different commands, and a different extension.

[bookmark: Nodes]Nodes

The basic building block of a VRML world is called a node.
Nodes can do a number of different things, including creating
shapes, moving shapes, describing colors and textures, and creating
hyperlinks. Nodes can be used together to achieve different effects-in
fact, they very commonly are.

Curly brackets are used (as in JavaScript and many programming
languages) to represent the beginning and end of a node. The pattern
is similar to the following:

Cube {

 shape properties

 }

A node like this might create a sphere, cone, cylinder, or other
shape. The shape will be white (without color description) and
centered on the screen. In order to change those characteristics,
it's necessary to use nodes together, somewhat like the following:

Transform {

 transformation properties

 }

 Cube {

 shape properties

 }

Using the various properties for Transform,
the cube created can be moved in three dimensions, rotated, and
scaled. In fact, every node that follows this Transform
node will be affected unless a Separator
node is used to enclose the Transform
and shape nodes. For instance:

Separator {

 Transform {

 transformation properties

 }

 Cube {

 shape properties

 }

 }

more VRML

What's important here to notice is that both nodes are required
to create the shape and change its position in the VRML world.
On its own, the shape node would simply create a basic shape.
The Transform node is designed
to affect other nodes, and creates nothing on the screen by itself.
The Separator node is used
to separate these two cooperating nodes from others in the VRML
document.

[bookmark: VRMLPrimitives]VRML Primitives

Let's begin the discussion of VRML nodes with the primitives,
which are simply the basic geometric shapes you can use to create
3D worlds. These include spheres, cylinders, cones, cubes, and
text. You'll quickly look at how to create each of these, then
you'll figure out how to move them around in our virtual world.

Most primitives follow the basic format of the following:

primitive_name
{

 properties

 }

Spacing is unimportant, but braces are required around the shape's
properties.

[bookmark: TheSphere]The Sphere

Probably the easiest shape to create in VRML is a sphere. All
you really need to know is what you want the radius to be in meters
(well, virtual meters). This is done with curly brackets.
The primitive name is Sphere
and the property name is radius,
so an example would be:

Sphere {radius 3}

That's it. In a properly-formatted VRML document (with the information
in Listing 24.1), this single command would create a sphere in
a VRML world (see

fig. 24.4).

Figure 24.4 : Our first, rather primitive, sphere.

[bookmark: CylindersandCones]Cylinders and Cones

Some other one-line primitives are cylinders and cones. Both take
the property height, but
a cylinder and a cone handle their radius differently. These shapes
can also take the property parts,
which is used to determine which parts of the shape will be rendered.
The general format for Cylinder
is the following:

Cylinder {

 parts part_names

 height size

 radius size

 }

The part_names can
be SIDES, TOP,
BOTTOM, or ALL,
depending on how you want the cylinder to appear. An example for
a cylinder could be the following:

Cylinder { height 4 radius .5 }

Notice that ALL is always
the default for parts so
it isn't necessary when you want to render the entire shape. This
example creates a cylinder about four meters high and one meter
in diameter (see fig. 24.5). Probably perfect for the columns
outside of a virtual house. At the same time, a cylinder like
the following might be correctly sized and rendered for an eight-ounce
drinking glass:

Figure 24.5 : A sample cylinder.

Cylinder {

 height .15

 radius .04

 }

Notice that spacing isn't important, but when you have more than
one or two properties, it's probably best to space them out for
the sake of clarity.

The cone primitive requires a radius for its base, and a height.
Since the radius of a cone changes consistently from bottom to
top, you use the property bottomRadius:

Cone { height 15 bottomRadius 10 }

This one might make a good approximation of a pine tree outside
of your virtual mountain cabin (see fig. 24.6).

Figure 24.6 : A sample cone.

On the other hand, you might use the following:

Cone {

 parts SIDES

 height .10

 bottomRadius .02

 }

This could easily represent an ice cream cone (albeit upside down
for now). The parts property
for cones accepts the values SIDES,
BOTTOM, or ALL.

[bookmark: TheCube]The Cube

Perhaps more appropriately called the "cuboid," the
cube primitive can have unequal sides, making it more or less
a 3D rectangular shape. It's also probably the most useful shape,
if for no other reason than the fact that you'll generally want
to use it as the floor in your virtual world.

Actually, a cube is useful for representing many different things,
from appliances and furniture to buildings and ceilings. Since
you can stretch the cube in 3D, you have limitless possibilities-as
long as you don't mind jagged edges.

The basic format for a cube is the following:

Cube {

 width size

 height size

 depth size

}

When initially rendered, the width
is in the X axis, the height
is in the Y axis, and depth
is in the Z access. An example might be the following:

Cube {

 width 1

 height 1

 depth 1

 }

This one actually is a cube, a meter on each side. It might be
good to represent a nice-sized shipping box.

An example that meets the challenge of being a virtual room's
"floor" would be the following:

Cube {

 width 20

 height .01

 depth 25

 }

This is just about the right size for a reasonably dimensioned
den or family room-maybe even a master suite. You can see it extending
out into the distance in figure 24.7.

Figure 24.7 : A virtual box.

[bookmark: AsciiText]AsciiText

The final primitive accepts a string value of ASCII text and writes
it to the screen-AsciiText.
You can choose values for the spacing, justification (alignment),
and width of the string, if you want to confine it to a particular
size. The basic format is the following:

AsciiText {

 string "Text"

 spacing number

 justification DIRECTION

 width size

 }

You enter the text you want to use between the quotation marks.
spacing is used to determine
the distance between lines when you include more than one string
statement.

The justification property
takes the values LEFT, CENTER,
and RIGHT, and aligns the
text relative to the point where X=0
(the center of the screen). LEFT,
for instance, causes the string to end at X=0;
RIGHT causes the text to
begin at X=0.

The width property is often
set to zero (which is also the default), but can be used to cause
your text to conform to a certain width. The following is an example
of AsciiText:

AsciiText {

 string "A long, long time ago,"

 spacing 2

 justification CENTER

 }

Figure 24.8 shows how this text looks in a VRML browser.

Figure 24.8 : Ascii Text in your virtual world.

[bookmark: ExampleOccupyingtheSameSpace]Example: Occupying
the Same Space

With what you know now about primitives, you can create some fairly
interesting shapes-but you can't do much about where they appear
in your virtual world. You'll look into that next. For now, let's
see what it's like when you put two shapes in the same world.

Enter Listing 24.2 in a new VRML document.

Listing 24.2 twoshape.wrl Two
Shapes in the Same Space

#VRML V1.0 ascii

#

#Two shapes in

#one space

#

Sphere { radius 2.5}

Cube {

 width 20

 height .02

 depth 20

 }

(Don't forget to save the file with a .wrl
extension.) When you load this file into your VRML browser, you
should notice that the two have the same point of origin, and
are trying to occupy the same space. Things are a bit difficult
to puzzle out, since both are the same color, but if you pan up
or down slightly, you should be able to see how the two shapes
seem fused (see fig. 24.9). From certain perspectives, the sphere
is a bump on the road-or perhaps a lone mountain!

Figure 24.9 : Are two shapes better than one?

[bookmark: MovingYourPrimitivesAround]Moving
Your Primitives Around

Here, you'll move on to using nodes that move your primitives
around in the VRML world. You're using a node called Transform,
which is designed to affect the location, rotation, and scale
of the objects that come after it.

The basic format is:

Transform {

 translation X-distance Y-distance Z-distance

 rotation X-axis Y-axis Z-axis Angle

 scaleFactor X-factor Y-factor Z-factor

 }

Primitive to move/rotate/scale

Just to keep this from seeming too intimidating, let's quickly
look at an example:

Transform {

 translation 2 2 0

 rotation 0 1 0 3.14

 scaleFactor 1 1 1

 }

[bookmark: translation]translation

The translation property
is responsible for actually moving the object in VRML space, and
it uses a basic 3D vector to do that. This vector can be seen
as a 3D description of how the object should be moved from the
point of origin. Consider this part of the last example:

translation 2 2 0

Whatever shape comes after this Transform
node will be moved two meters to the right (+2
in the X axis), two meters up (+2
in the Y axis), and will stay at the same distance near/far (0
in the Z axis).

Since this is the most common use of the Transform
node, it's perfectly reasonable to have a node like this:

Transform {translation -2 0 -5}

[bookmark: rotation]rotation

The rotation property allows
you to choose which axis you would like to rotate the shape around,
and then lets you enter an angle (in radians) for that rotation.
Look at the following example:

Transform {rotation 0 1 0 1.57}

I've chosen to rotate the shape 90 degrees around its Y axis.
This would be akin to "spinning" the shape, since the
Y axis can be seen as a line from the top of the screen to the
bottom of it. Here's another example:

Transform {rotation 1 0 0 3.14}

This rotates any associated shapes 180 degrees around the X axis.
This would be "flipping" the shape. The X axis runs
from left to right across the screen, so rotating a shape around
the X axis 180 degrees would turn the shape "upside-down."

[bookmark: scaleFactor]scaleFactor

The scaleFactor property
very simply allows you to choose a factor by which a shape can
be sized in each access, as in the following example:

Transform {scaleFactor 1 4 -2}

This would keep any subsequent shapes the same size in the X axis,
make the shape larger by a factor of four in the Y axis, and make
it smaller by a factor of two in the Z axis.

[bookmark: TheSeparatorNode]The Separator
Node

Of course, the Transform
node does nothing on its own. But it will now affect any primitives
that occur after it until it is separated from the rest of the
document with a separator node.

The separator node is very simple. An example would be as follows:

Separator {

 Transform {

 translation 2 2 0

 rotation 0 1 0 3.14

 scaleFactor 1 1 1

 }

 Cylinder{}

}

Cube{}

Using the Separator node
in this way, the Transform
node will affect only the default cylinder you've created. The
cube, which is defined outside of the separator, will not be affected
by the Transform node. Instead
of moving, the cube will appear centered in the screen, like the
primitives you created earlier in the chapter.

[bookmark: ExampleMovingandFlipping]Example: Moving and Flipping

Using everything you've learned up until now, let's create a scoop
of ice cream and an ice cream cone-except that they'll be appropriate
for someone with the same sized neck as, say, King Kong.

You'll use the sphere and cone primitives to create the basic
shapes and the Transform
node to move those shapes around. On top of that, you'll need
Separator nodes to transform
the shapes individually. Let's also make the shapes a little larger
than life so they're easier to see.

Create a new VRML document and enter Listing 24.3.

Listing 24.3 moving.wrl Moving
and Flipping Primitives in the VRML World

#VRML V1.0 ascii

#

Moving and flipping

VRML primitives

#

Separator {

 Transform {

 translation -1 0 0

 rotation 1 0 0 3.14

 }

 Cone {

 height .75

 bottomRadius .12

 }

}

Separator {

 Transform {

 translation 0 0 -1

 }

 Sphere {radius .5}

}

Each of the shapes has an associated Transform
node that is enclosed with it in a Separator
node. In the first Separator
node, you're creating a Transform
node that moves the shape two meters to the left and "flips"
it 180 degrees. You then create the cone primitive, which is 1/2
of a meter in height and about .24 meters in diameter at its bottom.
(Of course, flipping it makes the bottom the top, at least insofar
as this is supposed to represent an ice cream cone.)

The second Separator node
uses Transform to move the
primitive two meters to the right and two meters behind the center
point of the screen. Then it creates a sphere with a diameter
of .4 meters, which hopefully will make it about the right size
for Kong's ice cream appetite (see fig. 24.10).

Figure 24.10 : A helluva lot of virtual calories

[bookmark: Summary]Summary

VRML is more of a cousin to HTML than part of the specification.
In some ways it is similar-it's text-based and can be used to
navigate the Web. In many ways, it is very different, including
the fact that it is basically graphical and 3D. New standards
are emerging that may eventually make it difficult for non-programmers
to create VRML worlds without special applications.

For now, though, you can create documents that are properly formatted
for VRML, and then enter the correct nodes to create various primitive
shapes. On their own, primitives appear at the 0,0,0 point in
your browser, and will overlap one another when rendered together.

To get past this, you use another node, Transform,
to move objects around in the virtual world. Transform
is designed to affect every object that comes after it though,
so you run into similar overlapping problems unless you use the
Separator node.

The Separator node allows
you to "nest" nodes within it, thus separating those
nodes from the rest of the VRML description. So, a Transform
node can be made to affect only the primitive that is in the same
Separator.

[bookmark: ReviewQuestions]Review
Questions

		What is the most likely reason for the VRML 2.0 specification
to require special programs for creating aspect of your VRML world?

		What is the MIME type and file extension for VRML worlds?

		Why is it advisable to create a new template for VRML documents?

		What is 180 degrees expressed in radians? 90 degrees?

		You've seen that sphere {}
will create a shape, in spite of the fact that it has no properties.
Will cube {} create a shape
in a VRML browser?

		Which primitive is the only one to use the bottomRadius
property?

		True or false. Justifying an AsciiText
string to the RIGHT will
cause the string to end at X=0.

		Which property for Transform
can be used to change the size of a given primitive?

		How will the following cylinder appear in a VRML browser?

Transform {rotation 0 1 0 3.14}

cylinder {}

		True or false. You can nest Separator
nodes within one another.

[bookmark: ReviewExercises]Review
Exercises

		Create a sphere with a radius of five and one with a radius
of ten. Without using the Transform
node, see if it's possible to view both in your browser.

		Create a sphere and a cylinder that, when viewed from certain
angles in a VRML browser, approximates a planet with rings (like
Saturn).

		Use the Cone, Cylinder,
and Transform nodes to create
a shape that approximates a pine tree, completely with a trunk.

		Move the "ice cream scoop" in Listing 24.3 so that
it's on top of the "ice cream cone" you created.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch25.htm

Chapter 25

Creating VRML Worlds

CONTENTS[bookmark: CONTENTS]

		Primitive Appearances
		The Material Node

		Example: Adding a Little Color

		The Texture2 Node

		Example: Covering Up Primitives

		Adding Hyperlinks in VRML
		Example: Linking in Your VRML World

		More Fun with Shapes
		More Nodes: Coordinate3 and IndexedFaceSet

		Example: Up on the House Top

		Instancing

		Example: A VRML Neighborhood

		More VRML

		Summary

		Review Questions

		Review Exercises

In Chapter 25, you learned about creating,
placing, and manipulating primitives in VRML. In this chapter,
you'll take that knowledge and build on it to create more convincing
VRML worlds. Aside from appearance and color issues, you'll look
deeper into how to create efficient VRML worlds, and how to add
hyperlinks that make them useful for maneuvering on the World
Wide Web.

[bookmark: PrimitiveAppearances]Primitive
Appearances

You have two basic alternatives for creating different effects
and appearances on primitives in VRML: the Material
and Texture2 nodes. Material
is used to control the colors assigned to the shapes. Texture2
is used to add graphics files as textures to your shapes.

[bookmark: TheMaterialNode]The Material
Node

The Material node accepts
a number of basic properties: diffuseColor,
ambientColor, emissiveColor,
specularColor, shininess,
and transparency. All of
the numbers involved have values from zero to one. The following
is the format:

Material {

 diffuseColor red_num green_num blue_num

 ambientColor red_num green_num blue_num

 emissiveColor red_num green_num blue_num

 specularColor red_num green_num
blue_num

 shininess number

 transparency number

}

The first four properties accept values for each of the red, green,
and blue channels for the color desired. The values can be any
decimal between zero and one (although using a decimal past the
"hundredths" place, like .507, is fairly useless).

Most important among the color values is probably diffuseColor,
which is essentially the basic color of your primitive. The value
ambientColor is sometimes
described as "how dark the color is" and it's generally
a slightly darker version of the same color as diffuseColor.
Look at the following example:

Material {

 diffuseColor 0 0 1

 ambientColor 0 0 .8

 }

This sets the basic color to blue, with a slightly darker blue
used for the ambientColor.
The emissiveColor property
determines what color your shape will be as it fades into the
background. Generally, you'll want this to be darker-meaning you
use a smaller number.

The property specularColor
is used to represent the color of light bouncing off of the shape.
Depending on how surreal your world is, you'll probably want this
to be a white/yellowish color. An example of both these properties
is the following:

Material {

 diffuseColor 0 1 0

 emissiveColor 0 .2 0

 specularColor .8 .6 .8

 }

This basically translates to "bright" green in the foreground
and darker green in the background, with a yellow/white (with
hints of green) as the "light-bouncing" color.

		Note

		

Remember with these red, green, and blue values that as you approach one with all values, you get closer to white. 0,0,0 is black. Everything in between is a spectrum-each color is at its "brightest" at one while the other colors remain

zero.

The last two Material properties
are simply levels from zero to one. Both are fairly self-explanatory.
shininess suggests how much
light bounces off the object; transparency
affects how solid the material appears. The default value for
shininess is 0.2
(a little shiny); default for transparency is 0,
or completely solid.

[bookmark: ExampleAddingaLittleColor]Example: Adding a Little
Color

Let's work a little with the last example from Chapter 24,
adding a little color to your ice cream cone for Kong. Notice
that the Material node affects
all other shapes in a particular Separator.

Create a new VRML document (or add the Material
nodes to your work from last chapter), save it with a .wrl
extension, and then enter Listing 25.1.

Listing 25.1 color.wrl Changing
the Colors of VRML Objects

#VRML V1.0 ascii

#

Moving and flipping

VRML primitives

Separator {

 Transform {

 translation 0 0 0

 rotation 1 0 0 3.14

 }

 Material {

 ambientColor .6 .4 .2

 diffuseColor .7 .5 .3

 emissiveColor .6 .4 .2

 }

 Cone {

 height .5

 bottomRadius .12

 }

}

Separator {

 Transform {

 translation 0 .25 0

 }

 Material {

 ambientColor .9 .9 .8

 diffuseColor 1 1 .5

 shininess .9

 }

 Sphere {radius .20}

}

The best advice for the red, green, and blue (RGB) values is simply
to experiment with them until you get what you feel is close to
the color you wanted. If you have a graphics program available
to you, you might use its color palette to try different RGB levels
to achieve the desired colors, then test them in your VRML browser.

In the example, I'm basically going for a light-brown cone and
a yellowish sphere, which is meant to suggest a sugar cone and
vanilla ice cream. I've also altered the translation values to
try to line the ice cream up on top of the cone (so you can see
the contrast). It loses something in this screenshot, but figure
25.1 will give you an idea of how this looks.

Figure 25.1 : Kong's cone in color. (The picture is black and white not the cone).

[bookmark: TheTexture2Node]The Texture2
Node

The basic point of the Texture2
node is to allow you to wrap a graphic around a primitive. (And
no, I don't know what happened to Texture1.)
Texture2 takes the properties
filename, wrapS,
and wrapT. The basic format
is the following:

Texture2 {

 filename "image URL"

 wrapS REPEAT/CLAMP

 wrapT REPEAT/CLAMP

}

Now, honestly, there's a lot more to the wrapS
and wrapT, but it's rather
confusing to me. Here's the scoop: many browsers tend to implement
Texture2 in only the most
basic ways. If your browser happens to support these two properties,
then setting wrapS and wrapT
to CLAMP forces just one
instance of your graphic to be pasted on the primitive. Using
REPEAT for both will tile
the graphic all over the primitive. An example of this is as follows:

Texture2 {

 filename "earth.gif"

 wrapS CLAMP

 wrapT CLAMP

 }

REPEAT is the default value
for both, so there's no need to include the properties if you
want the image to tile onto your primitive.

[bookmark: ExampleCoveringUpPrimitives]Example: Covering Up
Primitives

Here's a good example of how images will cover different primitives.
Just about any graphics file will do-just make sure you have it
in the same directory as the VRML file. Create a new .wrl
file and enter Listing 25.2.

Listing 25.2 texture.wrl Adding
Textures to VRML Objects

#VRML V1.0 ascii

#

#adding Texture

#to VRML primitives

#

Separator {

 Separator {

 Texture2 {

 filename
"wood.gif"

 wrapS
CLAMP

 wrapT
CLAMP

 }

 Translation {
translation -3.5 0 0 }

 Sphere { }

 }

 Separator {

 Texture2 { filename
"wood.gif" }

 Translation {
translation -1.25 0 0 }

 Cone { }

 }

 Separator {

 Texture2 { filename
"wood.gif" }

 Translation {
translation 1 0 0 }

 Cylinder { }

 }

 Separator {

 Texture2 { filename
"wood.gif" }

 Translation {
translation 3.5 0 0 }

 Cube { }

 }

}

Use whatever graphics file you'd like in place of wood.gif.
You're probably better off with a texture, but it can be just
about as much fun with the picture of a cartoon character or politician.
In fact, you can make your VRML world look a little like some
of the popular movies that have included VR by creating a flat
cube for the face and pasting a graphic to it using the CLAMP
values.

I'd also recommend that you experiment with different values,
graphics, and primitives using this example.

[bookmark: AddingHyperlinksinVRML]Adding
Hyperlinks in VRML

Links in VRML just require another node, the WWWAnchor
node. This one accepts two basic properties, name
and description as in the
following example:

WWWAnchor {

 name "URL"

 description "Alternate text"

 }

The WWWAnchor node works
a lot like a Separator node
in that it actually includes the primitive and whatever descriptive
nodes you've used to affect that node. An example might be:

WWWAnchor {

 name "http://www.fakecorp.com/worlds/world2.wrl"

 description "Into the next world"

 Separator {

 Texture2 { filename
"wood.gif" }

 Translation {
translation -1.25 0 0 }

 Cone { }

 }

}

The name property can accept
any sort of URL, whether it's another VRML world, a regular HTML
document, or a hypermedia link. The description text is similar
to ALT text for the
tag. Some VRML browsers will allow the ALT
text to pop-up on-screen to help the user decide if this is a
useful link for them.

[bookmark: ExampleLinkinginYourVRMLWorld]Example: Linking in
Your VRML World

In this example, you'll create some basic primitives and see
how different links react when clicked in your VRML world. Create
a new VRML document and enter Listing 25.3.

Listing 25.3 links.wrl Creating
HTML Links for Your VRML Objects

#VRML V1.0 ascii

#

#adding links

#to VRML primitives

#

WWWAnchor {

 name "index.html" #A regular HTML
page

 description "To Our Index Page"

 Separator {

 Translation {
translation -3.5 0 0 }

 Sphere { }

 }

}

WWWAnchor {

 name "demo.moov" #A hypermedia link

 description "See the Presentation
(QT 1.4mb)"

 Separator {

 Translation {
translation -1.25 0 0 }

 Cone { }

 }

}

WWWAnchor {

 name "office.wrl" #Another VRML world

 description "Move to the Office"

 Separator {

 Translation {
translation 1.25 0 0 }

 Cylinder { }

 }

}

You'll probably want to change the names of the different files
(in the links) above so you can use files hanging around on your
hard drive (make sure they're all in the same directory as your
VRML document). You should also experiment with different types
of files to see how things are loaded and passed between the HTML
browser, the VRML browser, and other helper applications.

		Note

		

Some VRML browsers download the .wrl file to the user's hard drive and then access it from there. That means that relative links in the .wrl file will break, since the links will now be "relative" to the user's hard drive. For
this reason, it's a good idea to use absolute URLs (even for your texture images) if you add VRML worlds to a real Web site.

Back in your VRML world, things really haven't changed much. In
some browsers, primitives will be highlighted when they're clickable.
In others (like mine), you'll just get a slightly different cursor
(see fig. 25.2).

Figure 25.2 : The cursor will change from this arrow to a crosshair for links.

[bookmark: MoreFunwithShapes]More
Fun with Shapes

So far, you've been dealing with the built-in primitives of VRML,
and you've completely passed over the possibility of creating
your own shapes. Is it possible? Sure. But it'll take some thinking.
It's also possible, and timesaving, to use special commands to
give your shapes "nicknames" for referring to shapes
you can create. The advantage is that it then takes one line of
VRML code to create another one!

[bookmark: MoreNodesCoordinate3andIndexedFaceS]More Nodes:
Coordinate3
and IndexedFaceSet

Creating your own shapes takes two steps, and two different nodes.
The first node, Coordinate3,
is used to layout the coordinates for your new shape. This doesn't
actually create anything in the VRML world. It's more of a template
for the next node, IndexedFaceSet.
Using this second node, you actually draw the faces of your shape
by specifying the points for each.

		Tip

		

Draw your object in as close to 3D as possible (or make it in clay or origami), and label the points (starting with zero). This will help you create it in VRML.

The Coordinate3 node is used
with the point property in
the following format:

Coordinate3 {

 point [

 x1-coord y1-coord z1-coord,
#point 0

 x2-coord y2-coord z2-coord,
#point 1

 ...,

]

}

Each coordinate for your shape requires an X, Y, and Z coordinate.
This creates a point in your VRML world. Get enough points together,
and you'll have a shape. But you won't be able to see anything.

The next step is to add the IndexedFaceSet
node. The order in which you assign points in the Coordinate3
node is noticed by VRML, and you can use that to determine what
points make up each "side" of your shape. The number
-1 is used to tell IndexedFaceSet
that you're done with that side. IndexedFaceSet
uses the property coordIndex
for the listing of sides, as in the following format:

IndexedFaceSet {

 coordIndex [

 point_num, point_num, point_num,
-1, #side1

 point_num, point_num, point_num,
-1, #side2

 ...

]

}

You should probably also consider that not every side necessarily
has three points-in fact, many won't. That's why you use -1
to represent the end of a shape. Depending on your mood and the
number of advanced degrees in mathematics you have, the sides
of your shapes could have many, many points to connect.

[bookmark: ExampleUpontheHouseTop]Example: Up on the House
Top

Here's a shape you might want to use in your VRML world-a rooftop.
It takes six points and five sides to create this particular rooftop.
Fortunately, you can limit the number of dimensions and triangular
hypotenuses you're working with.

Figure 25.3 shows you a sketch of the rooftop, including the coordinates
you'll use. It doesn't look like it, but the bottom points of
this roof all sit at the same Y coordinate. It's tilted to show
3D on this 2D page.

Figure 25.3 : Here's your shape and the coordinates for each point.

Actually, it's not that bad, is it? Architects could learn from
the symmetry of your rooftop. Now look again and see which sides
you're going to need to draw with the IndexedFaceSet
node. Figure 25.4 shows those sides.

Figure 25.4 : Here's your shape with the sides you need to draw.

Now, armed with all this information, you're ready to code this
roof! Create a new VRML document and enter Listing 25.4.

Listing 25.4 rooftop.wrl Creating
the Rooftop Shape

#VRML V1.0 ascii

#

#Creating our own

#rooftop shape

#

Separator {

 Coordinate3 {

 point [

 5 0 0,
#0

 5 -5 -5,
#1

 5 -5 5, #2

 -5 0 0, #3

 -5 -5 -5, #4

 -5 -5 5,
#5

]

 }

 IndexedFaceSet {

 coordIndex [

 0, 1, 2, -1,
#Side A

 0, 1, 4, 3, -1, #Side
B

 3, 4, 5, -1,
#Side C

 0, 2, 5, 3, -1, #Side
D

 5, 2, 1, 4, -1, #Side
E

]

 }

}

Notice in IndexedFaceSet
that you're able to create the different sides required for this
shape-both the triangles for the ends and the four-pointed rectangles
for the slopes (and bottom) of the roof. You can see this roof
in figure 25.5.

Figure 25.5: The rooftop complete.

[bookmark: Instancing]Instancing

One of the major concerns with VRML worlds, especially as their
popularity begins to grow, is the size of the world files. Currently,
low bandwidth connections make using large VRML worlds more of
a "cool toy" than a reasonable alternative to HTML.
Higher bandwidth may change that in a future, and it's reasonably
easy to see a time when VRML will make navigating the Web very
interesting.

VRML itself addresses this problem with file size by noticing
that many of the shapes you'll use to create your world happen
to be rather similar to one another. You might want to create
a world, for instance, with a number of houses in it. Creating
a complete house every time can be a little intimidating for the
designer, as well as expensive in terms of file size. (Look how
much code it took just to create the rooftop!) So, VRML gives
you something called instancing.

This is a little like creating an object in JavaScript and similar
programming/scripting languages. Basically, you just assign a
"nickname" to a particular node or group of nodes. When
you want to use that node again, you just type the keyword USE,
followed by the nickname, as in the following example:

DEF beach_ball Sphere { radius .5 }

USE beach_ball

This is a simple example, but notice how powerful this ability
is. Now, instead of using all of the code back in Listing 25.4
to create another rooftop, you could use the DEF
keyword to create a nickname for the entire process-like my_roof-and
you could duplicate them to your hearts' content.

DEF needs to be used with
a node, but that node needn't stand on its own. You can easily
assign a DEF name to a Separator
node, which could encompass an entire defined "object"
in your world. You can even assign DEF
to non-drawing nodes, as in the following example:

DEF make_red Material {

 ambientColor .9 0 0

 diffuseColor 1 0 0

 emissiveColor .9 0 0

 }

Now the command USE make_red
can be used as a one-line statement to add red to subsequent nodes
within your VRML world.

[bookmark: ExampleAVRMLNeighborhood]Example: A VRML Neighborhood

Using instancing, you can take your rooftop, add a house for it,
instance the house, and create a complete neighborhood in short
order. Create a new VRML world document and enter Listing 25.5.

Listing 25.5 nbr_hood.wrl Using
DEF for Cloning

#VRML V1.0 ascii

#

#Creating our own

#neighborhood

#

Transform {
#move whole world away and below 1

 translation 0 -1 -50

}

Separator {
#create the ground

 Material {

 ambientColor 0 .9 0

 diffuseColor 0 1 0

 emissiveColor 0 .5 0

 }

 Cube {

 height .01

 width 100

 depth 100

 }

}

DEF my_house Separator { #define this
as a my_house instance

 Material {
#add color to main house

 ambientColor 0 0 .9

 diffuseColor 0 0 1

 emissiveColor 0 0 .5

 }

Separator { #move
cube up above ground

 Transform {

 translation
0 2.5 0

 }

 Cube { #create
house

 height 5

 width 8

 depth 8

 }

}

 Material {
#add color to roof

 ambientColor .4 .9 .4

 diffuseColor .5 1 .5

 emissiveColor .5 .5 .5

 }

 Coordinate3 { #create
roof points

 point [

 5 10 0, #0

 5 5 -5, #1

 5 5 5,
#2

 -5 10 0,
#3

 -5 5 -5,
#4

 -5 5 5, #5

]

 }

 IndexedFaceSet {
#draw sections of roof

 coordIndex [

 0, 1, 2, -1,
#Side A

 0, 1, 4, 3, -1, #Side
B

 3, 4, 5, -1,
#Side C

 0, 2, 5, 3, -1, #Side
D

 5, 2, 1, 4, -1, #Side
E

]

 }

} #bracket
ends this DEF instance

Separator { #new
house

 Transform {

 translation 15 0 15

 rotation 0 1 0 1.57

 }

 USE my_house

}

Separator { #another
new house

 Transform {

 translation -25 0 -25

 rotation 0 1 0 1.57

 }

 USE my_house

}

So you define an instance for the entire house, and then simply
type the USE command to add
another instance of it. Of course, they're all the same color,
but at least you can use Transform
to put the house in another part of your world and rotate it.

If you did want to change the colors of your house, you'd probably
want to break out the parts of my_house,
perhaps creating my_roof
and my_house so you could
use different Material nodes
for each. Of course, you could always have different DEF
statements for Material,
so that eventually USE had
houses like the following:

Separator {

USE make_red

USE my_roof

USE make_green

USE my_house

}

That creates an entire house in four lines! Plus, once you get
a glimpse of your little VRML neighborhood, you'll probably want
to figure out how to change house colors quickly (see fig. 25.6).

Figure 25.6 : Here's you, uh, smutty little village.

[bookmark: MoreVRML]More VRML

Like our discussion of JavaScript, there's a lot more to VRML
that can't be covered in this book. But, you've got a great start.
For more VRML info, check out the following Web sites:

		Pioneer Joel:

http://honors.uhc.asu.edu/~joel/vrml/

		Silicon Graphics' VRML 2.0 site:

http://webspace.sgi.com/moving-worlds/

		Pete's Easy VRML Tutorial:

http://www.mwc.edu/~pclark/vrmltut.html

		Macmillan's VRML Foundry

		Cindy Reed's VRML Textures:

http://www.ywd.com/cindy/texture.html

[bookmark: Summary]Summary

After you've learned to create the basic shapes in VRML, you can
move on to making things feel more like a "world." Using
the nodes Material and Texture2,
for instance, you can add color, images, and light properties
to your shapes.

The next step is to make your world useful for the Web-so you
need to add hyperlinks. The WWWAnchor
can be used to make any primitive or other shape a hyperlink to
just about anything: another VRML world, an HTML document, or
even a hypermedia file.

You can also create your own shapes. Using the Coordinate3
and IndexedFaceSet nodes,
you can tell your VRML browser where the coordinates for your
shape are-and then you can use those points to tell the browser
where to draw the sides of your shape. These two may be among
the most powerful nodes for serious VRML world creators.

Instancing, however, is easily the most powerful node for the
lazy creator. Not to mention that it's good for low bandwidth
connections to your VRML world. With instancing, you can create
"nicknames" for your VRML objects-even from something
as big as a house-and create another like it with a one-line command.

There's more to it than that, and the end of this chapter details
some Web sites for learning more about VRML. Hopefully, you've
got a good enough start to have some fun, though.

[bookmark: ReviewQuestions]Review
Questions

		Choose the one that would create a darker color:

Material {diffuseColor .9 0 0}

Material {diffuseColor .1 0 0}

		What RGB color are you working with in question 1?

		What's the major difference between REPEAT
and CLAMP? Which one do you
never actually need to type?

		Why would it be best to use absolute URLs for the following:

Texture2 { filename "URL"
}?

		What other VRML node works a lot like WWWAnchor?

		What's wrong with the following?

WWWAnchor {

 name "http://www.fakecorp.com/index.html"

 description "Back to Index"

 Material {diffuseColor 0 0 .5}

 }

		For what is the -1 in
the coordIndex property of
IndexedFaceSet used?

		In the following:

Coordinate3 {

 point [

 0 1 -1

 5 1 -1

 5 -1 -1

 0 -1 -1

]

}

What is the point number assigned to {5
-1 -1}?

		True or false. You can create an instance of the Transform
node.

		When you create the primitive sphere
{} and view it in a browser, where (virtually) are
you in relation to the sphere?

[bookmark: ReviewExercises]Review
Exercises

		Using any series of primitives or world you've created, use
the Transform node to move
the entire world away from the opening point-of-view.

		Using the rooftop you created in Listing 25.5, create a rooftop
with different colors for each (or at least a few) of the sides.

		Change Listing 25.5 so that you can choose different colors
or textures for each house and roof you create.

		Change Listing 25.5 so that each house becomes a clickable
hyperlink. Also, use the AsciiText
node from Chapter 24 to add a label to
each house.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch26.htm

Chapter 26

Adding Portable Documents to Web
Sites

CONTENTS[bookmark: CONTENTS]

		What Are Portable Documents?

		Adding PDFs To Your Web Site
		MIME Type

		Other Acrobatic Moves

		Other PDF Formats

		Creating Your Own PDFs
		Creating the Word Document

		Using Rich Text Format

		Example: Creating a Portable Word File

		Summary

		Review Questions

		Review Exercises

One of the things I've mentioned over and over about HTML and
the Web in general is the lack of control you, as a Web designer,
ultimately have over your own page. Even with Netscape extensions,
IE extensions, HTML 3.0 style sheets, and other extensions, you
still only have control when your pages are viewed in compatible
browsers. While Netscape and Internet Explorer alone make up a
sizable part of the browser market, there's no way to guarantee
that everyone will see your site in the same exact way.

For most people, and in most cases, that's not a problem. But
consider this example. What if you were setting up a Web page
for the IRS? With the complex, computer-readable forms that the
IRS has to distribute to tax payers, HTML just wouldn't be able
to cut it. For the answer to this example-and any others where
forms, newsletters, instruction sheets, legal documents, or any
other published material needs to be delivered completely intact-we
must turn to portable document formats.

[bookmark: WhatArePortableDocuments]What
Are Portable Documents?

Portable Document Format is actually a file format (like
GIF or MPEG) created and used by the Adobe Acrobat system. The
Acrobat system is probably the most widely known (and Internet
pervasive) method for distributing portable documents. Based on
Adobe's PostScript technology, certain Adobe products are capable
of generating PDF files, which can then be viewed by Web helper
applications and plug-ins (see fig. 26.1).

Figure 26.1 : Viewing an Adobe PDF file.

In more general terms, portable documents refer to any sort of
technology that allows you to distribute documents intact to users,
without relying on the "machine-dependent" nature of
HTML. In other words, these are documents that can be viewed by
the user, but only in one way-they cannot be reformatted to fit
the needs of the user's Web browsing program or machine.

Although more sophisticated than this, you can almost think of
portable documents as just big graphics files. Most of these documents
don't allow the user to alter them in any way, although some,
like Envoy (formerly WordPerfect Envoy), allow you to annotate
these documents with little electronic "sticky notes."
You can't change the original documents, but you can add comments
that appear on top of the document.

So what qualifies as a portable document? Well, among others,
Adobe Acrobat, Envoy, Common Ground, RTF files, Microsoft Word
DOC files, and even ASCII text files. Each offers various advantages
and tradeoffs, but all (with the exception of ASCII) also offer
the ability to control the display of your text to a greater degree
than you can with HTML.

[bookmark: AddingPDFsToYourWebSite]Adding
PDFs To Your Web Site

The good news is, Adobe distributes Acrobat Reader for free. The
bad news is, you have to pay a decent amount of money for the
products that create Acrobat files, like Adobe Exchange. These
products help you create, lay out, and save your files as .pdf
format files. They can then be added to your Web site for downloading
by interested users.

		Tip

		

To find out more about Acrobat products, visit http://www.adobe.com/.

Adding an Acrobat file to your Web page takes nothing more than
a hypermedia link with the appropriate extension. For instance:

Here are Adobe's
Tips for Adding Acrobat Files to

Web Sites in Acrobat format.

When clicked, this link will cause the browser to download the
PDF document to the user's hard drive. If the user's browser is
properly configured, the document will be loaded into Adobe's
Acrobat reader, as in figure 26.2.

Figure 26.2 : Adobe's Acrobat Reader.

[bookmark: MIMEType]MIME Type

In order for the browser to accept these files, however, it needs
to have the Adobe Acrobat reader set up properly as a helper application.
In Netscape Navigator, for instance, this is accomplished through
the Helpers tab in Netscape's General Preferences. Add a new document
type with the MIME type of application/pdf
with the extension .pdf (see
fig. 26.3).

Figure 26.3 : You can add the Adobe Acrobat reader as a helper in Netscape Navigator.

In addition, this same MIME type and file extension may need to
be added to your Web server as recognized file types. Otherwise,
your files may not always be correctly downloaded and fed to the
helper application by your user's browser.

		Note

		

Adobe Acrobat files can also be viewed directly in the Netscape browser window with help from the Adobe Amber plug-in for Netscape.

[bookmark: OtherAcrobaticMoves]Other Acrobatic Moves

In addition to slick text and graphics, Adobe Acrobat products
(both the reader and creator programs) can accept plug-in programs
to increase their abilities. The Weblink plug-in, for instance,
gives Adobe PDF files the ability to embed hyperlinks within them.
When clicked by the user, the link is fed back to the Web browser,
which then retrieves the associated Web document or multimedia
file. Much like VRML, this gives a file format other than HTML
the ability to access URLs (see

fig. 26.4).

Figure 26.4 : Accessing hyperlinks in PDF documents.

Other plug-ins give Acrobat the ability to play inline movies,
animations, sounds, and other multimedia files in a way that's
similar to newer plug-in technology for Web browsers.

		Note

		

The plug-ins discussed here are for the Adobe Acrobat program itself-not for Netscape Navigator or another Web browser.

[bookmark: OtherPDFFormats]Other PDF Formats

Other commercially available PDF creators and readers include
Envoy and Common Ground Digital Paper. Both offer free readers
that can be added as helper applications in Web browsers.

To serve Envoy documents from your Web site, make sure your server
is capable of recognizing files with the MIME-type application/x-evy
and the extension .evy. Adding
them to your Web pages is as easy as PDFs. For example:

Our
Demo Envoy portable document.

For Common Ground Digital Paper, the MIME type is application/x-dp
and the file extension is .dp.
They can be added to Web documents just like Envoy and PDF files,
as in the following:

Please
download the Digital Paper formatted form for printing.

		Note

		

You can download the Envoy viewer and Netscape plug-ins from http://www.twcorp.com/viewer.htm. Information and viewers for Common Ground Digital Paper can be found at http://www.commonground.com/index.html.

[bookmark: CreatingYourOwnPDFs]Creating
Your Own PDFs

If the high-end PDF applications aren't quite your style, you
can still use other programs you have hanging around as substitute
PDF files. Most of these file formats don't allow for the inclusion
of graphics and don't give you much control over fonts, while
the more sophisticated PDF formats do. At the same time, however,
they do give you control over things like centering, text size,
hard returns, font appearance (bold, italic, underlined), and
similar attributes.

		Note

		

PDF formats are designed to appear exactly the same on different computer platforms. These makeshift PDFs (like MS Word documents discussed below) will generally have slight differences from platform to platform and version to version.

For instance, Microsoft Word documents are an easy way to distribute
documents on the Web, as Word tend to be one of the most popular
word processors, and most other word processors can read Word's
DOC files.

But even if a user's word processor can't read DOC files, Microsoft
offers a free Word document viewer for Windows users. The Word
Viewer is designed to do just that-allow your users to view and
print Word documents. Without Word or another word processor,
they can't do any editing. But they can view and print your pre-formatted
form (see fig. 26.5).

Figure 26.5 : Using the Microsoft Word Viewer.

		Tip

		

The Word viewer can be downloaded from http://www.microsoft.com. You might want to let your users know this if you offer Word documents for downloading.

[bookmark: CreatingtheWordDocument]Creating the Word Document

Fortunately, there's nothing special you need to do to create
a Word document for viewing on the Internet. The only requirement
is that you use Microsoft Word to create the documents (or a word
processor that can save in Microsoft Word for Windows 2.0 and
above or Word for Mac 4.0 and above formats). Save the file with
a .doc extension just as
Windows and DOS users normally would.

		Tip

		

Windows 95 users can use WordPad to create, view, and edit Word documents.

Then, you can make it available as a hyperlink on your Web site,
just as with any other multimedia file, as in the following example:

Download the file in
MS Word format .

[bookmark: UsingRichTextFormat]Using Rich Text Format

Another interesting way to distribute formatted documents on the
Web is by using the Rich Text Format (RTF). RTF is a Microsoft
file format that's designed to be more sophisticated than plain
ASCII text, but less proprietary and complicated than word processing
document types. Most word processors can create, view, print,
and save documents in this format.

To make RTF format files available on your Web site, first save
your document in your word processor as an RTF file with the extension
.rtf. From there, all you
have to do is include it in a hypertext link, like in the following:

Here's
a copy of my special RTF file.

[bookmark: ExampleCreatingaPortableWordFile]Example: Creating
a Portable Word File

If you have Microsoft Word, WordPad, or any word processor available
that can save files in MS Word for Windows 2.0 or above format,
then enter Listing 26.1 in a new Word document.

Listing 26.1 A Portable MS Word File

Printable Order Form

The following information is required to complete your order in
as timely

a fashion as possible.

First Name:

Last Name:

Street Address:

City:

State:

Zip:

Daytime Phone Number:

Evening Phone Number:

Credit Card Number:

Expiration Date:

Signature:

If you prefer, please enclose a check for $43.95US ($39.95 and
$4.00 shipping).

Please mail this order form to:

BigCorp

Attn: Order Processing

001 Tallest Building

Metropolis, USA 10001

Copyright 1996 BigCorp. Please allow 4-6 weeks delivery.

Now, Microsoft Word or your word processor offers you the freedom
to alter this form with font size, emphasis, and even centering.
For instance, I'm going to center the title of this page, make
it slightly bigger than the rest of the form, and bold it. I'm
also going to boldface the "most required" information
on the form, so that users see what's most important. I'll make
the small print at the bottom of the page even smaller (see fig.
26.6).

Figure 26.6 : My new `portable' MS Word form.

		Tip

		

Use common fonts (like Times, Courier, Helvetica) when creating these documents, so that nearly any MS Word user can view them just as you create them.

[bookmark: Summary]Summary

In some instances, HTML simply doesn't give you enough control
over the documents you distribute on the Web. Whether you simply
want your "corporate image" to remain intact or if you
need to transmit format-dependent forms for official use, you
can use portable documents when HTML won't work.

Adobe Acrobat is easily the most popular PDF format, and adding
these documents to your Web pages is as simple as creating a hypermedia
link. Acrobat files can be read with the free Acrobat viewer program
for most computer platforms. If you include Acrobat or any other
formats, like Envoy or Common Ground Digital Paper, you'll need
to correctly set the MIME type for your server. You'll also want
to point your user to the correct Web site for downloading the
appropriate viewer software.

The "poor man's" portable document format might just
be MS Word files, or even Rich Text Format (RTF) files. Both of
these formats are widely supported by Microsoft and other word
processing products. Microsoft even offers a Word Viewer program
free on the Web. While control is not as rich as with true PDFs,
these are good, inexpensive substitutes for documents that are
still more reliably rendered than HTML.

[bookmark: ReviewQuestions]Review
Questions

		True or false. PDFs give you increased control over the physical
appearance of your documents.

		Can Adobe Acrobat files be used as hypertext documents?

		Which PDF is the most popular on the Web?

		In most cases, how are PDFs handled by the user's Web browser?

		To use Microsoft Word files as PDFs, what version of Word
should you save your documents in?

		What's the difference between RTF files and ASCII files?

[bookmark: ReviewExercises]Review
Exercises

		Get a copy of Adobe Acrobat from http://www.adobe.com
and configure it as a helper application for your Web browser.
Now, download and view a .pdf
file. (Many are available on Adobe's Web site.)

		Add an Adobe .pdf file
to your Web site, and then download it (over the Internet) with
your browser. Does it load properly into the Acrobat helper application?

		Create a Word document for distribution on your Web site,
then download it over the Internet. If possible, use a different
computer to download the Word document and view it in Word or
the Word viewer. Does it look any different?

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch27.htm

Chapter 27

Creating HTML Documents with Netscape
Gold

CONTENTS[bookmark: CONTENTS]

		Editing HTML With Netscape Gold
		Example: Checking Under the Hood

		Creating HTML List Items

		Changing List Types

		Creating Definition Lists

		Inserting
 and <HR>

		Hyperlinks, Images, and Head Elements
		Adding Hyperlinks

		Adding Images

		Editing the Head

		Example: Putting it All Together

		Summary

		Review Questions

		Review Exercises

Up until now, all of the HTML page creation you've done has been
with a standard text editor and a Web browser for viewing. But
that isn't the only way to go. In this chapter and the next few
chapters, you'll learn about some of the programs that are now
making it possible for you to create HTML documents without resorting
to hand entering tags. While some of these products are still
developing, they're at least a great way to create basic sites,
which you can hand edit later.

In this chapter, you'll learn specifically about Netscape Gold,
the special edition of Netscape Navigator that includes the Netscape
Editor. This editor allows you to create HTML documents in a what-you-see-is-what-you-get
(WYSIWYG) environment.

		Note

		

Netscape Gold is actually a commercial product available from Netscape Corporation. Netscape offers a shareware "try and buy" deal or (sometimes) a free beta test version of Netscape Gold for general downloading. You might want to visit http://www.netscape.com/ to see what's currently available.

		Why Edit By Hand at All?

		

I wouldn't be surprised if you were wondering why I bothered to write an entire book about editing HTML by hand when tools like Netscape Gold exist. Well, In my defense, I've got some answers to that.

First, without a pretty solid knowledge of how HTML works, using many HTML editors, especially Netscape Gold, could get you into some trouble. Netscape is particularly bad about giving you options in its menu and button bar without making it clear what
standard they adhere to. Netscape extensions are rolled right in with HTML 2.0 and HTML 3.0 level tags and attributes.

Also, many editors, Gold included, don't offer complete support for all of the tags and HTML constructs you might want to use. The Gold editor has no easy way to create HTML tables, for instance, and only a few nods to creating frames.

While it's true that editing basic HTML in these editors can be easier and more convenient than using a plain text editor, I feel like you should know what you're doing, and what's happening behind the scenes. Having read this book, you know how HTML and
extension tags work. If Netscape Gold (or others) makes that easier, fine.

Chances are you'll still need to get your hands dirty with HTML to make your pages great.

[bookmark: EditingHTMLWithNetscapeGold]Editing
HTML With Netscape Gold

To begin the Netscape Gold HTML Editor, simply choose File,
New, Blank. What appears next is the Netscape Gold HTML
Editor (see fig. 27.1). From here, you can simply begin typing
your HTML document.

Figure 27.1 : The WYSIWYG HTML Editor in Netscape Gold.

		Tip

		

Choosing From Template or From Wizard in the New Document menu gives you access to templates and walk-throughs designed by Netscape to make Web document creation easier.

The Netscape Gold Editor is really designed to be used much like
a standard word processor. Notice that the toolbar across the
top gives you the option of making text bold, italic, or teletype;
choosing different font sizes; and even inserting images and creating
hyperlink anchors by simply pressing buttons. Using just the toolbar,
it's simple to create a basic HTML page.

For instance, to create a header for your page, enter the text
for the header, like the following:

Welcome to my Page

Then, highlight the text by dragging the mouse pointer from one
end to the other. Now, using the pull-down menu in the Editor's
toolbar, change the text from Normal to Heading 2, or another
heading level. The text will change in the editor window to suggest
the new "look" of your text (see fig. 27.2).

Figure 27.2 : HTML `markup' in Navigator Gold.

Of course, like a good word processor, you could also choose to
change the text to a heading level first and then type. For instance,
use that same pull-down menu to change the appearance to Heading
6. Now, back in the Netscape Editor window, type some text like:

Copyright 1996. Do not duplicate without
permission.

Notice that it comes out looking just as if it were between <H6>
tags (see fig. 27.3).

Figure 27.3 : Changing the HTML types before typing.

In fact, that's exactly what Netscape Gold is doing-it's putting
your text between HTML tags. To prove it, let's try the following
example.

[bookmark: ExampleCheckingUndertheHood]Example: Checking Under
the Hood

In this example, you'll create a simple HTML document in the Netscape
Gold Editor. Then, you'll take a look at it with your trusty text
editor (like Notepad). You'll see that all Netscape Gold is really
doing is basic HTML markup-it just has a fancy interface.

Enter Listing 27.1 in the Netscape Gold Editor.

Listing 27.1 goldtest.html A
Sample Netscape Gold Document

Products

All of our products here at BigCorp are designed with the consumer
in mind. It's more important to us that you be happy with our
products and services than it is that we make a profit. If we
can make money, so much the better, but we like to think of ourselves
as a charitable organization.

The following is a list of our more popular product lines:

Fine Jewelry

Luxury Automobiles

Cruises and Exotic Vacations

Deforestation Services

Chemical Pollutants

Indoor Mall Construction

With that entered, there's some formatting you should do. For
instance, highlight the word "Product" and change it
to a heading (perhaps Heading 2) with the pull-down menu in the
Editor button bar. Then, as your heart desires, change text in
the document to bold, italics, or teletype using the appropriate
buttons. Then, choose File, Save to save the document
as goldtest.htm. Now is when
you see Netscape Gold's secret.

Using WordPad or a similar text editor, open the document goldtest.htm.
Anything look familiar (see fig. 27.4)? Again, this is just regular
HTML markup.

Figure 27.4 : Netscape Gold just creates standard HTML documents.

		Note

		

Notice something else about this document? It doesn't quite follow all of the conventions that you've set up for HTML documents in this book. Most documents created by the Gold Editor and others will have slight variations in the way they use HTML tags,
especially where the standard itself allows for some flexibility. This isn't necessarily bad, although I believe the way you've learned it in this book is the most complete and elegant. If you disagree with the HTML layout created by a special editor,
here's your chance to change it. Just edit away in Notepad!

[bookmark: CreatingHTMLListItems]Creating HTML List Items

The convenience of the Gold Editor doesn't really stop with basic
HTML markup, either. One of the typical HTML elements you may
want to add to your documents is an HTML list. This is done in
two steps, and you can go about it a number of ways. Start by
entering the text from the previous example:

Fine Jewelry

Luxury Automobiles

Cruises and Exotic Vacations

Deforestation Services

Chemical Pollutants

Indoor Mall Construction

Now, highlight all of the above items using the mouse. When you've
got them all selected, choose List Item from the pull-down menu
you used earlier for heading tags. This changes all of the text
to list items, just as if you'd typed them after the list item
tags. It also automatically encloses the list in
tags, so that the items appear with bullet points next to them
(see fig. 27.5).

Figure 27.5 : Creating lists in the Gold Editor.

As with other markup in the Gold Editor, it's also possible to
select the list item option from the pull-down menu first, then
type your text. All the text you enter will be of type list item
until you change it back to normal or another tag type.

[bookmark: ChangingListTypes]Changing List Types

Once you have all of your text entered as list items, changing
the type of list (ordered or unordered) is only a menu item away.
Open the Properties menu and choose Text. The Properties dialog
box appears. Then click the Paragraph tab (see fig. 27.6).

Figure 27.6 : The Properties dialog box with the paragraph tab open.

Changing the list type is simple. In the Additional style
drop-down list box, choose List. Then, in the section marked List,
choose a Style for the list and a Bullet or Number
style if appropriate. Click OK and you've got yourself a new list
type!

		Note

		

Notice that this dialog box allows you to use Netscape-specific HTML extensions for bullet types and numbering schemes. If you elect to use these, realize that not all of your users will be able to see them.

[bookmark: CreatingDefinitionLists]Creating Definition Lists

Definition lists work only slightly different than our other list
types. Starting with the same sample text, let's change it to
a definition list:

Fine Jewelry

Luxury Automobiles

Cruises and Exotic Vacations

Deforestation Services

Chemical Pollutants

Indoor Mall Construction

It's okay if you still have this text in the form of another list.
Simply select all of the above text and use the pull-down menu
to change it from normal or list item text to description title
(DT) text. Now this text is treated as if it's <DT>
text between <DL> (definition
list) tags. So far so good.

		Note

		

For some reason, Netscape has decided to call HTML definition lists (DL), terms (DT), and definitions (DD) "description lists," "description titles," and "description text," respectively. I guess that makes some sense, but
I've never heard those names before either. Don't let them confuse you.

The next step is to add text between each <DT>
line. Just use the Return key to create a space between the list
items, and type the text you want to define as your description
text (DD). Then, select that text with the mouse and use the pull-down
menu to change it to DD text. It's that simple (see fig. 27.7).

Figure 27.7 : Creating a definition list.

[bookmark: InsertingBRandHR]Inserting

and <HR>

This one isn't quite as obvious from the outset. It's clear that
Netscape Gold creates new <P>
paragraph tags whenever you simply hit Return in the Editor window
(except when <P> is
inappropriate, as with list elements). But how do you create a

 tag?

Just press Shift+Return on your keyboard. That's all there is
to it. For instance, try entering the following:

How do I love thee?

Press Shift+Return, and then enter the following

Let me count the ways.

Were you to view this in Notepad or WordPad, you'd see that the

 tag has been inserted
where you hit Shift+Return. If you only use the Return key, then
Netscape will use the <P>
tag instead.

Inserting an <HR> tag
is even easier. Simply place the cursor at the point in the document
where you'd like the horizontal ruler to appear, then select Insert,
Horizontal Line from the menu. Your line is then inserted
in the document.

To change the style of your horizontal line, select it in the
Editor window, and then choose Properties, Horizontal
Line. In the Horizontal Lines Properties dialog box that appears,
you can change the dimensions, alignment, and shading for the
line. Click OK when you're done, and the line will change in the
Editor window.

		Note

		

Again, these <HR> properties are Netscape-specific. If you change <HR> properties, realize that not all your users will be able to view the modified line.

[bookmark: HyperlinksImagesandHeadElements]Hyperlinks,
Images, and Head Elements

Of course, the Gold Editor allows you to add both hyperlinks and
images to your documents. Both are accomplished through commands
in the Insert menu. You can also create clickable images
rather easily. And, while you can designate a graphic as an image
map, there is currently no way to use the USEMAP
attribute to create client-side image maps in the Gold Editor.
(You can always manually edit files created otherwise in the Gold
Editor.)

[bookmark: AddingHyperlinks]Adding Hyperlinks

Adding a typical hypermedia or hypertext link is just about as
easy as regular markup in the Gold Editor. Simply highlight the
text, choose Insert, Link from the menu, and you're
presented with the Properties dialog box (see fig. 27.8). (You
can also click the Make Link button on the button bar.) Make sure
that the Link tab is selected. Now you can either enter the name
of the URL to the linked document (or file) or you may use the
Browse File button to find the file on your hard drive.

Figure 27.8 : The Properties dialog box.

		Note

		

If you're currently not working with files resident on the Web server, remember that you'll need the correct relative path to your files (once they're on the Web server) in this dialog box. So take special care when using the Browse File
button.

When you've completed entering the URL and clicked OK, the highlighted
text will now act as a link in your Web document.

[bookmark: AddingImages]Adding Images

To add an image file to your document, place your cursor at the
point in the editor where you would like the image to appear.
Then, choose Insert, Image. (You can also click
the Insert Image button on the button bar.) The Properties dialog
box should appear with the Image tab selected. In this dialog
box, enter the URL to the graphic that you want to include. Or,
you can use the Browse button to find the file.

		Note

		

With images, using the Browse button actually causes the graphic file to be copied to the current directory. If this isn't what you want, check the Copy image to the document's location checkbox at the bottom of the dialog to turn this feature off.

You should also enter absolute URLs in the Image file name field when using graphics already on the Web (or in specific directories on your own Web server).

Now, you have some more choices to make. First, you can use the
Alignment section of the Properties dialog box to decide how text
will be aligned relative to the graphic. Remember that only top,
bottom, and middle are recognized in HTML 2.0. (Left and right
are HTML 3.0 level standards.) In the Dimensions section, specify
the height and width for the image. In the Space around image
section, you can decide how much space to put between the image
and surrounding text (see fig. 27.9).

Figure 27.9 : The Properties dialog box with the image tab open.

To cause this graphic to be a clickable image, click the Link
tab and enter an URL in the Link to section. When you click OK,
your graphic should appear in the document, and clicking it should
cause it to appear to act as a clickable image (although your
linked page won't load). To test this for sure, click the View
in Browser button in the Gold Editor's button bar, and test the
document in Navigator.

[bookmark: EditingtheHead]Editing the Head

The Gold Editor automatically adds <HEAD>
and <BODY> tags to
your document, but since you can't edit the HTML directly, the
Editor gives you the opportunity in a dialog box. Choose Properties,
Document. The Document Properties dialog box that appears
allows you to enter various head properties (see fig. 27.10).

Figure 27.10 : Adding information to the document's head.

Notice that this dialog box uses a tabbed interface that will
also allow you to add more advanced head elements as well as background
images and document color information.

[bookmark: ExamplePuttingitAllTogether]Example: Putting it
All Together

Let's take the document you created in Listing 27.2 and add some
of the things you've learned. Enter Listing 27.2 in the Netscape
Gold editor-or use the document you created in the first example.

Listing 27.2 gold2.html Advanced
Editing in Netscape Gold

Products

All of our products here at BigCorp are designed with the consumer
in mind. It's more important to us that you be happy with our
products and services than it is that we make a profit. If we
can make money, so much the better, but we like to think of ourselves
as a charitable organization.

The following is a list of our more popular product lines:

Fine Jewelry

Luxury Automobiles

Cruises and Exotic Vacations

Deforestation Services

Chemical Pollutants

Indoor Mall Construction

If you've already turned the product lines into list items, great.
If not, highlight them all together, then choose List Item from
the pull-down menu in the button bar.

Now, select each product line name individually and give each
a hypertext link. Click the Link button in the button bar or choose
Insert, Link from the menu. In the Links dialog
box, enter an URL for your link, or click Browse to choose a local
file. Click OK to change the text to a link.

Next, you'll enter a graphic (use anything handy). Find a good
place in your document for it, andthen click the Image button
or choose Insert, Image. In the Image tab of the
Properties dialog box, give an URL or path for the image, or choose
to Browse for the graphic file. If you'd like this image to be
clickable, choose the Link tab and then enter an URL.

Finally, choose Properties, Document. In the Document
Properties dialog, give your document a title and enter any other
information you feel like giving (name, description, etc.). Click
OK and, as far as this example is concerned, you're done. Try
viewing it in the Netscape Browser (see fig. 27.11).

Figure 27.11 : The final product in Navigator.

[bookmark: Summary]Summary

You've spent most of this book learning about raw HTML text-how
to create Web documents using nothing more than a text editor.
More and more programs are appearing, though, that try to make
creating HTML documents easier and more friendly. Netscape Gold
is one of those programs.

Creating basic HTML pages is fairly easy, since Netscape Gold
features an Editor interface that's a lot like popular word processors.
Bold, italics, teletype, and other text manipulation is easy.
You can also create HTML lists, add horizontal rulers, and use
the
 tags to end
lines.

The heart of your Web site-hyperlinks and images-are easy enough
in Netscape Gold as well. Gold doesn't have great support for
image maps (and no client-side support), but the basics are easy
enough. Plus, once you've created an HTML document in Netscape
Gold, you can always open in a text editor for further enhancements.

[bookmark: ReviewQuestions]Review
Questions

		Is it possible to change HTML styles in Netscape Gold before
typing the text for a particular style?

		To what other sort of computer application is Netscape Gold
similar?

		In what type of file does Netscape Gold save your HTML? Can
you edit this with other programs?

		True or false. Changing text to a list item in Netscape Gold
automatically creates an HTML list.

		What menu command allows you to change from an unordered to
an ordered list type?

		What does Netscape Gold call HTML definition lists?

		Is there a menu command for
?

		Why should you be careful when using the Browse button to
create hypertext links?

		How is the Browse button for images different from the Browse
button for hyperlinks?

		Can you type the Title of your document directly in the document

window?

[bookmark: ReviewExercises]Review
Exercises

		Use Netscape Gold's definition lists and hyperlinks to create
a page of book reviews. Clicking the book's name shows the user
a graphic of the book. For instance, an entry might be the following:

HTML By Example

The best book ever written for learning HTML the right way.

		Based on the example above, add another definition (DD) line
that includes a link to order the book, the author's name, copyright
information, and price. For instance:

HTML By Example

The best book ever written for learning HTML the right way.

Todd Stauffer, Copyright 1996, $34.99. Order this book.

		Create a button bar interface using Netscape Gold. (No image
map is necessary; just create a series of clickable images.)

		Add client-pull abilities to your Web page using Netscape
Gold.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch28.htm

Chapter 28

Using Microsoft Internet Assistant

CONTENTS[bookmark: CONTENTS]

		Basic Markup in Internet Assistant
		HTML Lists

		Definition Lists

		Saving Your HTML Document

		Example: Simple Markup With Internet Assistant

		Links, Images, and Head Elements
		Hypertext Links

		Bookmark Links

		Inserting an Image

		Editing <HEAD> Elements

		Example: Finishing the Page

		Adding Form Fields
		Example: A Simple Form

		Summary

		Review Questions

		Review Exercises

If your main HTML editor is Microsoft Word, or you have a copy
of Microsoft Word and you've been using something else, you may
really like Internet Assistant. Although Internet Assistant (IA)
only offers basic support for HTML tags in your documents, that
might not be so bad. Especially since there's nothing wrong with
editing the rest of the document by hand.

		Note

		

Internet Assistant is a free add-on for Microsoft Word version 6.0 and above. A separate version is available for either Windows 3.1 or Windows 95. (A Mac version should also be available by the time you read this.) You can download them from Microsoft's
Web site at http://www.microsoft.com/.

Internet Assistant actually adds two different elements to Microsoft
Word. After installation, a few new menu items exist for your
use, including Insert, Hyperlink. But Internet Assistant
also adds the ability to view basic HTML documents from within
Microsoft Word with the command File, Browse Web
(see fig. 28.1).

Figure 28.1 : The MS Word/Internet Assistant browser.

[bookmark: BasicMarkupinInternetAssistant]Basic Markup in Internet
Assistant

Creating HTML documents in Internet Assistant isn't really much
different from creating a typical Word document. The key is to
use the HTML template. In Word, choose File, New.
In the new document, select the HTML template for use with your
new document. Then place your cursor and begin typing. You can
use bold, italics, or underlining as you type.

You can also use the HTML style sheet definitions to help you
change basic text to HTML markup. Consider the example, just typed
directly into a new HTML-template Word document, like the following:

BigCorp's Customer Service Pages

To change this text from normal text to a Heading 2 (<H2>),
select the text with the mouse in Word, and then pull down the
style menu and select Heading 2. Word automatically formats the
selected text to conform to the HTML standard for Heading 2. As
an added bonus, you can see how it might look in a browser window
(see fig. 28.2).

Figure 28.2 : Changing text to an HTML header.

		Tip

		

As with Word templates in general, you can always select the style first, then type your text.

[bookmark: HTMLLists]HTML Lists

Creating a list in Internet Assistant is pretty easy, too. For
an ordered or unordered list, all you need to do is enter the
text for your list, hitting Enter after each. An example might
be:

Downloadable Support Files

Frequently Asked Questions

Send Us a Note

Toll-Free Numbers

The next step is to select the entire list with the mouse. With
all of the above highlighted, you can either select the appropriate
list button in the buttonbar or select the list type in the pull-down
style menu. For instance, if you click the Bullet List (UL) button
in the button bar, you'll get something like what's shown in figure
28.3.

Figure 28.3 : Changing regular text to a bulleted list.

If you're interesting in indenting list items, like when creating
an outline, the Internet Assistant will let you do that, too.
Use an unordered list like the following:

Section 1

Chapter 1

Part 1

Part 2

Chapter 2

You can use the Internet Assistant button bar to move some of
these over. First, you can select all of the text under Section
1 and click once on the Increase Indent button to move everything
over once. You can also choose Format, Increase
Indent. Select Part 1 and
Part 2, or Chapter 1,
and you can click the button once more to indent those, too (see
fig. 28.4).

Figure 28.4 : Indenting (nesting) your lists.

[bookmark: DefinitionLists]Definition Lists

Some HTML mark up in Internet Assistant requires that you follow
special instructions, depending on the Windows version you're
using. Internet Assistant 1.0 for Windows 3.1 handles definition
lists differently from IA 2.0 for Windows 95. Start by typing
the first word from your list, then press Tab and type the definition.
You do this for your entire list, as in the following example:

Mr. Ted Smith

 President,
CEO. Ted's a huge Cubs fan, an avid golfer,

father of three daughters and Carol's husband. He also works here.

Ms. Gina Miles

 CFO.
Gina enjoys hiking, mountain biking and weekend lecturing. Also
a Cubs fan, Gina enjoys attending the games with her husband Mike.

Mr. Rick Felps

 EVP,
Marketing. Rick's passion is his '67 Mustang

Convertible, which he often drives to the lake on weekends for
fishing outings. Rich hates the Cubs, preferring the Phillies.

Now, by selecting the text and choosing the definition list (DL)
option from the pull-down menu, the names will become definition
terms (DT) and the descriptions become definitions (DD).

In Windows 95, things are a little more involved. Using the sample
text, choose all of the text and make it a definition list using
the pull-down menu. Then, select each element separately and make
it either a definition item or definition, as appropriate. That
will cause the definitions to standout from the definition terms
(see fig. 28.5). You can also hit Return after each DT to place
the definitions below their respective terms.

Figure 28.5 : Changing regular text to DL terms and definitions.

		Tip

		

You can also assign shortcuts to common HTML styles. Choose Format, Style to open the Style dialog box. Pick the correct style, choose Modify, and then select the Shortcut key. Then you just enter a keyboard combination for that style.

Notice that Internet Explorer's pull-down style menu will also
let you create a <DL COMPACT>
list. To do this, follow the appropriate procedure above, but
choose definition compact instead of definition list.

[bookmark: SavingYourHTMLDocument]Saving Your HTML Document

Microsoft Word defaults to the HTML file format when you use the
HTML template (in Internet Assistant) to create your document,
so you can basically save your Web page in the same way that you
might save a regular MS Word document.

With an HTML document active, choose File, Save.
The Save As dialog box appears (see fig. 28.6). Give your file
a name in the File name box. Make sure HTML Document is
selected in the Save as type menu at the bottom of the
dialog box. When you're finished, choose Save. Now you've
got an HTML document for your Web site.

Figure 28.6 : Saving your HTML documents.

[bookmark: ExampleSimpleMarkupWithInternetAss]Example: Simple
Markup With Internet Assistant

Let's create a simple page in Internet Explorer and use what you've
learned so far to create a new HTML document. To begin, create
a new Word file based on the HTML template. You may also want
to save this file to give it a name. Then, just type Listing 28.1
(or something similar).

Listing 28.1 iatest.htm A
Sample Page for Internet Assistant

BigCorp's Customer Service Pages

To help you get the most out of our products, or just help if
you're having a problem, we've created the following Web pages
with downloading files, tips, tricks, fixes and answers to your
questions. Just click any link to get to that page.

Downloadable Support Files Fixes, drivers,
free stuff, utility programs, documents and even a game or two
written by our engineering and tech support staffs. If you can't
find it here, BigCorp hasn't written it. (Or you'll have to buy
it from us!)

Frequently Asked Questions Listing of
questions that our tech support reps hear all the time. They're
willing to answer them again, but that just means they get frustrated
and take more breaks.

Send Us a Note Send
email directly to the most prolific answer guy on our support
staff.

Toll-Free Numbers Phone numbers for tech
support, customer service, and, for good measure, we've even thrown
in our toll-free, 24 hour sales numbers. Good of us, eh?

Now the trick is to turn this into a more interesting page. You
can start with the heading by selecting the entire heading and
changing it to a Heading 2 using the pull-down style menu.

In the descriptive text (first paragraph), there's nothing particularly
special you need to do. You can always add bold and italic text
where it seems appropriate by highlighting the text and clicking
the buttons in the Word/Internet Assistant button bar. You could
also experiment by turning the entire paragraph into blockquote
text or other HTML mark up.

		Tip

		

The Horizontal Rule button-or the Insert, Horizontal Rule menu command-can be used to insert an <HR> line in your document.

In the next section, notice that I've used <TAB>
to prepare it to be a definition list. Select the entire section
of text and change it to a definition list, DL in the pull-down
style menu. (In IA 2.0, you also need to select each element separately
to assign it as a DT or DD.)

Now, save the file as an HTML document, along with the appropriate
file extension. You're set. To view the document in Word's built-in
browser, click the Switch to Browser button (far left on the second
row of the button bar), or select View, Web Browse. It should
look something like what's shown in figure 28.7.

Figure 28.7 : Your example in Word's new built-in browser.

		Note

		

You can also use the Preview in Browser button (the rightmost button on the first row of the button bar) to load the document directly into the default Windows 95 browser. Or, choose File, Preview in Browser. To work with your document as a
plain text file, choose the View, HTML Source command. Word will close the HTML document (and HTML template) and re-open the file as a text file, complete with the tags and other markup.

After you've viewed the document, you can switch back to edit
mode by clicking the Switch to Browser button again, which has
now changed to a pencil icon.

[bookmark: LinksImagesandHeadElements]Links, Images, and Head
Elements

Internet Assistant also gives you the ability to add the trappings
of good Web pages, including hypertext links, images, and <HEAD>
information. For the most part, you can do just about anything
possible in HTML 2.0, and it's all fairly straightforward.

[bookmark: HypertextLinks]Hypertext Links

To insert a hypertext link, highlight that text and click the
Hyperlink button, or choose Insert, Hyperlink. The
Hyperlink dialog box opens allowing you to enter or edit text
for the link and choose a local file or URL as the document (or
multimedia file) this link references (see fig. 28.8). Enter or
edit the text and choose a file. Click OK when finished and your
hypertext link will appear in the document.

Figure 29.8 : Creating hypertext links.

[bookmark: BookmarkLinks]Bookmark Links

Word calls local HTML NAME
anchors "bookmark" links, and allows you to create them
with the help of Internet Assistant. Remember that NAME
links have two different components: a calling link and a NAME
anchor to which the link points.

You need to start by creating the bookmark link (NAME
anchor). To do this, place the cursor where you want the bookmark
anchor to be in the document. Then, you can click the Bookmark
button on the button bar or choose Edit, Bookmark
from the menu. In the Bookmark dialog box that appears, enter
a name for this bookmark.

To create the calling link, use the same Hyperlink button or choose
Insert, Hyperlink. After entering text for the link,
choose the bookmark name from the pull-down menu at the bottom
of the dialog box. Make sure it's selected, and then click OK.

[bookmark: InsertinganImage]Inserting an Image

Inserting an image in an Internet Assistant HTML document is similiar
to inserting a hypertext link. Start by placing your cursor in
the document where you'd like the image to appear. Next, click
the Picture button or choose Insert, Picture. In
the resulting dialog box, choose the name of an image. You can
also enter ALT text for displaying
instead of the graphic in text-based browsers.

To determine whether or not this image will be a server-side image
map and how text will align to it, click the Options tab in the
Picture dialog box (see fig. 28.9). Now you can choose the Image
is a sensitive map option to add the ISMAP
attribute and how you want the image aligned. (Remember that LEFT
and RIGHT are not HTML 2.0
values.) Click OK in both dialog boxes and you've inserted your
image.

Figure 28.9 : Adding a picture with advanced settings.

Notice that you can also enter video clips with the Picture dialog
box (click the Video tab). This uses Microsoft Explorer's proprietary
tags for adding and playing AVI files.

[bookmark: EditingHEADElements]Editing <HEAD>
Elements

Since Internet Assistant doesn't give you direct access to the
HTML tags in your document, you'll need to use a special command
for <HEAD> elements.
On the button bar, click the Title button, or choose File,
HTML Document Info. The HTML Document Head Information
dialog box appears.

In this dialog box, enter the Title for your Web document. Click
OK if that's all you need to add. If you need to add a Base address,
click the Advanced button in this dialog box. Enter the URL in
the HTML Document Head Info-Advanced field. You can also click
the Is Index checkbox if you'd like this page to be an index.

To enter custom HTML text in the head of your document, click
the Meta button (this isn't just for the <META>
tag, as used for client-pull, but any <HEAD>
tags). In the Insert HTML Markup textbox, you can enter any HTML
code you'd like to have appear in the head of your document. When
you're finished, click OK.

		Note

		

You can use a similar command to add your own tags within the body of your document. With the cursor placed at the point in your document where you want to enter the special tag, choose Insert, HTML Markup. In the Insert HTML Markup dialog
box that appears, enter the special HTML markup and click OK.

[bookmark: ExampleFinishingthePage]Example: Finishing the Page

Now, let's take the page you created in the first example and
add links, images, and a title. If you use the same document (complete
with markup) that you used in the original example, that's great.
If not, re-enter the text from Listing 28.1 and save it as iatest2.htm.

Let's start by adding an image to this page just before the heading.
Place the cursor, and select the Picture button or choose Insert,
Picture. The Picture dialog box should appear with the
Picture tab open. In this dialog box, choose a graphic
file. When you click OK, the picture will appear in your document.
(You may want to press Return after the graphic to place the heading
text on the next line.)

Now let's create the hypertext links for the definition terms.
Highlight each term with the mouse (e.g., Downloadable Support
Files) and click the Hyperlink button, or choose Insert,
Hyperlink. Your text will appear in the Text to Display
textbox. Now you can enter the file, URL, or bookmark to which
this link should point.

Finally, let's give your document a title. Click the Title button
or select File, HTML Document Info. In the dialog
box, enter a title for this page and click OK. You're done. It
should look something like figure 28.10 in Word's built-in browser.

Figure 28.10 : Your example page.

[bookmark: AddingFormFields]Adding Form Fields

To create a form and add your first form field, choose Insert,
Form Field command. In the New Form dialog box that appears,
you'll get a little bit of instruction for entering form elements.
If you don't want to see this dialog every time you add forms
to a new document, click the Don't Display This Message Again
checkbox. Then click OK.

In the list of radio buttons that appears, choose a field type
to add. (I'm starting with a text field.) Next stop is the Text
Form Field dialog box, which allows you to name the element and
set some basic characteristics (see fig. 28.11).

Figure 28.11: Adding a form field.

To add more fields, you can go straight to the Forms controls
and click the type of field you want to add. Make sure you give
each a unique name, just as if you were hand editing the form.

In order to get the form data to your form script, you need to
set up the Submit button. When you've finished adding other script
elements, click Submit in the Forms control window. In the Submit
Button Form Field dialog box that appears, you can name the button,
change the button's label (value), and enter an URL for the ACTION
attribute (see fig. 28.12). You can also use the pop-up menu to
choose the METHOD for sending
form data.

Figure 28.12 : Creating the Submit button.

[bookmark: ExampleASimpleForm]Example: A Simple Form

You can't do much of a listing here, since you're not dealing
in much raw HMTL or text. Let's create a new document that includes
just two form fields and a Submit button.

If you want to, you can start by jazzing the form up with a logo
graphic. Then, underneath it, type something like the following:

Customer Service Form

Your name:

Your email:

Change the first line to a Heading 2 using the pull-down menu,
but leave the other text as is. Place the cursor to the right
of the second line and choose Insert, Form Field
to create a form. Select Text from the Form Field menu and enter
a name for this field in the Text Form Field dialog box.

Go through the same thing just to the right of the third line,
except this time you can use the Forms controls to create the
text field (use the top left button). Remember to name it something
different, like "e-mail."

Back in the document, press Return after the second text field
and click the Submit button in the Forms controls. In the Submit
Button Form Field dialog box, name the button, give it a label,
enter an URL for your ACTION,
and choose a METHOD. Click
OK and you're done. Figure 28.13 shows this form in Word's Web
browsing mode.

Figure 28.13 : Your form through the MS Word browser mode.

[bookmark: Summary]Summary

Internet Assistant is designed to add Web browsing and editing
functionality to the Microsoft Word word processor. Downloading
this free add-in adds two different components. One allows you
to view HTML documents from within Word. The other adds an HTML
template and special menu/button bar commands for creating and
editing Web pages.

Basic HTML is about as simple as creating a regular Word document-just
type text and apply styles. Generally speaking, everything can
be done a couple of different ways. You can choose to click the
Bold button, for example, or you can choose Style, Bold.

Creating lists is also fairly simple in Internet Assistant, although
creating definition lists can be a little tricky. Hypertext links,
images, and head elements are all added via menu items and dialog
boxes. For NAME hypertext
links, IA uses Word's bookmark system.

The key to IA is its ability to save files in HTML format. It's
this "translator" that does the real work once you've
created your page. By saving your document as an HTML file (the
default when you use the HTML template), you're able to edit it
in a text editor and display it on the Web.

[bookmark: ReviewQuestions]Review
Questions

		Is Internet Assistant an application program? Where do you
get it?

		Is it possible to select an HTML style first, then type your
text?

		In what type of file does IA save your HTML? Can you edit
this with other programs?

		True or false. Indenting list items actually creates a "nested"
list.

		What command allows you to change from an unordered to an
ordered list type?

		What is the major difference between definition lists in IA
1.0 versus

IA 2.0?

		True or false. Since HTML documents are just ASCII text, it's
acceptable to save your IA HTML document as "text only."

		What is the HTML equivalent of Internet Assistant's bookmark
link?

		Which do you create first: the bookmark link or the calling
link?

		What element controls the SUBMIT
and METHOD information for
your form?

[bookmark: ReviewExercises]Review
Exercises

		Use Internet Assistant's definition lists and hyperlinks to
create a page of book reviews. Clicking the book's name shows
the user a graphic of the book. For instance, an entry might be:

HTML By Example The best book ever
written for learning

HTML the right way.

		Based on this example, add another definition (DD) line that
includes a link to order the book, the author's name, copyright
info, and price. For instance:

HTML By Example The best book ever
written for learning

HTML the right way.

Todd Stauffer, Copyright 1996, $34.99. Order this book.

		Create a text-based menu-bar using IA. For instance:

Index | Product Pages | Customer Service
| Feedback | About Us

		Add client-pull abilities to your Web page using Internet
Assistant.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch29.htm

Chapter 29

HTML with Adobe PageMill for Macintosh

CONTENTS[bookmark: CONTENTS]

		Basic Markup in PageMill
		HTML Lists

		Definition Lists

		Inserting <HR>

		Links, Images, and Special HTML
		Adding Links

		Adding Images

		Manipulating Images

		Transparency and Client-Side Maps

		Entering Unsupported HTML

		Example: The Basic Page in PageMill

		Creating Forms
		Laying Out the Form

		Document Info

		Summary

		Review Questions

		Review Exercises

Heralded as one of the first HTML editors to truly make a dent
in the process of HTML creation, I have to admit that PageMill
surprised me a bit. I stand pretty firm in the opinion that the
only way to create the best HTML documents is with a text editor,
but PageMill is beginning to change that. It's actually fun to
use and impressively powerful.

That said, even PageMill has room to grow toward properly supporting
and formatting HTML documents, and some advanced capabilities
are still out of reach for PageMill users. You'll still end up
editing some HTML by hand, but, fortunately, you can even do most
of that directly in PageMill.

		Note

		

The other serious drawback to Adobe PageMill is the cost-currently about $100. That's more expensive than Netscape Gold, which includes a browser, mail interface, and newsgroup reader. Of course, Netscape Gold is also a Windows-only application (Mac
version due mid-1996). PageMill is currently Mac-only, although its popularity has convinced Adobe to announce a future Windows version. A demo of PageMill is available from http://www.adobe.com/Apps/PageMill/pagedemo.html.

[bookmark: BasicMarkupinPageMill]Basic
Markup in PageMill

Starting with a new document (choose File, New Page), entering
basic text is as simple as typing characters in the document window.
The PageMill interface doesn't really offer buttons for bold,
italics, and so on, but these commands are readily available under
the Style menu. In addition, most text styles follow the traditional
Mac command-key shortcuts, so that „+B
will allow you to enter bold text, and „+I
lets you type subsequent text in italics. Table 29.1 shows the
command key equivalents for common HTML text styles.

		Tip

		

Clicking the paper/pen icon (or the globe icon) in the top right corner switches PageMill between "edit" and "preview" mode.

Table 29.1 Command Key Shortcuts for HTML
Tags

		Keyboard Shortcut		HTML Equivalent
		Meaning

		Shift+„+P
		plain text		Ends other pages

		„+B
		,
		Bold

		„+I
		<I>, </I>
		Italics

		Shift+„+S
		,
		Strong emphasis

		Shift+„+E
		,
		Emphasis

		Shift+„+C
		<CITE>, </CITE>
		Citation

		Shift+„+A
		<SAMPLE>, </SAMPLE>
		Sample

		Shift+„+K
		<KEYBOARD>, </KEYBOARD>
		Keyboard

		Shift+„+O
		<CODE>, </CODE>
		Code

		Shift+„+V
		<VARIABLE>, </VARIABLE>
		Variable

		Option+„+(1...6)
		<H1...6>, </H1...6>
		Heading level

		Option+„+F
		<PRE>, </PRE>
		Preformatted text

		Option+„+A
		<ADDRESS>, </ADDRESS>
		Address text

		Option+„+P
		<P>, </P>
		Paragraph Text

There are two basic ways you can enter text in PageMill. Using
the keyboard shortcuts or menu commands, you can apply an HTML
tag, then type the text in that style. Or, you can select text
that's already been typed and apply the style. For instance, if
I type the following:

I cannot stress the importance of Point
#1 enough.

In plain text, I can go back with the mouse and highlight importance
then use either „+I
or the menu command Style, Italics to change the text to italic.
Selecting Point #1, I could
use Shift+„+S or Style,
Strong to apply the HTML tag
to that text (see fig. 29.1).

Figure 29.1 : Applying text style HTML tags.

PageMill requires you to use the <P>
key sequence or command more often than it should. Hitting Return
after typing a heading, for instance, doesn't automatically change
the text back to <P>
style, although that might seem to make sense. Instead, it's necessary
to use the paragraph menu command whenever you want to type plain
text.

		Tip

		

If you ever feel "stuck" in a tag's particular format, try changing back to the <P> tag with the Option+„+P combination.

[bookmark: HTMLLists]HTML Lists

Again it's possible to change to a list format, then type your
entries. The easier way to do it, though, is to type each entry
with a Return at the end, and then go back and change the style
to a list style. For instance, try typing this "list"
in plain text:

Baseball

Football

Hockey

Basketball

Tennis

Now, by highlighting the list and choosing a list style from the
Format, List menu, we can quickly turn this regular text into
an HTML list (see fig. 29.2).

Figure 29.2 : Changing plain text to an HTML list.

For hierarchical lists, you can select the list items that you'd
prefer to see indented, then choose the command Format, Indent
Right. This essentially nests a list within a list. If you again
select the indented list items (or leave them still selected)
and choose a new list style using the Format, Lists menu command,
you have effectively nested a different type of list within the
first one.

[bookmark: DefinitionLists]Definition Lists

Definition lists aren't remarkably different than other list types
in PageMill, except that they take a bit more effort. Since nothing
can be assumed about definition lists, you may need to select
and change each line individually. For instance, enter the following
plain text:

Baseball

Easily my favorite game, Baseball is still the American Pastime.

Football

My second favorite game, nothing gets me more pumped than a good
NFL game.

Hockey

Everybody gets in the playoffs, but I love watching it live.

Basketball

Not much of a pro fan, but I love the college sport.

Tennis

Of all these sports, this is the one I play the best. Never will
make pro, though.

To create the definition list, your best bet is probably to choose
the entire listing and turn everything into a definition term
with the menu command Format, List, Definition Term. This saves
about half the work. The next step is to select each definition
separately and apply the menu command Format, List, Definition.

If you prefer, of course, you can simply select each individual
entry and give it the appropriate command for definition term
or definition. Either way, it ends up looking like figure 29.3.

Figure 29.3 : Creating a definition list for your HTML document in PageMill.

[bookmark: InsertingHR]Inserting <HR>

There's pretty much just one way to enter a horizontal line in
PageMill, and it's nothing more than pressing the button that
looks like a line in PageMill's button bar. By example, you can
type the lines:

Ending of first section.

Beginning of second section.

If you place the cursor (insertion point) at the beginning of
the second line and press the Horizontal Line button in the button
bar, you've got a line (see fig. 29.4).

Figure 29.4 : Adding a horizontal line to your document.

[bookmark: LinksImagesandSpecialHTML]Links,
Images, and Special HTML

PageMill has a very simple interface for adding hypertext links
and images to your Web document. In addition, PageMill includes
impressive tools for editing images and creating transparent GIFs,
and even allows you to drag-and-drop graphics onto your document.

[bookmark: AddingLinks]Adding Links

There are a few different ways you can add links to your pages.
Probably the most common-manually entering the link-works like
the following:

		Select the text for the link.

		With the text highlighted, click in the Link Address bar (just
right of the globe at the bottom of the page).

		Enter the URL for this link. Hit Return when you're finished.

By way of example, enter the following text in PageMill or select
some text you've already entered:

Back to Index

Now, highlight the text with the mouse, and then click just to
the right of the globe in the bottom left corner of the PageMill
window. Enter an URL for this link. When you hit Return, your
text should change to a hypertext link (different color and outlined)
(see fig. 29.5).

Figure 29.5 : Adding links manually.

		Tip

		

You can test local links by switching to "preview" mode and clicking the link. The local page will appear in a new PageMill window.

Another way to add links to your pages is by using drag-and-drop.
Within PageMill, you can link to another page (if it's currently
open in its own PageMill window) by dragging the small Page icon
(next to the "title" text box at the top left of the
PageMill window) to the document that you're currently editing.
The link automatically appears with the title of the page as its
text.

To use your own text, highlight it in the document you're editing,
and then drag the other page's Page icon to your highlighted text.

You can also cut-and-paste links from one page to another. PageMill
will alter the link to make it work for the current page.

[bookmark: AddingImages]Adding Images

Adding images is also very simple, although there's a lot you
can do with an image once you've got it on the page.

The easiest way to add an image to your page is to drag-and-drop
it from another PageMill page, the Scrapbook, the Finder, or any
drag-and-drop enabled application (Adobe Photoshop, for instance).
PageMill can handle images of type GIF, JPEG, or PICT (PICTs are
automatically converted to GIFs).

To add a graphic using the filename, click the Insert Image button
in the PageMill button bar. In the resulting dialog box, enter
the filename for the image you want to insert, or choose it from
the listing. When you've got it, click Open. PageMill will open
the graphic at that point in your document.

[bookmark: ManipulatingImages]Manipulating Images

PageMill also offers some advanced features for manipulating graphics
once you have them on the page. Click once on the graphic and
notice that the graphic is highlighted with a box and drag boxes.
Click and hold on these drag boxes and you can resize the graphic
(see fig. 29.6). You can also turn this graphic into a clickable
image. With the image selected, just enter an URL in the Link
Address bar at the bottom of the page.

Figure 29.6 : Resizing and linking graphics in PageMill.

		Tip

		

As in many graphics applications, by holding down the Shift key before you select a drag box, you can resize the graphic proportionately.

[bookmark: TransparencyandClientSideMaps]Transparency and Client-Side
Maps

If you'd like to turn this graphic into a transparent GIF, double-click
the graphic. PageMill's GIF tools appear. Using the "magic
wand," you can click the color in the graphic that you'd
like to turn transparent (see fig. 29.7).

Figure 29.7 : PageMill's built-in tools for transparency and client-side maps.

		Tip

		

You can change a JPEG to a GIF by clicking the GIF button, since GIFs are required for transparency.

What else can you do? How about creating a client-side image map?
Click a shape tool and drag it over the graphic. You've just created
a hot zone. You can enter an URL for this link at the bottom of
the graphic window (click to the right of the globe) or you can
drag the Page icon from another PageMill document onto the hot
zone to create the link.

To create a "default" link, just click the entire graphic
and give it an URL. The hot zones will override this default;
clicking outside of the hot zones will cause the default to be
used as the link.

When you're done with the graphic, click the close box. You'll
be asked to save the graphic. Do so and you're done.

Actually, there's something else we need to do to create the client-side
map. Back in the actual document, make sure the graphic is highlighted
and then select Windows, Show Attributes Inspector. Now, click
the Image button at the top of the Attributes Inspector window.
Click the radio button under Behavior that's marked Map. Now you've
got a client-side map!

		Tip

		

You can test your client-side map in Preview mode if you've linked to local files.

[bookmark: EnteringUnsupportedHTML]Entering Unsupported HTML

Do you have a special tag you want to insert into the document?
All you have to do is select the Style, Raw HTML command. Then
type your HTML command, complete with brackets, like the following:

<SCRIPT>document.write("Howdy!")</SCRIPT>

That's all it takes. Notice that PageMill turns raw HTML a different
color to help it stand out from the rest of the document. In Preview
mode, the tags won't appear.

		Note

		

Of course, you can hand edit the HTML document all you want by saving it in PageMill and then re-opening it in SimpleText or another text editor. It's still plain text, and PageMill doesn't have commands for a lot of the advanced HTML you've learned in
this book.

[bookmark: ExampleTheBasicPageinPageMill]Example: The Basic
Page in PageMill

This shouldn't take any time at all. Start by entering raw text
into PageMill. Then we'll go back and clean it up, adding HTML
emphasis and markup tags. Create a new document in PageMill and
enter Listing 29.1.

Listing 29.1 pagemill.html PageMill's
Basic Page

Other Sites of Interest

We've included a number of other sites below that you might find
interesting if you use any of our products. We can't guarantee
the accuracy or usefulness of these sites, but they seem friendly
enough.

Mike's Internet Stop

Finding Mr. Write

Left at the Fork

Toasting Your Toes

Horsing Around the Mountain

Now let's see how quickly we can make this an attractive page.
Start by highlighting the first line and choose Format, Heading
to change it to an appropriately-sized heading.

Next, add a horizontal line after the paragraph of text. Simply
place the cursor in the blank space and click the horizontal line
button on PageMill's button bar. (You may also want to add space
on either side of the HR.)

Then choose the entire listing of sites and use the Format, List
commands to change the list to a bullet-style (UL) HTML list.
Finally, select each individual site name and assign it an URL
for a hypertext link. I'd suggest trying both the manual and the
drag-and-drop method to get a feel for both. When you're done,
it ought to look something like figure 29.8.

Fighure 29.8 : The completed PageMill example.

[bookmark: CreatingForms]Creating
Forms

PageMill makes form creation so easy that we might as well cover
it here. There are basically two steps to creating your form.
You start by using the button bar to create and paint the entry
elements onto your screen. Next, you pull up the Attributes Inspector
again and use it to assign names, sizes, and forms submitting
information.

[bookmark: LayingOuttheForm]Laying Out the Form

Creating your form is basically point-and-click. Every time you
click one of the form elements in the PageMill button bar, an
associated form field appears on-screen. Create a new document
and click some of those buttons. If you play with them a little,
you'll notice that you can click an element once to highlight
it, pick it up and drag it around on the page, and place it just
about anywhere you want to-as long as it's legal under HTML rules.

		Tip

		

If you move the mouse pointer slowly over each button in the button bar, its name appears in the top right corner of the PageMill window.

For example, create three textboxes and a pop-up menu using the
PageMill buttons. You might also want to create a Reset button,
and you should definitely create a Submit button. After you've
done that, you'll have a page that looks something like figure
29.9.

Figure 29.9 : The raw elements for your HTML form.

The first step is to insert a return between each element and
line them up nicely down the left side of the screen. Then, enter
some text to the left of each form field to describe it. Make
the text boxes "Name," "E-Mail," "Web
URL," and describe the pop-up as "Favorite HTML Editor."

Then, notice that you can double-click each textbox to enter default
text. Do so if you want to. Also, double-click the pop-up. Click
inside it and you can edit all of the choices. I'm going
to put some popular HTML editors in mine (see fig. 29.10). You
can even double-click the buttons to edit their values.

Figure 29.10 : Adding names and values for the form elements.

With all of this done, we turn to the Attributes Inspector. With
the first textbox selected, click the rightmost button on the
Inspector (the picture/forms button). It will change to show you
the type of form element that's selected and give you a field
to enter the name for this textbox. Click in the field, name the
form element, and hit Return.

You'll need to do this for each of the form buttons. Notice that
the pop-up menu gives you other FORM
SELECT choices in the Inspector, like how many elements
to display and whether or not more than one selection is possible.
(In this example, I'm choosing to show one element at a time and
to make only one selection possible.)

Finally, you need to set the form METHOD.
This is done by clicking the leftmost button on the Inspector
(the document button). In the ACTION
field, enter the URL for your form-processing script (make sure
you hit Return when you've finished). In the METHOD
pop-up, you can choose GET
or SEND for your form data.
That's it-your form is ready (see fig. 29.11).

Figure 29.11 : Browsing the form in the PageMill's Preview Mode.

[bookmark: DocumentInfo]Document
Info

Under that same document button in the Attribute Inspector, you
may notice that you have control over some other document issues
as well. To change any color in the dialog, just pull down its
menu and choose Custom. You'll then be presented with a color
wheel for choosing your color. When you've found the color you
want, click OK. That color will take effect immediately.

If you want a background image, simply drag the image to the box
marked Background Image in the Attribute Inspector. When the box
is highlighted, drop the image on it. Suddenly, you've got a background
(see fig. 29.12). To delete the background, click the tiny trash
can icon.

Figure 29.12 : Adding a background with drag-and-drop.

All you have left to do is add a title to the PageMill document.
And, honestly, if you haven't figured out how to do this, I'm
a little disappointed. (Actually, I missed it the first time around,
too.)

Click the box next to the word "Title" under the PageMill
button bar. Type your title. Hit enter. That's your title (see
fig. 29.13). I'll enter:

Figure 29.13 : Entering a title for your HTML document.

Do You Like My Dog?

Pretty obvious, huh?

[bookmark: Summary]Summary

In my personal opinion, PageMill is the best example of an application
that really makes powerful HTML easier than hand editing. Unfortunately,
even PageMill doesn't offer every HTML tag and construct we've
learned in this book. But it's a good start, and you can always
go back in with a text editor to change things.

Basic markup is easy, but, since the button bar doesn't offer
many text-oriented options, I'd recommend you learn some of the
keyboard shortcuts for bold, italic, paragraph, headings, and
other tags. Applying list tags is just as easy, although you need
to define DT and DD tags separately within definition lists.

PageMill's interface for creating links is a bit unique, but very
easy and effective once you get used to it. Support for a number
of different drag-and-drop options also makes working on a big,
interconnected site much easier.

Perhaps PageMill's greatest strength is dealing with graphics.
You can drag-and-drop graphics, add them by filename, and even
edit them from within PageMill. Not to mention, PageMill makes
creating client-side image maps actually fun. Big kudos for these
extra features.

Finally, PageMill makes form creation very graphical and understandable.
Although you'll still need to edit manually to add JavaScript
and similar elements, the basic server-side form is a cakewalk
to create.

[bookmark: ReviewQuestions]Review
Questions

		Are menu commands the only way to access style elements like
bold and italics in PageMill?

		What should you do if you feel PageMill is "stuck"
in a particular tag like a heading or list tag?

		In creating a definition list, why is it helpful to choose
an entire list and change its definition terms (DT), even if some
of the elements are definitions (DD)?

		What is the menu command for <HR>
in PageMill?

		Can you cut-and-paste a link from one page in PageMill to
another?

		What happens to PICT files when they are drag-and-dropped
on PageMill documents?

		What is the name of the tool used to create transparency in
GIF files?

		What are the three steps to creating a client-side image map?

		What is "raw HTML"? Why does PageMill need a special
command for this?

		Where do you enter METHOD
and ACTION information for
forms in PageMill?

[bookmark: ReviewExercises]Review
Exercises

		Use PageMill, definition lists, and hyperlinks to create a
page of book reviews. Clicking the book's name shows the user
a graphic of the book. For instance, an entry might be:

HTML By Example

The best book ever written for learning HTML the right way.

		Based on the example above, add another Definition (DD) line
that includes a link to order the book, the author's name, copyright
info, and price. For instance:

HTML By Example

The best book ever written for learning HTML the right way.

Todd Stauffer, Copyright 1996, $34.99. Order this book.

		Create a button bar interface using PageMill. (No image map
is necessary, just create a series of clickable images.)

		Make a similar button bar, but use PageMill's built-in client-side
image map creator.

		Add Internet Explorer "background" sounds to a PageMill
document.

		Determine which type of centering (Netscape's <CENTER>
tag or HTML's <DIV ALIGN="CENTER">)
PageMill uses.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch3.htm

Chapter 3

How Web Browsers Work

CONTENTS[bookmark: CONTENTS]

		Web Browser Applications
		NCSA Mosaic

		Netscape Navigator

		Microsoft Internet Explorer

		Lynx

		Uniform Resource Locators
		Example: The URL Advantage

		The Different Protocols for URLs

		Example: Accessing Other Internet Services with URLs

		How Web Browsers Access HTML Documents
		Example: Watching the Link

		What Can Be Sent on the Web?

		Binaries on the Web

		Everything is Downloaded

		Summary

		Review Questions

		Review Exercises

HTML codes are written specifically for display in browser applications
designed for the World Wide Web. Unlike some other document formats
or specifications, this is the only application for HTML coding.
So it's important to get to know these browsers.

In this chapter, you'll be learning about some popular Web browser
applications, how Web browsers interact with Web servers, and
how browsers interact with the other Internet services that are
available to them.

[bookmark: WebBrowserApplications]Web
Browser Applications

All Web browsers are capable of certain basic tasks, like finding
and loading new Web pages, and displaying them following HTML
standards and conventions. There's enough freedom in HTML and
the Web standards in general, though, that each Web browser ends
up being slightly unique.

As you look at these browsers, I'd like to make one point clear:
although most of them display HTML documents in a particular way,
each browser application actually has quirks or features that
you should keep in mind while you're creating your documents.

		Note

		

This book cannot provide an exhaustive survey of the Web browsers available. It is fair to say that I'm covering about 90 percent of the current market, but you should recognize that there are other browsers being used to access HTML pages.

[bookmark: NCSAMosaic]NCSA Mosaic

Originally released by the National Center for Supercomputing
Applications (NCSA) in 1993, Mosaic was the first widely available
graphical browser for Web users (see fig. 3.1). It is currently
written for Windows, Windows 95, Macintosh, and various UNIX platforms.
It is also the basis of a number of other browsers on the market-most
notably those created and licensed by SpyGlass Corp.

Figure 3.1 : NCSA Mosaic for Windows 95.

Although definitely in widespread use, the Mosaic family of browsers
is nowhere near the most popular of Web browsers, losing by a
significant share of the market to Netscape Navigator. Mosaic
has its merits, though, especially as a straight HTML standards-based
Web browser known for being relatively well-programmed and effective.

One of the most compelling reasons to use NCSA Mosaic might just
be that some versions are free to academic and nonprofit organizations
and individuals. It can be downloaded from http://www.ncsa.uiuc.edu/SDG/Software/SDGSoftDir.html
or by FTP at ftp://ftp.ncsa.uiuc.edu/.

[bookmark: NetscapeNavigator]Netscape Navigator

Easily the most popular Web broswer currently available, Netscape
Navigator (often simply referred to as Netscape) made a splash
on the Internet in 1995 with its totally free first version of
the application. Created in part by programmers who had worked
on the original NCSA project, Netscape became quickly known as
the finest second-generation Web browser, noted for both its flexibility
and speed gains over Mosaic-especially for modem connections.

Another reason for Netscape's popularity is its ability to accept
plug-ins, or helper applications, that actually extend
the abilities of the Netscape Navigator browser window. Netscape
users who have the Macromedia Shockwave plug-in, for instance,
can view Macromedia presentation files that are embedded within
HTML documents in Navigator's window (instead of loading a separate
helper application).

Netscape is also available for Windows, Mac, and UNIX users and
is available free to certain qualifying (nonprofit and academic)
users (see fig. 3.2). It can be downloaded on the Web from http://home.netscape.com/comprod/mirror/client_download.html
or by FTP at ftp.netscape.com.

Figure 3.2 : Netscape Navigator for Macintosh.

When introduced, Netscape's main advantages were speed and the
ability to display more graphics formats than Mosaic. Since that
time, however, Netscape has introduced security features and other
technologies (like a built-in e-mail program and built-in UseNet
newsreader) that continue to set it apart from other browsers.

Another advantage is the support of Java applets and JavaScript
authoring within Netscape itself. Again, Java applets can be embedded
in the Netscape browser window, allowing the user access to truly
dynamic pages that can be an interface for anything from simple
games to stock quotes to bank-by-computer information. JavaScript
gives Web designers programmatic control over their pages, allowing
them to check HTML form entries, load different pages based on
user input, and much more.

Perhaps most significant to HTML writers, however, is yet another
addition that Netscape offers beyond Mosaic-Netscape HTML extensions.
These are extra HTML-like elements that Netscape can recognize
in Web pages. Although a good deal of debate has raged about whether
or not this is ultimately a good thing for the Web (see sidebar),
it remains a fact that a Web site can be designed in such a way
that although most browsers can display the page's basic text
and graphics, it is best viewed in Netscape Navigator.

Why is this? Netscape adds many HTML elements that offer more
control over the layout of a page than the HTML standard allows.
This includes such features as centering text and graphics, wrapping
text around figures, and adding tables to Web pages. These elements
are not found in HTML 2.0, although their popularity on the Web
has caused many of them to be incorporated into HTML 3.0 level
standards.

		Are Netscape HTML Commands Good for the Web?

		

When Netscape first introduced its extensions to HTML, two strong reactions came from opposite sides of the playing field. Experienced HTML designers-especially those interested in more control over the pages-said, "Cool." Defenders of the
original HTML, however, were not as pleased.

Why would you be against HTML extensions? Because using them leaves a large percentage of Web users out in the cold. If people begin to write their Web pages using Netscape HTML extensions, suddenly at least 40 percent of the Web's users will see a
less-than-ideal version of the site.

Clearly, adding the extensions was shrewd marketing on Netscape's part. After all, if you want to see the best layouts on the Web, all you have to do is get a copy of Netscape.

But for some users, like those using NCSA Mosaic, the America Online Web browser, or some other popular Web application, they're just out of luck. The extension won't display correctly in their browsers and, in some cases, will cause errors.

Purists will point to the Netscape HTML extension as going against the spirit of HTML. HTML is supposed to offer less control over a page, so that it can be platform- and application-independent. Netscape HTML, by definition, flies in the face of this
spirit.

Fortunately for everyone, new HTML 3.0 level standards are emerging that support many of the Netscape HTML commands in a more "official" way. That means the best of both worlds-layout features and total compatibility-as more browsers come to
support HTML 3.0 level additions.

In the meantime, will Netscape strike again with some other innovation? Don't be too surprised if it does.

[bookmark: MicrosoftInternetExplorer]Microsoft Internet Explorer

Recently released for free to the general public is the Internet
Explorer, a Web browser created by Microsoft Corp (see fig. 3.3).
Loosely based on the Mosaic technology, Internet Explorer is a
reasonably well-featured browser with decent speed for modem users.
Microsoft's browser is available for Windows 95, Windows 3.1,
and Macintosh platforms. It can be found on the Web at http://www.microsoft.com/IE/
or by FTP at ftp.microsoft.com.

Figure 3.3 : Microsoft Internet Explorer for Windows 95.

Like Netscape, Internet Explorer also incorporates elements that
are not compliant with the generally accepted HTML standard. Again,
these codes are geared more toward page layout than is the HTML
standard. More and more often, sites on the Web are recommending
that you use Internet Explorer to view the site because it uses
the nonstandard HTML elements recognized by Internet Explorer.

[bookmark: Lynx]Lynx

Lynx and similar browsers are a little different from the others
discussed so far, because they lack the ability to display graphics.
It may be surprising that people still rely on text-based browsers
to access the Web, but it remains true that not everyone has a
high-speed connection to the Internet. In fact, many users don't
even have a graphical operating system (such as Windows, Mac OS,
or OS/2) for their computer.

Lynx was originally written for the UNIX platform. In fact, it
is the browser used by most service providers for text-based accounts.
There is also an MS-DOS version that offers users browsing capabilities
in a text-only format (see fig. 3.4).

Figure 3.4 : The Lynx browser through a text-only UNIX account.

Special considerations must go into your HTML documents if they're
going to support text-based browsers like Lynx. Fortunately, as
you'll see in the HTML formatting chapters, the HTML 2.0 and 3.0
standards are heavily in favor of text-based browsers-in the spirit
of not leaving anyone out.

The individual HTML designer must be wary, though, especially
when designing highly graphical Web sites and interfaces. Something
that you should constantly ask yourself while creating a Web site
is: Am I leaving out my text-based viewers? Is there anyone out
there who can't get the full effect of what I'm communicating
because they can't see the graphics?

Inevitably, that will indeed be the case-but a good HTML designer
works to minimize that possibility.

		Tip

		

Many considerate Web designers go so far as to create two or more versions of their Web site-one for graphical browsers, and one that offers only text.

[bookmark: UniformResourceLocators]Uniform
Resource Locators

Now that you've looked at the various different Web browsers that
might be accessing your Web site, let's talk about something they
all have in common: the use of Uniform Resource Locators
(URLs). What's an URL? If you remember our discussion from
the last chapter, you may recall that I mentioned that most Internet
services have "addresses" for accessing information
within that service.

		Tip

		

Not everyone follows this convention, but this book is written in such a way that it will be easier to read if you pronounce "URL" as you would the name "Earl."

Each of these addresses is a bit different. For instance, you
would send an e-mail message to my America Online account using
tstauffer@aol.com in an e-mail application.

To acccess the AOL public FTP site, on the other hand, you would
enter ftp.aol.com in the FTP application you are using.

The World Wide Web also has its own addressing scheme, but it's
slightly more advanced than the schemes of its predecessors. Not
only is the Web newer, but its addresses have to be more sophisticated
because of the Web's unique ability to access all of the different
Internet services.

URLs are these special addresses. They follow a format like this:

protocol://host.domain.first-level domain/path/filename.ext

or

protocol:host.domain.first-level domain

An example of an URL to access a Web document would be http://www.microsoft.com/windows/index.html.

Let's look at that address carefully. According to the format
for an URL, then, http:// would be the protocol, www
is the host you're accessing, microsoft is the domain,
and com is the first-level domain type for this system.
That's followed by / to suggest that a path statement is
coming next.

The path statement tells you that you're looking at the document
index.html, located in the directory windows.

		Note

		

Those of you familiar with DOS, Windows, or UNIX will probably recognize path statements right away. Mac OS users and others simply need to realize that a path statement offers a "path" to a specific file on the server computer's hard drive. A
Web browser needs to know in exactly which directories and subdirectories (folders and subfolders) a file can be found, so a path statement is a standard part of any URL.

There are two basic advantages of the URL. First, it allows you
to explicitly indicate the type of Internet service involved.
HTTP, for instance, indicates the HyperText Transfer Protocol-the
basic protocol for transferring Web documents. You'll look at
this part of the URL in a moment.

Secondly, the URL system of addressing makes every single document,
program, and file on the Internet a separately addressable entity.
Why is this useful?

[bookmark: ExampleTheURLAdvantage]Example: The URL Advantage

For this example, all you need to do is load your Web browser
(whichever you happen to use) and find the text box or similar
interface element that allows you to enter an URL manually to
access Web pages (see fig. 3.5). The point of this example is
to show the benefits of using URLs for the Web. With Gopher and
FTP, you really only need to know a host address. But, on the
Web, knowing just the host address often isn't enough.

Figure 3.5 : The Go To/Location text box in Netscape for Windows allows you to enter an URL manually.

Once you've located the appropriate entry box, enter www.mcp.com.
Depending on the browser you're using, you'll more than likely
need to hit the Enter or Return key after typing this address.

What happens then depends on your Web browser. Some browsers will
give an error, which isn't exactly perfect for this example, but
it does prove the point that you need more than just a server
address to get around on the Web. Others will take you directly
to the Macmillan Computer Publishing Web site.

		Tip

		

If your browser gives you an error, enter http://www.mcp.com. Some browsers require at least a partial URL. Others guess the protocol from the type of server address entered.

Notice that www.mcp.com follows the addressing conventions
established for Internet services like FTP and Gopher. The problem
is that, if the Web used this method for addresses, you'd have
to begin at the first page of the Web site every time you wanted
to access one of the hundreds of pages available from Macmillan.

To get around that, an URL provides your Web browser with more
information.

All Web browsers should easily handle this address. With an URL,
you're able to be much more specific about the document you want
to see, since every document on the Internet has an individual
address. In this case, you've instructed your Web browser to go
directly to the que directory on Macmillan's Web site and
load the HTML document called index.html.

[bookmark: TheDifferentProtocolsforURLs]The Different Protocols
for URLs

You've already looked at Internet addresses such as www.mcp.com
in depth, and you should be familiar with the concept of a path
statement. That just leaves one part of an URL that's new to you:
the protocol.

I've already mentioned that HTTP is the protocol most often used
by Web browsers to access HTML pages. Table 3.1 shows some of
the other protocols that can be part of an URL.

Table 3.1 Possible Protocols for an URL

		Protocol		Accesses…

		http://		HTML documents

		https://		Some "secure" HTML documents

		file://		HTML documents on your hard drive

		ftp://		FTP sites and files

		gopher://		Gopher menus and documents

		news://		UseNet newsgroups on a particular news server

		news:		UseNet newsgroups

		mailto:		E-mail messages

		telnet:		Remote Telnet (login) session

By entering one of these protocols, followed by an Internet server
address and a path statement, you can access nearly any document,
directory, file, or program available on the Internet or on your
own hard drive.

		Note

		

The mailto:, news:, and telnet: protocols have slightly different requirements to create an URL. mailto: is followed by a simple e-mail address, news: is followed by just the
newsgroup name, and telnet: is followed by just a server address. Also notice that file:// is often slightly different for different browsers.

[bookmark: ExampleAccessingOtherInternetServic]Example: Accessing
Other Internet Services with URLs

Over time, applications designed to access non-Web Internet services
(like FTP or Gopher programs) will begin to use the URL system
more and more. For now though, as a rule, basically only Web browsers
use URLs.

Fortunately, by simply changing the protocol of a particular URL,
you can access most Internet services directly from your browser.
For this example, you'll need to load your Web browser once more
and enter ftp://ftp.cdrom.com/pub/win95/demos/.

This should result in a listing of the subdirectory demos
located on the FTP server ftp.cdrom.com. Notice that you
didn't enter a document name, because, if you're using the FTP
protocol, the document or file will be automatically downloaded.

		Tip

		

If your browser tells you that there are too many users presently connected for you to connect to this FTP site, wait a moment or two, then click your Reload button or otherwise reload this URL with your browser.

Not all browsers support the mailto: command-let's see
if yours does. In your browser's URL window, type mailto:tstauffer@aol.com
and hit Enter or Return if necessary.

If your browser supports the mailto: protocol command,
you should be presented with a new window, complete with my e-mail
address in the Mail To field (see fig. 3.6).

Figure 3.6 : A mailto: protocol URL in action.

[bookmark: HowWebBrowsersAccessHTMLDocuments]How
Web Browsers Access HTML Documents

When you enter an URL in the URL field on your browser, the browser
goes through the following three basic steps:

		The browser determines what protocol to use.

		It looks up and contacts the server at the address specified.

		The browser requests the specific document (including its
path statement) from the server computer.

Using all of this information, your browser was able to access
the variety of Internet services discussed previously in Table
3.1 and in the subsequent example. But what does this have to
do with HTML design? Just about everything.

In HTML, a hypertext link is simply a clickable URL. Every time
you create a link in a Web document, you assign an URL to that
link. When that link is clicked by a user, the URL is fed to the
browser, which then goes through the procedure outlined above
to try and retrieve it.

[bookmark: ExampleWatchingtheLink]Example: Watching the Link

If you've used your Web browser much, then you've watched this
happen countless times, even if you didn't realize it. If you're
using Netscape, Mosaic, or a similar browser, start by pointing
your mouse pointer at just about any link you can find. You may
notice that when your mouse pointer is touching the link, an URL
appears in the status bar-probably at the bottom of the
page (see fig. 3.7).

Figure 3.7 : An URL in the status bar of Netscape Navigator.

That's the URL associated with the link to which you're pointing.
Clicking that link will cause the browser to accept that URL as
its next command, in much the same way that you manually entered
URLs in the earlier example. To see it happen, click the link
once. Now check the URL field that you used before to enter URLs
(see fig. 3.8). You should see the same URL that was associated
with the link to which your mouse was pointing. Then, after a
few seconds, you should be at the new page.

Figure 3.8 : The link's URL now appears in the URL field (which is Location in Netscape).

[bookmark: WhatCanBeSentontheWeb]What
Can Be Sent on the Web?

Part of the magic of the HTTP protocol is that it is fairly unlimited
(by Internet standards) in the sort of files that it can send
and receive. For instance, like Internet e-mail, much of what
is sent on the Web (via the HTTP protocol) is ASCII text. But,
unlike Internet e-mail, HTTP isn't limited to ASCII text.

		Note

		

There are two different types of files that can be sent over various Internet services. These are ASCII text files (plain text) and binary files. Binary files are any documents created by applications (such as word processing or graphics applications) or
even the applications themselves. It's easiest to think of binary files as anything that isn't an ASCII file.

In fact, HTTP can send both of the major types of files-ASCII
and binary-using the same protocol. This means that both plain
text files (such as UseNet messages and HTML documents) and binaries
(such as downloadable programs or graphics files) can be sent
via the Web without any major effort on the part of the user.
In certain cases, the HTML author will have to make a distinction
(for instance, as to whether or not a graphics file should be
displayed or downloaded to the user's machine), but, for the most
part, HTTP figures this stuff out by itself.

How exactly does it figure these things out? Usually by a combination
of the protocol selected and the extension to the filename
in question. For instance, a file called INDEX.HTML
that's accessed using an URL that starts with the http://
protocol will be displayed in a browser as an HTML file, complete
with formatting and hypertext links.

The same file, however, if it is renamed to be INDEX.TXT,
even if it's loaded with an http:// protocol URL, will
be displayed in the browser as a simple ASCII file, just as if
it were being displayed in WordPad, SimpleText, or Emacs. Why
is this? Because the extension tells the Web browser how to display
the file (see figs. 3.9 and 3.10).

Figure 3.9 : INDEX_TEST.HTM is loaded as an HTML document by the browser.

Figure 3.10 : INDEX_TEST.TXT is displayed simply as an ASCII text file.

You may recall from Chapter 1 that much of an HTML document is
"text" (the rest being HTML codes). In fact, all of
an HTML document is ASCII text, as is demonstrated in figure
3.9. It is only the extension .HTML
(or .HTM on DOS-based Web
servers) that tells a Web browser that it needs to interpret some
of the text as HTML commands within a particular ASCII text document.

		Tip

		

Because HTML documents are ASCII text, it's possible to create them in simple text editor programs. A Microsoft Word document, on the other hand, is not ASCII text-it's saved in a binary format. So, if you use

a word processor to create HTML documents, remember to use the Save As command to save the HTML page in an ASCII format.

[bookmark: BinariesontheWeb]Binaries on the Web

When a binary document such as a graphics file is sent over the
Web, it's important that it have the appropriate extension. That's
how Web browsers know whether a document should be viewed in the
browser window (like a JPEG- or GIF-format graphic) or whether
it should be saved to the hard drive (like a ZIP or StuffIt archive
file).

To the HTML designer, this means two things. First of all, you
should recognize that your HTML pages can offer just about any
other type of file for transport across the Web. If you want to
send graphics, games, WordPerfect documents, or just about anything
else, just put a hypertext link to that file on your Web page.

Second, you need to remember that the most important part of a
filename is its extension. If you fail to put the correct extension
on a filename, your user's browser won't know what to do with
it. If you're trying to display a graphic on your Web page, for
instance, but put a .TXT
extension on it, it won't display.

[bookmark: EverythingisDownloaded]Everything is Downloaded

There's one other thing you should realize about the Web and Web
browsers before you begin to develop Web pages. Very simply, everything
you view in a Web browser has to be downloaded from the Web site
first. What do I mean by this?

Whenever you enter an URL or click a hypertext link, the HTML
document (or binary file) that you're accessing is sent, in its
entirety, from the Web server computer to your computer's hard
drive. That's why, for instance, Web pages with a lot of graphics
files take longer to display than Web pages with just text.

For the Web user, this is both good and bad. It's good because
once a page is downloaded, it can be placed in the cache,
so that the next time you access the page, it will take much less
time to display. It's also good because anything that's currently
displayed in your browser window, including the HTML document
and any graphics files, can be instantly renamed and filed on
your hard drive for your personal use.

		Tip

		

If you use Netscape Navigator, click and hold the mouse button (on a Mac) or click the right mouse button (in Win95) while pointing to a Web page graphic. Notice that, after a few seconds, you can rename that graphic and save it to your hard
drive.

The bad side of downloading, though, is that every graphic
and all of the text you include in an HTML page has to be
transmitted over the Internet to your user's computer. If your
user is accessing the Web over a modem, then downloading and displaying
your page can take a long time-especially if your Web page includes
a lot of graphics. This means that HTML designers have to be constantly
aware of the size of their HTML documents and their Web page graphics
in order to avoid causing their users unnecessary irritation and
wasted time.

		Note

		

It takes 15 to 30 seconds (on average) for a 25 kilobyte graphic to be transmitted over a 28.8 kbps modem connection. So a 100 kilobyte Web page could take around two minutes to transfer-the length of four television commercials.

[bookmark: Summary]Summary

There are a number of popular Web browser applications that Web
designers should take into consideration when designing their
Web pages. Each browser displays HTML codes in slightly different
ways and some-like Netscape and MS Internet Explorer-even add
their own HTML-style commands.

The Web uses a particular style of Internet address, called an
URL, which allows it to address individually any document on the
Internet. This offers an advantage over other Internet address
schemes because it specifies the Internet service protocols desired
and points directly at documents.

It's important for the Web designer to remember that everything
on a Web page is downloaded, including text and graphics. The
larger the graphics on a Web page, the longer it will take to
display. This is also an advantage, though, since pages can be
cached for future use.

[bookmark: ReviewQuestions]Review
Questions

		Which browser was the first graphical browser on the market?
Which is currently most popular?

		Most Netscape HTML extensions are designed to help with what
aspect of Web pages?

		What makes the Lynx browser different from the others discussed?

		Is the following an URL, a server address, or a path statement?

www.mcp.com

		What makes the mailto: command different from a standard
URL?

		What ASCII character comes between each folder or directory
in a path statement?

		If I entered the following in my browser's URL field (and
hit Return, if necessary), would it download a file?

http://ftp.cdrom.com/pub/win95/games/four.zip

		True or false. Graphics displayed on a Web page are downloaded
to the user's computer, which is why they often take extra time
to display.

		Are the following files ASCII files or binary files? A CorelDRAW!
picture, an HTML page, a Microsoft Word document, and a WordPad
document.

[bookmark: ReviewExercises]Review
Exercises

		Use your current Web browser to access one of the FTP sites
mentioned in the "Web Browser Applications" section
of this chapter. Notice how browsers handle FTP connections.

		Use an ftp:// URL to download one of those other Web
browsers (or another file) directly. Hint: you'll need to figure
out the path to the file first.

		If your ISP allows it, use a modem communications program
to dial up your account, and then use Lynx or a similar text browser
through your ISP's connection. Notice how different the Web is
without graphics and a mouse!

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch30.htm

Chapter 30

HTML Examples

CONTENTS[bookmark: CONTENTS]

		Back to Basics: Basic HTML 2.0 Pages
		Example: The Personal Index Page

		Example: The Personal Biography

		Example: Simple Business Pages

		Example: John's Resume

		BigCorp's Client-Side Site
		Example: The Front Door

		Example: The Graphical Index

		Example: BigCorp's About Page

		Example: Using Frames

		Example: JavaScript and Forms

		Example: FTP and HTML

		Example: The Help Page

Well, it's time to see if we can't apply just about everything
you've learned to the world of the Web. This is also a wonderful
opportunity to find a page that works well for the type of site
you're trying to build. If you find a close match, you can get
a headstart on your own site by copying the example from the included
CD and altering it to fit your needs.

		Note

		

This is one chapter where the included CD can really help you out. If I've created a page that you think will work well for your site, just grab the HTML off the CD, change it to suit your needs, and toss it up on the World Wide Web. Hopefully, I've
already done most of the work for you!

[bookmark: BacktoBasicsBasicHTML20Pages]Back
to Basics: Basic HTML 2.0 Pages

The beauty of designing HTML 2.0-compliant sites is that you never
really have to worry about whether or not your users are happy,
satisfied, and fully informed. Everyone, regardless of his or
her browser, can see just about your entire site (except for
text-based users who can't see your graphics). The downside is
you don't get to do too much cool stuff.

For the typical personal Web site, though, HTML 2.0 is a great
place to start designing. One of the most important rules to remember
in HTML design is that your information is more important than
the presentation. If using nothing but HTML 2.0-like basic text,
lists, graphics, and even server-side maps-helps you update your
pages quicker and keep things interesting, then you're doing better
than the advanced Java programmer with nothing to say.

Let's see some examples of a "personal" Web site, perhaps
useful for a home-based business or even just for fun. My examples
are for a fictitious graphic designer named John Jones, who uses
his site as both a business and a personal site. We'll create
four basic pages-an index page, a personal biography, a business
information page, and a resume page. These days, sometimes you
tell people your life story with little more than an URL.

[bookmark: ExampleThePersonalIndexPage]Example: The Personal
Index Page

Since we're not talking about any major leaps of thought in HTML,
I'll concentrate more on design issues with these personal pages.
The keys to your index page will be an attractive presentation,
while making it clear that things are dynamic on the page-you'll
highlight your changes early. To create the index page, enter
Listing 30.1 in your text editor.

Listing 30.1 index.html The
Personal Index Page

<HTML>

<HEAD>

<TITLE>John Jones on the Web</TITLE>

</HEAD>

<BODY>

<H5>

Index | About
John |

Business Info
| Resume |

Web Feedback

</H5>

<HR>

<H2>Welcome to My Home on the Web!</H2>

<P>I'm John Jones,
and you've reached my home on the Web. If you were looking to
find me here, thanks for the thought. If you're here by accident,
well, maybe there's something interesting. Stay a while.</P>

<HR>

<H3>What's News?</H3>

<P>I've finally gotten around to updating my Apple
QuickTime VR on the Net pages. Those of you getting
used to following the news here will hopefully find everything
you need.</P>

<P>Mac's Make it
Big with VRML Click for a copy of Apple's PR on new
QuickDraw 3D technology in the Web. To learn more, check out

Apple's Web site.</P>

<P>Family Vacation
Photos! Just got back from vacation in the Bahamas,
and if you've never been you should check out these photos. You
can't beat the parasailing!</P>

<HR>

<H3>Stuff that John does that you may or may not find interesting...</H3>

 Magazine writer for Net
Mag the online Web graphics resource.

Freelance Macintosh
consultant that you can hire for your own Web
development needs!

<DD>Just somebody's dad.

</DL>

<HR>

<H3>Your Feedback on this Web Site...</H3>

<P>Feedback
Lots of folks have written in to tell me what they like about
this site. The feedback has been incredible, and I couldn't be
happier. Keep it coming! If you've got something to say, please

send mail</P>

<HR>

<H6>Copyright John Jones 1996. All Rights Reserved. Do not
duplicate without permission.</H6>

<H6>These pages are HTML 2.0 friendly!</H6>

</BODY>

</HTML>

Boring? I hope not. Let's call it "clean." This is a
page that uses a couple of different ways to get around on the
site, including a text menu at the top of the page and links throughout
to relevant material. It also features site news right up front
and some invitations to wander the site. Tasteful graphics and
logical formatting let users get a feel for the site quickly,
so they know they're not missing anything (see fig. 30.1).

Figure 30.1 : An inviting clean index page for a personal site.

[bookmark: ExampleThePersonalBiography]Example: The Personal
Biography

The next step is to create a biography page for John, complete
with some interesting text and classy use of photos. Personal
bios should probably be the most laid back part of the site; but
it's important to remember that John is also using this as a business
site-so it should probably be rather tasteful, too. Enter Listing
30.2 in

your text editor.

Listing 30.2 about.html The
Personal Bio Page

<HTML>

<HEAD>

<TITLE>About John</TITLE>

</HEAD>

<BODY>

<H5>

Index | About
John |

Business Info
| Resume |

Web Feedback

</H5>

<H3>A Little About Me...</H3>

<P>What is there to say about myself? I'm a graphic designer,
a World Wide Web addict and a
post-vacation dad and husband. I'm an incredible nut
about Macintosh computers...

professionally. I play a lot of golf, a little tennis, and I do
some

skiing.

</P>

<P>I'm a graduate of the
University of North Texas.

My degree is in Fine Arts, with a minor in computer science. Since
that time I've worked in a number of positions as an artist, designer
and senior designer. I currently work in advertising as a Creative
Manager.</P>

<P>I'm a nut about flying private airplanes, and recently
completed the requirement for my private license. Want to see

pictures of me
soloing? Now it looks like it's a crap-shoot to see if the kids
get through college before or after I buy myself a plane!</P>

<HR>

<H2>John's Contract Web Services</H2>

<H3><I>How Great Can It Look?</I></H3>

<P>I make every effort to make myself available at reasonable
rates to local businesses who have a serious need for a strong
graphics designer. With a background in advertising, public relations
and editorial layout, I'm the all-around solution for any business
that needs something that looks just right!

</P>

<P>My sales pitch,
resume

and freelance rate
card are available here for your appraisal. If you'd
like to get a hold of me to discuss a project, you can do that
by sending me
email or call me during business hours at 214/555.4369.</P>

<HR>

<H6>Copyright John Jones 1996. All Rights Reserved. Do not
duplicate without permission.</H6>

<H6>These pages are HTML 2.0 friendly!</H6>

</BODY>

</HTML>

If there's anything this page shows, it's the importance of content
over design. The point of this page is just to be friendly and
talkative, while using HTML throughout to make the page presentable
and approachable. Are people really interested in John's family
photos? They probably are, and it's not so bad for business contacts
to get to know you as a person. Take the space you need, but break
up text with lines and small graphics (see fig. 30.2).

Figure 30.2 : The About John page.

Also notice the consistency from page to page, like the text menu
and logo at the top of the page. I'd suggest this same level of
consistency for your pages, as well. It makes them more memorable
and reminds people that all this great information is part of
your site. You don't have to be dull on your pages, but I do suggest
that you have a guiding design.

[bookmark: ExampleSimpleBusinessPages]Example: Simple Business
Pages

Perhaps this next page could be a little more graphically appealing,
but I'm not a graphic artist-John is. What it does is communicate
business information without being too overwhelmingly commercial.
Are you going to generate a lot of leads on the Web? Not without
investing a lot of time in your site and making an effort to distribute
your URL. But, it's also a ready-made brochure for folks who are
interested. Perhaps it'd be a good idea for John to put some designs
online to serve as a Net-based portfolio-especially if he plans
to work for people around the country (or world) via the Internet.
Enter Listing 30.3 in your text editor to create the page.

Listing 30.3 contract.html Communicating
Business Information on a Personal Site

<HTML>

<HEAD>

<TITLE>Freelance Info and Rates</TITLE>

</HEAD>

<BODY>

<H5>

Index | About
John |

Business Info
| Resume |

Web Feedback

</H5>

<HR>

<H2>Shouldn't Your Business Literature Show Your Strengths?</H2>

<P>No matter what you may hear, there's only one way to
be a great salesperson.

Believe in your product! If you believe in
your product, then people will believe in you and your company.
In order to make sure they understand the depths of your faith,
though, you need to catch their eye!</P>

Brochures and Sales Literature

Catalog Layout

Advertising/Promotional Layout

HTML and Web Site Development

Corporate Presentations

Public Relations Material

<HR>

<H2>Freelance/Contract Rates</H2>

<P>I'm willing to work both as a contractor and per piece.
As is generally the case, any project is negotiable. Please contact
me with full details of the project. My office number is 214/555.4369.
Or, feel free to send me

email.

</P>

<P>The following are my base rates for contract and per
piece work:

<PRE>

Brochures and Sales Literature
$100-300 per page

Catalog Layout
$65 an hour

Advertising/Promotional Layout
$100-300 per advertisement

HTML & Web Site Development $65
an hour, $100-200 per page

Corporate Presentations $100
an hour

Public Relations Material $65
an hour

</PRE>

<H6>Copyright John Jones 1996. All Rights Reserved. Do not
duplicate without permission.</H6>

<H6>These pages are HTML 2.0 friendly!</H6>

</BODY>

</HTML>

Aside from the continued consistency, we've got two notable uses
of HTML here. First, the use of a NAME
anchor isn't even taken advantage of in the HTML on this page.
But back in the personal biography, we did link to this part so
that folks can get right to the rates if they want. Also, notice
that the <PRE> tag
works as a low-end HTML substitute for the table tags that you
can't use (since you're doing this with only HTML 2.0 tags) (see
fig. 30.3).

Figure 30.3 : John's freelance info page.

[bookmark: ExampleJohnsResume]Example: John's Resume

Our next step is to add John's resume. I guess, by rule, a resume
is a little dry, but perhaps that also adds to the professionalism.
Again, a graphic designer should be a little more original with
his/her resume than this-but it's a nice template for the rest
of us (see Listing 30.4).

Listing 30.4 resume.html A
Sample Resume in HTML

<HTML>

<HEAD>

<TITLE>John's Resume Page</TITLE>

</HEAD>

</BODY>

<H5>

Index | About
John |

Business Info
| Resume |

Web Feedback

</H5>

<HR>

<H2>John's Resume</H2>

<H3>EDUCATION</H3>

University of North Texas <I>Sept. 1984-May
1989</I>

Denton, Texas BA in Fine Arts, Minor in Computer Science.

<I>Cum Laude Honors, Dean's List, National Merit Scholar.</I>

<H3>SUMMARY OF QUALIFICATIONS</h3>

Proven designer and layout artist strong background
in computing.

Experience with creation and implementation of Hypertext
Markup Language (HTML)

Very familiar with Internet and online issues.

Constantly in touch with the computer industry through
trade publications, on-line interaction and dealings with computer
publishers and industry contacts.

Solid team player and leader with experience and formal
education in business management.

<H3>WORK EXPERIENCE</h3>

<P>BigCorp Advertising (Dec. 1994-Present)

Dallas, TX

<I>Advertising Creating Manager</I>

Manage staff of twenty-five designers, writers and support personnel
in the creation of all in-house advertising. Oversee the production
of all print and direct mail advertising, and responsible for
managing input from out-sourced advertising specialists.

</P>

<P>BigCorp Advertising (Oct. 1989 - Dec.1992)

Dallas, TX

<I>Designer</I>

Responsible for creating print advertising on Macintosh computers
for a variety of products and mediums. Contributed to multimedia
projects, TV design and in-store retail signage.

</P>

<P>Jones Designs (Sep. 1988 - Present)

Dallas, TX

<I>Freelance Artist/Designer</I>

Accounts have included BigSoftDrink Co., FashionableClothes Inc,
and

MajorProductionCompany Entertainment.

</P>

<H6>Copyright John Jones 1996. All Rights Reserved. Do not
duplicate without permission.</H6>

<H6>These pages are HTML 2.0 friendly!</H6>

</BODY>

</HTML>

Again, there's good continuity and clean design (see fig. 30.4).
Can't ask for much more than that.

Figure 30.4 : John's resume.

I think you can see where I'm going with this. The strongest point
is this: you can do a lot with an HTML 2.0 site, and working just
in 2.0 makes sure your documents are available to the widest audience
possible. Keep your site newsworthy, interesting, consistent,
and personal, and you'll succeed with your small site.

[bookmark: BigCorpsClientSideSite]BigCorp's
Client-Side Site

In this section, you'll start by walking through the creation
of a large Web site-you guessed it, BigCorp's-in an effort to
apply most of the tags, extensions, programming, and theory you've
learned throughout this book. I'll try to point out the major
issues in each page as we go along.

The point of this site will be to do just about everything you
can without consulting the Web server. A growing number of HTML
users are able to create sites without back-end programming with
the help of JavaScript, client-side images, and similar technologies.
Client-side has been the theme throughout this book. Hopefully,
these examples will help make that a strong reality for you.

		Note

		

As opposed to the first section of this chapter, the client-side site pushes the envelope of HTML. You'll need the latest version of Netscape Navigator (or a compatible browser) to view these pages-and so will your users.

[bookmark: ExampleTheFrontDoor]Example: The Front Door

We've talked about front door pages before: pages designed to
introduce users to your Web site, warn them of potentially offensive
material, and/or allow them to choose the pages that are best
suited to their browser type. In this simple example, you'll create
an attractive front door that uses client-pull to draw in Netscape/Internet
Explorer users, while giving others a chance to click for the
HTML 2.0 compatible version of our site (see Listing 30.5).

		Note

		

For purposes of putting this file on the CD-ROM, I've named it bg_index.html. Since it's the first page of this particular site, though, you may want to save it as index.html in a different directory from the personal site files you
created earlier in this chapter. I recommend that you begin your sites with a document named index.html whenever possible.

Listing 30.5 bg_index.html A
Business' Front Door Page

<HTML>

<HEAD>

<TITLE>BigCorp - What Type of Browser Are You Using?</TITLE>

<META HTTP-EQUIV="REFRESH" CONTENT = "15; URL=http://www.fakecorp.com/graf_idx.html">

<H2>Welcome to BigCorp's Web Site!</H2>

<P>To better serve all different browsers, we've created
this site with both a high
graphics choice and a HTML
2.0 choice. Please choose the appropriate site for you.
After 15 seconds, the high graphics site (especially appropriate
for Netscape and Internet Explorer users) will load automatically
if your browser will support it.</P>

<H3>Enjoy Your Stay!</H3>

</DIV>

</BODY>

</HTML>

This page gives users the choice of either clicking to move directly
to their desired site or waiting for the high graphics site to
load using client-pull. Also, users with browsers that don't support
client-pull will be forced to click one of the choices, since
they won't automatically move on. Figure 30.5 shows how this page
appears in a browser.

Figure 30.5 : Your client-pull front door in Netscape Navigator.

[bookmark: ExampleTheGraphicalIndex]Example: The Graphical
Index

The next page will be the "high graphics" index for
this site. You'll use client-side image map technology to link
users to the various parts of BigCorp's Web presence. In addition,
you'll add an Internet Explorer background sound and a background
image (see Listing 30.6).

Listing 30.6 graf_idx.html The
Graphical Index for the Business Site

<HTML>

<HEAD>

<TITLE>BigCorp's Index</TITLE>

</HEAD>

<BODY BACKGROUND="paper.gif">

<BGSOUND="welcome.wav">

<DIV ALIGN="CENTER">

<H2>Welcome to BigCorp!</H2>

<H5>Index
| Products |

Customer Service
| Tech Support
|

 About BigCorp</H5>

<IMG SRC="main_map.gif"
ALT="BigCorp's Map Graphic"

USEMAP="#mainmap">

</DIV>

<BLOCKQUOTE>

<P>BigCorp releases
new Pentium Pro Systems. August 2
As the summer boils down to a footrace between popular computer
manufacturers, BigCorp makes the leap to Pentium Pro and multi-processing
Pentium Pro systems for the high-end server and graphics markets.
With clock speeds of up to 300 Mhz, the BigCorp systems should
lead the pack for weeks, at least.</P>

<P>Better paper towels,
less messy residue. August 3 BigCorp,
the largest global manufacturer of household paper products, has
announced the next step in paper towels at WipeCon '97.

The new design, based on patented advances in textiles (researched
on BigCorp's orbiting SolarLab deep-space project) should but
cloth towels to bed once and for all. "We're looking to take
paper towels into

the shower stall by year's end," said Wilhem Spotz, VP of
Clensing Technology.</P>

</BLOCKQUOTE>

<H5>Please send concerns about this server to
the WebMaster. For more information on BigCorp and BigCorp
products, call or write:</H5>

<ADDRESS>

BigCorp Customer Service

0001 Real Tall Building

Metropolis, USA 00001

888-BIG-CORP

</ADDRESS>

<H6>Pages and Content Copyright 1996 BigCorp Multimedia.
All rights reserved. Do not duplicate without permission.</H6>

<MAP NAME="mainmap">

<AREA SHAPE="rect" COORDS="18,12,140,33"
HREF="index.html" ALT="Back to Index">

<AREA SHAPE="rect" COORDS="17,44,245,65"
HREF="products.html" ALT="To Products">

<AREA SHAPE="rect" COORDS="97,87,327,147"
HREF="about.html" ALT="About BigCorp">

<AREA SHAPE="rect" COORDS="183,159,403,180"
HREF="service.html" ALT="To Customer Service">

<AREA SHAPE="rect" COORDS="265,192,403,213"
HREF="support.html" ALT="To Tech Support">

<AREA SHAPE="rect" COORDS="0,0,424,223"
HREF="help.html" ALT="Help with Map">

</MAP>

</BODY>

</HTML>

On this index page, I'm using a client-side image map to allow
users to move around on the site, as well as offering some typical
home page elements like news, addresses, and mailto:
links for more information. Using WebMap to determine the client-maps
coordinates gave the results in figure 30.6.

Figure 30.6 : The map definition file.

From there, it was as simple as plugging in the coordinates for
each shape of the client-map. I turned the client-map background
transparent, wrapped it in a regular clickable-image anchor (to
allow non-client-side browser to access a help page), and saved.
It's ready to go up on my Web site (see fig. 30.7).

Figure 30.7 : The finished index page.

[bookmark: ExampleBigCorpsAboutPage]Example: BigCorp's About
Page

One of the methods for HTML layout that's gaining a lot of popularity
on the Web is using HTML table tags (without borders) to give
the user more control over the page. For BigCorp's About page,
let's use HTML tables to layout some of the historical information
we're going to provide our users (see Listing 30.7).

		Note

		

Again, I've changed the name of this file for saving on the CD-ROM. Changing its name to about.html will allow it to work correctly with the rest of the pages in this site.

Listing 30.7 bc_about.html Using
Tables for Page Layout

<HTML>

<HEAD>

<TITLE>About BigCorp</TITLE>

</HEAD>

<BODY BGCOLOR="FFFFFF">

<TABLE BORDER=0 WIDTH="500" CELLPADDING="10"
CELLSPACING="5">

<TR>

<TH COLSPAN="3" ALIGN="CENTER"></TH>

</TR>

<TR>

<TD WIDTH="40">

Corporate History Page

</TD>

<TD>

</TD>

<TD>

BigCorp started many years ago with a unique vision of the future.
Mr.

BigBucks, founder, explained some of those ideas in this story.

</TD>

</TR>

<TR HEIGHT="75"><TD COLSPAN="3" ALIGN="CENTER"><HR></TD></TR>

<TR>

<TD COLSPAN="2">

BigCorp Textile Manufacturing

</TD>

<TD>

Get the inside scoop on our textiles division, plus contacts,
phone numbers and executive biographies.

</TD>

</TR>

<TR HEIGHT="75"><TD COLSPAN="3" ALIGN="CENTER"><HR></TD></TR>

<TR>

<TD COLSPAN="2">

BigCorp Computer Manufacturing

</TD>

<TD>

Here's information on the latest plant information and press releases
from BigCorp Computer, including information about retail outlets,
service centers, phone numbers and PR contacts.

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

In this way, creative use of tables (especially without borders)
can give you amazing control over the layout of your page. The
more specific you want to be about where something appears, the
more specific you can be with attributes like WIDTH
and HEIGHT for rows and columns.
Tables are basically a way you can "compartmentalize"
each page-giving you rather exacting control over how and where
things appear (see fig. 30.8).

Figure 30.8 : Using a page-sized table for enhanced layout.

[bookmark: ExampleUsingFrames]Example: Using Frames

Your next step will be creating a frames interface for the product
pages. What we're interested in doing here is creating three basic
frames: a logo frame at the top, an icon interface for different
products along the left, and a main viewer window to the right.
This will allow users to quickly access all of BigCorp's products
using a familiar interface.

This sort of interface assumes you have a lot of different pages
to get to from this one viewer. I'll create an example of each,
but it'll be up to you to fill in with the many pages of information
you might want to offer on your company's products or your personal
interests.

First, let's create the banner document for the frame interface's
top row logo (see Listing 30.8).

Listing 30.8 prodlogo.html Logo
and Menu for the Top Frame

<HTML>

<HEAD>

<TITLE>Product Logo</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<DIV ALIGN="CENTER">

<H5>Index
|

Products |

Customer Service
|

Tech Support
|

 About BigCorp</H5>

</DIV>

</BODY>

</HTML>

Use Listing 30.9 for the next step of creating the icon interface
for the left side of your frame document.

Listing 30.9 prodicon.html Icon
List for Accessing Pages in main_viewer

<HTML>

<HEAD>

<TITLE>Icon List</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<P>

Index

</P>

<P>

Books

</P>

<P>

<IMG
SRC="camera.gif" ALT="Personal Electronics"
BORDER="0">

Personal

Electronics

</P>

<P>

Hunting

Goods

</P>

<P>

Sporting

Goods

</P>

<P>

Computers

</P>

</BODY>

</HTML>

Notice the use of the TARGET
attribute for the anchor, so that clicking these icons forces
a new page to appear in the main viewer window of your frames
interface. Also notice that I've used the Netscape-specific BORDER
attribute for IMGs. At least in Netscape (and compatible browsers),
this keeps those boxy clickable-image borders from appearing.
Luckily, since only Netscape-compatible viewers can see this frames
interface in the first place (and we also used a front door for
HTML 2.0 users), you're free to experiment a bit here.

Now, let's use Listing 30.10 for the product index page, which
will serve as the default page for the main viewer frame.

Listing 30.10 prod_idx.html Default
Index Page for main_viewer

<HTML>

<HEAD>

<TITLE>Product Index</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H3>BigCorp's Product Index</H3>

<P>Use the icons on the left to choose different product
categories, or select them from the following list:</P>

Books

Personal
Electronics

Hunting
Goods

Sporting
Goods

Computers

</BODY>

</HTML>

Pretty straightforward, huh? This page will be loaded automatically
with the frame interface (product.html).
It's also linked to the graphic bag.gif
in the file prodicon.html
so that the user can get back to the index page whenever he or
she wants.

Now, you need to create a page that will actually be loaded for
this example. Fortunately, you have already done this-quite some
time ago. Listing 30.11 is most of an example from using tables
with graphics in Chapter 15, "Adding
Tables to Your Documents."

Listing 30.11 computer.html A
Sample Data Page for main_viewer

<HTML>

<HEAD>

<TITLE>Computer Products</TITLE>

</HEAD>

</HTML>

<BODY BGCOLOR="#FFFFFF">

<H2> BigCorp's Computer Systems </H2>

<P>We use only the highest quality components and software
for all of our Wintel computer systems. Plus, if you don't see
a configuration you like, call (or email) and let us know. We'll
custom build to please!</P>

<DIV ALIGN="CENTER">

<TABLE ALIGN="CENTER" BORDER="1" FRAME=VOID
RULES="NONE" CELLSPACING="3"

CELLPADDING="3">

<CAPTION>BigCorp's Computer Systems and Specifications</CAPTION>

<TR ALIGN="CENTER"><TH>System 486<TH>System
586<TH>System 686

<TR ALIGN=""CENTER"><TD>486DX2-66 CPU<TD>120
MHZ AMD586<TD>200 Mhz Pentium Pro

<TR><TD>8 MB RAM<TD>16 MB RAM<TD>16 MB
RAM

<TR><TD>500 MB HD<TD>1 GB HD<TD>1.4 GB
HD

<TR><TD>14.4 Modem<TD>28.8 Modem<TD>28.8
Modem

<TR><TD>desktop case<TD>minitower case<TD>tower
case

<TR><TD>DOS/Win 3.1<TD>Windows 95<TD>Windows
NT 4.0

</TABLE>

</DIV>

<H2>Product Specifications</H2>

<P>The following table will tell you a little more about
our computer systems. Clicking on the picture of each will tell
you even more,

offering a full-size photo of the system and some suggestions
on

peripherals.</P>

<HR>

<TABLE BORDER CELLSPACING="2" CELLPADDING="2">

<CAPTION>Our System Configurations</CAPTION>

<TR ALIGN="CENTER"><TH>Photo</TH><TH>Name</TH><TH>RAM</TH><TH>Hard

Drive</TH><TH>Video</TH><TH>Expansion</TH><TH>Case</TH>

<TR ALIGN="CENTER"><TD></TD><TD>System
6001-60

</TD><TD>8MB</TD><TD>500 MB</TD><TD>1
MB PCI</TD><TD>4 PCI Slots</TD>

<TD ROWSPAN="2">

Desktop</TD>

<TR ALIGN="CENTER"><TD></TD><TD>System
7001-75

</TD><TD>16

MB</TD><TD>1.0 GB</TD><TD>1 MB PCI</TD><TD>5
PCI Slots</TD>

<TR ALIGN="CENTER"><TD></TD><TD>System
8001-120

</TD><TD>20MB</TD><TD>1.6 GB</TD><TD>2
MB PCI</TD><TD>5 PCI Slots</TD>

<TD>Tower</TD>

</TABLE>

</BODY>

</HTML>

In this example, the page computer.html
is linked to the icon computer.gif
in the prodicon.html file.
When the icon is clicked in the left side of the frames interface,
the above page will load in the main viewer.

Finally, you have enough components to demonstrate the product
frame interface. Here it is in Listing 30.12.

Listing 30.12 products.html Main
Frames Interface Page

<HTML>

<HEAD>

<TITLE>BigCorp's Product Viewer</TITLE>

</HEAD>

<FRAMESET ROWS="100,*">

<FRAME SRC="prodlogo.html" MARGINHEIGHT="10">

 <FRAMESET COLS="20%,80%">

 <FRAME SRC="prodicon.html" MARGINHEIGHT="25"
MARGINWIDTH="10">

 <FRAME SRC="prod_idx.html" NAME="main_viewer"
MARGINHEIGHT="25" MARGINWIDTH="10">

 </FRAMESET>

</FRAMESET>

</BODY>

</HTML>

Murphy's law seems to dictate that this would be the easiest page
to create. We've simply used two <FRAMESET>
definitions, with the columns definition nested within the rows
definition to create a three panel interface. And, with all of
this done, it looks something like figure 30.9.

Figure 30.9 : The product pages frame interface.

[bookmark: ExampleJavaScriptandForms]Example: JavaScript and
Forms

Continuing with the client-oriented Web site, let's create a customer
service form that's good for customers to send in data. Instead
of using a CGI script to handle the data, though, you'll do the
whole thing in JavaScript. After users have entered their preferences
and values, you'll output them to the page for their perusal.
If they like it, they can send it to you by mail. Sound good (see
Listing 30.13)?

Listing 30.13 service.html Main
Service Page, Using JavaScript for Sending Data

<HTML>

<HEAD>

<TITLE>BigCorp Customer Service</TITLE>

<SCRIPT>

<!--

function processForm (doc) {

 if (doc.form1.os[0].checked)

 newline = "\r\n"

 else if (doc.form1.os[1].checked)

 newline = "\n"

 else

 newline = "\r";

result_str = "";

 result_str += doc.form1.name.value + newline;

 result_str += doc.form1.address.value + newline;

 result_str += doc.form1.city.value + newline;

 result_str += doc.form1.state.value + newline;

 result_str += doc.form1.zip.value + newline;

 if (doc.form1.desktop.checked) result_str += "Desktop
computers" + newline;

 if (doc.form1.notebook.checked) result_str += "Notebook
computers" + newline;

 if (doc.form1.peripherals.checked) result_str += "Peripherals"
+ newline;

 if (doc.form1.software.checked) result_str += "Software"
+ newline;

 doc.form2.results.value = result_str;

 return;

 }

// -->

</SCRIPT>

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

</DIV>

<P>In order that we might better serve you we ask that you
simply fill out this form. When you've submitted the form, the
results will appear in the text area at the bottom of the screen.
If everything looks alright, send it away.</P>

<FORM NAME="form1">

<PRE>

Your Name: <INPUT TYPE="Text" NAME="name"
SIZE="40">

Your Address: <INPUT TYPE="Text" NAME="address"
SIZE="60">

Your City: <INPUT TYPE="Text" NAME="city"
SIZE="20">

State:<INPUT TYPE="Text"

NAME="state" SIZE="2"> Zip:<INPUT TYPE="Text"
NAME="zip" SIZE="5">

<HR>

<H4>What products would you like more information about?
(Check all that apply)</H4>

<INPUT TYPE="Checkbox" NAME="desktop">
Desktop computers

<INPUT TYPE="Checkbox" NAME="notebook">
Notebook computers

<INPUT TYPE="Checkbox" NAME="peripherals">
Peripherals

<INPUT TYPE="Checkbox" NAME="software">
Software

<HR>

Please Choose Your Computer's OS:

<INPUT TYPE="Radio" NAME="os" VALUE="mac"
CHECKED> Macintosh

<INPUT TYPE="Radio" NAME="os" NALUE="unix">
Unix

<INPUT TYPE="Radio" NAME="os" VALUE="win">
DOS/Windows/Win95

<HR>

<INPUT TYPE="Reset" VALUE="Clear Form">

<INPUT TYPE="Button" VALUE="Submit" onClick="processForm
(document)">

</PRE>

</FORM>

<HR>

<FORM NAME="form2" METHOD="POST" ACTION="mailto:stauffer@rmii.com"
ENCTYPE="text/ascii">

<H4>Here's what your information will look like. If you'd
like to include a comment, please type it below the other information.
Then click below to mail it to us:</H4>

<TEXTAREA NAME="results" COLS="60" ROWS="10"
WRAP="soft"></TEXTAREA>

<INPUT TYPE="Submit" Value="Mail It Off">

</FORM>

</BODY>

</HTML>

Basically what this script does is take the information from the
first form, translate it into some simple text values, assign
those values to the textarea in the second form, and then allow
the user to edit the data (see fig. 30.10). The script uses the
result from the radio buttons in the first form to determine which
newline character to use for the textarea, depending on the user's
OS choice. Different OSes require different newline characters
to format text correctly in a textarea. This script solves that
problem.

Figure 30.10 : Client-side form submissions.

Then, when users click the second Submit button (the "send
it in" button), the data is sent via e-mail to the address
of your choice. In that way, you've avoided using the Web server
and CGI-BIN scripts for any of your form processing.

While this scenario seems like nothing more than beauty and cleverness
itself, there is one caveat-what to do with the e-mail when it
gets to your e-mail box.

The first problem is the fact that the e-mail message is still
encoded in that lovely POST
format that forms use to send messages to scripts. Figure 30.11
shows an example of a typical received message.

Figure 30.11 : The results of mailto : from POSTing.

It's not very pretty. The second problem is an extension of the
first-you're either going to have to process all of these e-mails
by hand or you'll need to write a program on your computer that
interacts with your e-mail program in some way. Either way is
probably fine for the small-business or home Web designer-at least,
you get the form data from users without requiring access to the
server.

If you're creating for a large corporate installation, though,
your best bet is still to use CGI-BIN scripts. If you don't know
C, Perl, or AppleScript (on Mac servers), then have a quick chat
with your IS folks.

[bookmark: ExampleFTPandHTML]Example: FTP and HTML

Perhaps it's not the most glamorous of possibilities with HTML,
but many sites will find a need to include a repository of files
on their pages in order to better serve customers. In this example,
you'll create the support page for your site, using definition
lists to add your FTP-able files (see Listing 30.14).

Listing 30.14 support.html Adding
FTP to HTML Documents

<HTML>

<HEAD>

<TITLE>Product Support</TITLE>

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

</DIV>

<H2>Support Files and Resources</H2>

<P>The following files are available for download from BigCorp.
Included are fixes, patches and upgrades for various BigCorp software
products.

Any comments about this list can be sent to our

 Support
WebMaster.

Questions about computer product support can be sent to

Support
Questions. A

technician will mail you back within a few hours (weekdays).</P>

<H3>Available for Download</H3>

<DL>

<DT>
Updated for BigCorp Write 1.2

<DD> This update adds support for additional file formats
from Microsoft and Word Perfect. Also fixes version 1.2 crashes
when used with serial printers, supports OLE 2.0 objects and offers
new embedded spreadsheet tools. Updates version 1.2 to version
1.2.4. Please read the enclosed ReadMe file. Type: PkZip archive.

<DT> HTML
Addition for BigCorp Write

<DD> Now available for free (just the cost of the download)
is new HTML functionality for BigCorp Write. Add standard HTML
2.0 tags to your documents just as if you were word processing!
This beta version (0.9) has been fairly stable through our internal
testing, but we can't guarantee it won't completely destroy your
hard drive. Read the enclosed disclaimer (DISCLAIM.TXT)! Requires
BigCorp Write version 1.2 or higher. For

Windows.

<DT> HTML

Addition for BigCorp Write for Macintosh

<DD> Same functionality as above, but for BigCorp Write
1.4 and above for Macintosh. Upgrade is PowerPC accelerated.

<DT> Additional
Files

<DD> Printer drivers, templates, sample document and additional
tools for file compression; older fixes, patches and upgrades.

</DL>

</BODY>

</HTML>

It's pretty straightforward. You can use an FTP-style URL to access
files for downloading across the Internet to your users (see fig.
30.12). But, you don't necessarily have to follow the FTP style
for folders-especially if you want to offer files with your own
descriptions and icons. Notice for the folder at the bottom of
the page that you're actually accessing another HTML page where,
presumably, you've created another list of files for downloading.

Figure 30.12 : The sample support page offers files for download.

[bookmark: ExampleTheHelpPage]Example: The Help Page

Here's a fun one. You may recall that you set up your client-side
image map on index.html to
point directly to the document help.html,
which is supposed to tell your users that they've clicked a client-side
map incorrectly (or, perhaps, that they don't have a map-capable
browser). But what if you want to offer a number of different
Help topics from this one page?

Using forms, frames, and JavaScript, let's create a page that
allows the users to select the type of help they'd like to receive.
Our default page will discuss the client-side map, so that users
who just "appear" at help get the information they need.
Otherwise, if they decide to look up help on their own, they can
simply use the Select menu in the top frame to choose the help
document they'll read-which will then appear in the bottom window.

This can have many applications outside of help files-using scripts
to manipulate pages gives you a great way to serve nearly any
type of document from within a frames interface. Product spec
sheets, public relations material, software documentation, or
just about anything else you can come up with.

The first file you'll create is the JavaScript/form interface
for the top half of your frames interface (see Listing 30.15).

Listing 30.15 helpform.html Scripting
for a Forms Interface

<HTML>

<HEAD>

<TITLE>Help Form</TITLE>

<SCRIPT>

<!--

 function changePage(form) {

 var choice=form.helppage.selectedIndex;

 parent.main_viewer.location.href=form.helppage[choice].value;

 }

// -->

</SCRIPT>

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

<FORM>

Choose the Help Topic You Want to View:

<SELECT NAME="helppage">

<OPTION SELECTED VALUE="maphelp.html"> Client-side
Map

<OPTION VALUE="usehelp.html"> Using Our Site

<OPTION VALUE="phonhelp.html"> Contacting BigCorp

<OPTION VALUE="dl_help.html"> Downloading From
Our Site

<OPTION VALUE="buy_help.html"> Ordering Products

</SELECT>

<INPUT TYPE="button" Value="Get Help" onClick="changePage(this.form)">

</FORM>

</DIV>

</BODY>

</HTML>

The key to working with frames and JavaScript is the JavaScript
object hierarchy parent.main_viewer.
This is telling the script to look in "the frame called main_viewer"
of the "parent" document, which, once you're done, will
be the frames interface document (help.html).
All you have to do is assign a value to the frame's location.href
object variable, and the page is loaded.

Another concept you need to understand here is the "array"
in JavaScript. Why? Because it's how JavaScript stores the values
for a SELECT form element.

Every time you create a new SELECT
OPTION statement, that value
is stored in a new variable. But notice that there's nothing to
name the variable, since it would simply overwrite the last value
that was assigned to helppage.value.
(That's how you'd do it with some other form elements.)

So your browser creates an "array" of helppage
values. The first one gets called helppage[0]
(the one with the value "maphelp.html").
The next one gets called helppage[1]
and so on. The number is the "index" of the OPTION
array-it's how you access each individual option.

Another variable is also created, called helppage.selectedIndex.
It holds a number that tells you which index has been chosen.
So, in the previous script, I assign the value in selectedIndex
to a variable called choice,
and then I use choice to
access the value of the OPTION
that was chosen by your user. Then the value (in this case, the
URL of a help page) gets passed to the frame's location.href
variable, which causes a new page to be loaded. Cool, huh?

Next, you need to create some filler pages. You'll create a "default"
page that talks about the client map, and create one other example
to test your frames interface. Use Listing 30.16 for the client
map help page.

Listing 30.16 maphelp.html The
Default Help Document

<HTML>

<HEAD>

<TITLE>Client-Map Help</TITLE>

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

<H2>BigCorp Web Site Help</H2>

</DIV>

<P>Please choose the topic you'd like help with from the
menu at the top of this pages. If you've arrived here by clicking
on the graphic on our index page, read on.</P>

<H3>Help with BigCorp Graphical Maps</H3>

<P>BigCorp offers a number of different "graphical
maps" for navigating its site on the World Wide Web. These
maps use "client-side" technology, which means that
your Web browser program (the "client") needs to be
able to process the information in the different parts of the
graphic, thus allowing you to go directly to different parts of
our Web site.</P>

<P>Since you've arrived here, it seems your browser doesn't
support client-side maps. There are a couple of options. First,
we'd definitely recommend visiting Microsoft
Corp.

 or
Netscape Corp. and downloading the latest versions of
their advanced Web browsers. If this isn't feasible, or if you're
stuck using a text-based system, we recommend you visit our HTML 2.0
compliant pages.</P>

<P>If you want to continue to use this enhanced pages, our
final recommendation is to use the text links provided on most
pages, like those below (which are functional...use them to leave
this page.)</P>

<DIV ALIGN="CENTER">

<H5>Index
| Products |

Customer Service
| Tech Support
| About BigCorp</H5>

</DIV>

</BODY>

</HTML>

Here's another example of a help page that you can use to test
the frames interface. Let's create a page that "helps"
users by telling them how to order products from BigCorp (see
Listing 30.17).

Listing 30.17 buy_help.html Another
Sample Help Document

<HTML>

<HEAD>

<TITLE>Ordering BigCorp Products</TITLE>

</HEAD>

<BODY>

<DIV ALIGN="CENTER">

<H2>How to Order from BigCorp</H2>

</DIV>

<P>Find something on our Web site you'd like to order? Well,
there are a couple of ways to go about it. Most of the products
discussed online are also available through retail outlets. Or,
you can order directly from us, and we'll send nearly everything
out by the next business day.</P>

To find a retail outlet for BigCorp Products, call 1-800-BIG-CORP
and hit "6" at the main menu.

To order directly from BigCorp, called 1-800-BIG-CORP
for electronics, books and computer goods. Sporting and hunting
equipment can be ordered by calling 1-800-BIG-FISH.

To order by mail, send a check or money order, including
appropriate handling charges and state sales taxes to: Order Fulfillment,
P.O. Box 001, Clearing City, MO 90009.

For a catalog of our products, send a letter with your
name, address and daytime phone number to: Catalog, P.O. Box 101,
Clearing City, MO 90009.

To order a catalog via the Internet, please send your
name, address and a daytime phone via an email message to

catalogs@fakecorp.com.

For Corporate Sales information, call 1-800-BIG-SALE
for information on creating a corporate account and requesting
a personal sales representative for your company.

</BODY>

</HTML>

Finally, you need to create the frame interface page. This one
should be fairly simple (see Listing 30.18).

Listing 30.18 help.html The
Help Frames Interface

<HTML>

<HEAD>

<TITLE>BigCorp's Web Help</TITLE>

</HEAD>

<FRAMESET ROWS="150, *">

 <FRAME SRC="helpform.html" MARGINHEIGHT="10">

 <FRAME SRC="maphelp.html" NAME="main_viewer"
MARGINHEIGHT="5">

</FRAMESET>

</HTML>

Gotta love those frame documents.

With all of this said and done, you're ready to test your new
interface. When you load help.html,
you should see the logo and SELECT
menu in the top frame and maphelp.html
(the default help page) in the main_viewer
frame. Selecting a new help page from the menu and clicking Get
Help should change the document in the lower frame
(see fig. 30.13).

Figure 30.13 : The sample support page offers files for download.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch4.htm

Chapter 4

HTML's Role on the Web

CONTENTS[bookmark: CONTENTS]

		Why Create Web Pages?

		Web Applications
		Example: Searching on the Web

		Advantages and Disadvantages of the Web
		Advantages

		Example: Travel Agent Web Site
		Disadvantages

		HTML and the Changing World Wide Web
		The Forced Evolution of HTML

		The Current State of HTML

		Deciding What Type of HTML To Use
		The HTML 2.0 Standard

		The HTML 3.0 Level Standards

		Netscape and Internet Explorer HTML

		Making the HTML Decision

		Summary

		Review Questions

		Review Exercises

You've already seen how HTML is used to emphasize and organize
text in Web documents. And you've seen how hypertext and hypermedia
links can be used to maneuver on the Web, access information,
and download different file formats. You've also seen that extensions
to HTML from Netscape and Microsoft have added certain abilities
to HTML.

Now let's discuss where HTML is today and where it's going in
the future. In this chapter, you'll learn about the advantages
of Web pages compared to other Internet services, how HTML has
changed with the Web, how to recognize and understand the different
flavors of HTML, and how to decide what types of HTML you're going
to use.

[bookmark: WhyCreateWebPages]Why
Create Web Pages?

Having discussed how exactly the Web works, you can move on to
why you might want to create Web pages. There are a number of
reasons you may want to do this-more than likely, you've already
got some ideas. But consider the following possible examples:

		Small Businesses-Not only is the Web an inexpensive
place to advertise your business, but it's also a relatively interactive
and convenient way to communicate with customers and potential
customers. If you haven't already, it's a good idea to put up
some Web pages that explain the services you provide from your
small business or home office. Then put your URL on your business
cards, your brochures, and other advertising so that customers
know where to go for detailed information about you.

		Large Businesses-Large businesses should be on the
Web too, especially technical and customer-service-oriented businesses.
The Web is a wonderfully unique way to provide customer service,
technical support, and informational services at relatively low
cost to the business. A good Web designer and a creative Information
Systems (IS) staff can put together some very unique services
that might save a business tons of customer support dollars (see
fig. 4.1).

Figure 4.1 : Federal Express has come up with a great reason to use the Web-customers can track packages without calling their 800 numbers.

		Community Groups-Do you lead or participate in a group
in your neighborhood, church, school, or community? If you do,
then a Web page is a great way to offer information about the
group, present a meeting schedule, post announcements, and recruit
new members. A Web page can even be a great way to inform members
of changes to the club or the schedule, or to praise special members
for accomplishments.

		Hobbies-Even if your major hobbies aren't computer-related,
you can create a Web page and put it up on the World Wide Web.
Eventually, people with the same interests as you will be visiting
your page, sending you e-mail, and helping you find more information
about your hobby. You may even find others who've put up similar
Web pages, and you'll be able to add links to their information
on your page.

		Personal or Family Pages-What else can you put on a
Web page? Your résumé, samples of your work, samples
of your kids' work, pictures of the house, the car or the kittens
you're selling, and even clips from home movies. Is there a better
way to make up-to-the-minute photos available to your family than
on the Web? Maybe not. It's also a great place to post writing
samples and old articles about yourself or your family from the
local paper.

[bookmark: WebApplications]Web Applications

Another emerging use for HTML on the Web is as a basis for something
called a Web application. In essence, a Web application
is a Web site designed to do more than simply present pages and
hypermedia links to its users-it actually acts as a front end
for data processing.

For instance, consider the notion of a Web site designed to give
a company's salespeople the ability to access product information
and confirm orders while on the road. Using HTML, the basic interface
for this sales database can be made available on the Web. With
the appropriate browser software and an Internet connection (perhaps
even over a cellular modem), a salesperson for your company has
nearly instant access to the information she needs.

Once the data are entered on the page, they are passed by the
Web server to programs (often referred to as CGI-BIN scripts or
applications, as discussed in Chapter 15)
that process the information-looking up the product in the database
or taking the order. The results of these programs can be generated
complete with HTML codes, so that the answers can be viewed by
the salesperson in her Web browser.

[bookmark: ExampleSearchingontheWeb]Example: Searching on the
Web

Not all Web applications are necessarily business-related-and
even the applications that are don't necessarily have to be limited
to employee use. Consider one of the most popular Web applications
available: the Web-based search engine.

These Web applications use HTML pages to offer an interface to
a database of Web sites around the world. You begin by accessing
the page and entering keywords, which the Web application passes
to a CGI-BIN program. The program uses your keywords to check
the database of Web pages, and then generates an HTML page with
the results.

The URL for that results page is returned to the Web server, which
treats it as a standard link. Your browser is fed the link, and
it loads the newly created page, complete with hypertext links
to the possible database matches.

Let's take a look at the popular Infoseek search application.
Start out by entering http://guide.infoseek.com/ in your
browser and hitting Enter or Return.

Once the page is loaded, it should look something like figure
4.2. In the field on the Web page that allows you to enter text,
enter a few keywords that might suggest a hobby that interests
you. One of my hobbies is acting, so I might try entering acting
plays musicals or something similar.

Figure 4.2 : The infoseek Web search application.

Click the Search button on the Web page, and the Infoseek engine
will begin searching for related Web pages. When it's finished,
you're presented with a list of hypertext links. Click any link
to view the related page and see if it offers the information
you're seeking.

[bookmark: AdvantagesandDisadvantagesoftheWeb]Advantages
and Disadvantages of the Web

Most small or large businesses have a compelling reason to create
a presence on the World Wide Web. It's an important new medium
for communication that is relatively inexpensive to implement,
it's a boon for dealing with customer service issues, and it's
gaining popularity in leaps and bounds. But any good HTML designer
should realize that there are also certain disadvantages to the
Web.

[bookmark: Advantages]Advantages

There are many good reasons to commit to creating a presence on
the World Wide Web. I've already hinted at some of these in this
chapter, but let's look at them in detail. Most of these are geared
toward businesses, but you'll notice that these advantages are
available to any Web site:

		Multimedia presentation-A Web site allows you to do
things that are simply not possible in any other medium. With
some of the visual impact of television, the informational utility
of print, and the personal appeal of radio, the Web is an effective
tool for taking marketing information to another level. Products
can be explained and offered in depth, along with pictures, video,
sound, and even animation.

		Interactivity-There are a number of different areas
where the fact that your user can interactively determine what
to view or hear can really make the difference for a business.
Especially important is the added value the Web gives you for
customer service, technical or product support, and immediate
feedback. While most of any Web site is automated, it gives you
an opportunity to answer frequently asked questions and point
customers to resources that may help them solve problems on their
own. While this may seem like an advantage reserved for computer
companies, consider the implications for service-oriented industries
like travel, consulting, catalog sales, and business-to-business
sales.

		Flexibility-If your business relies on printing or
publishing as a medium, you may immediately see the advantage
of the Web. Changes on the Web are relatively instantaneous, and
the speed with which an update can be made is measured in minutes,
not weeks. Consider the financial planner's or real estate agent's
sales newsletter. Instant changes on the World Wide Web give their
Net-savvy clients a time-based edge. Incorporating the Web into
the services you offer a client gives you an added value in their
eyes, especially in time-sensitive industries.

		Easy High-Tech-Whether you're a small or large business,
it's important to keep up with technology in order to satisfy
customers and be up on the "latest." Web pages are moving
toward a point where they'll be expected of large businesses and
not unusual from small ones. Like e-mail a couple years ago, and
fax machines before that, it's become important to keep up with
the Web. Fortunately, it's also rather easy to get started with
HTML and quickly develop a Web site.

[bookmark: ExampleTravelAgentWebSite]Example: Travel Agent Web Site

Let's roll all of these advantages into a hypothetical Web site
for a travel agency to show exactly what I mean.

All-Rite Travel has decided that it needs a Web site and is trying
to determine the ways in which the site will help win and keep
customers. The agency relies on professionally designed and printed
brochures that are updated annually for general information about
the agency and its services. It has a quarterly newsletter for
repeat customers and generates laser-printer flyers and mailers
for special deals. How can the Web help All-Rite Travel (see fig.
4.3)?

Figure 4.3 : Here's what our fictious travel agent's index page might look like.

Multimedia and Interactivity

First of all, the agency's presentations can be multimedia-oriented.
Taking advantage of the Web protocols allows sending sounds, graphics,
and even video of travel destinations across the Web. If the agency
has pictures of accommodations in a vacation resort, for instance,
it can put those on its site. Sounds, video, or text generated
by a travel writer or photographer can also be added. A map to
its offices, links for customers to send e-mail, and information
about its affiliations can all be online.

And using hypertext, All-Rite can pick from relatively unlimited
resources for more information. It would take only a few hours
to build links to all of the Chambers of Commerce in major U.S.
metro areas. Links to airlines, major hotel chains, limousine
services, car rentals, and credit card companies could all be
added.

Flexibility

While All-Rite would probably want to continue with its print
advertising and brochures, the possibilities for offering information
over the Web are enticing. Since customers can take on as little
or as much information as they want, the Web can house all sorts
of extras. Special employee pages could tell customers which agent
is most specialized in their area of interest. Editorial writing
by agents and other specialists could give tips on travel safety,
saving money in restaurants, or tracking expenses on corporate
trips.

And the Web page could be instantly updated with the best deals
the agency comes across or packages-as they happen. The moment
you're ready to make a sale notice or offer a special price, you
can do it on the Web. Once All-Rite's customers are used to its
Web presence, those with a special interest in traveling can easily
check the Web site every few days for the latest offerings.

Easy High-Tech

Once the agents have learned a little HTML, they can add pages
or edit them on their own. Make the Web site known on business
cards, brochures, and elsewhere, and customers will see it as
an extra value-All-Rite is "plugged in" to the Web,
and its Internet-savvy customers can learn a lot of what they
need to know without bothering to phone or come by the agency's
office.

[bookmark: Disadvantages]Disadvantages

It's difficult to say that there are disadvantages in having a
Web site, since most people and companies will use a Web site
to enhance their marketing and customer service efforts, not supplant
them. That said, there are a few hurdles to leap, and they should
definitely be considered before your Web project takes off:

		Learning Curve-It will take a while for folks to learn
HTML, figure out how to upload pages, create appropriate graphics,
and design effective Web sites. You'll also need to find an effective
and helpful Internet service provider (or a similar in-house IS
employee at a larger corporation) who can help you get online.

		Appearance-To be truly effective, a Web site also needs
to be attractive and easy to use. For many companies, especially
larger ones, that will mean using professional artists, writers,
and designers. Beginning this task can be daunting, and will require
a reasonable budget-which may be intimidating when management
isn't sure what the benefits will be.

		Maintenance and Timeliness-One of the worst things
that can happen to a Web site is for it to sit dormant for weeks
or months because it's the pet project of an interested employee
who has less time for it than she originally anticipated, or because
every change to the Web site must first be approved by a committee.
It's important that a Web developer be relatively free to spend
time on the project, and that someone be available to make timely
decisions. Without this, the Web site loses some of its inherent
advantages.

		Security-Transmitting data via Internet technology,
including the Web, is inherently a rather unsecure process. For
data to be transmitted over the Web, it has to pass through a
number of different servers and hosts-and any of the information
you offer could potentially be read or held by any of these people.
This has been a strong argument against commerce on the Web, as
people recognize the dangers in revealing personal information
(for instance, credit card numbers). Currently, it's difficult
to create completely secure Web sites that offer access only to
password-bearing users, and those passwords are often not impossible
to intercept.

		Copyright Issues-The lack of security holds true for
the Web designer-nearly anything you create on the Web can easily
be read or copied by anyone with Web access. This is intimidating
both to artists and publishers who want to make sure that Internet
access doesn't, in some way, devalue their published (and profitable)
efforts.

		Cost-Depending on the size of your organization and
the expertise of its people, a Web site can quickly become expensive.
Learning HTML and creating a reasonable site isn't that difficult
(as you'll see in this book), but maintaining the appropriate
equipment, paying the dedicated staffers, and bringing in consultants,
designers, programmers, and IS technicians as the site grows can
quickly expand the budget. The advantages will often outweigh
these costs, but any Web developer should be aware that Web sites
tend to get bigger and more time-consuming as time goes on.

		Secure Connections on the Internet

		

Some Web server software packages offer an implementation of the Secure Sockets Layer (SSL), a protocol that sits "on top" of TCP/IP (the Internet networking protocol) and "below" HTTP. Its purpose is to secure the transmission of HTTP

data over the Web.

With an SSL server (usually noted by its https://-protocol URL) and an SSL-capable browser program, transmissions over the Web are encrypted in such a way that users trying to read the data as they pass over the Internet are treated

to nothing but garbled text.

SSL is a feature of, among others, the Netscape Enterprise Server, which is designed to allow users to access a Web site in a secure fashion so that credit cards and other personal information can be passed with relative assurance.

Although this is not directly relevant to HTML designers, if you have the opportunity to create a commercial Web site (or otherwise ask for personal information from users), you might look into the possibility of using an SSL-based secure Web server to
offer your users peace of mind. And, while SSL isn't the only security scheme, it's the most widely supported.

[bookmark: HTMLandtheChangingWorldWideWeb]HTML
and the Changing World Wide Web

You already know that the Web is really only a few years old,
and that graphical browsers have been around since only mid-1993.
So how could the Web have had enough time to change dramatically?
In the computer world, it doesn't take long.

The Web and HTML were initially designed for use by academics
in a fairly limited way-they planned to collaborate on physics
projects and share information in a hypertext format. Publishing
on the Web meant they could put experimental data and their conclusions
on the Internet, with links to other data and other researcher's
notes, or even links that would download graphs and charts.

A few years later, people are talking about the Web as if it were
literally the greatest thing since sliced bread. The World Wide
Web is touted as the next logical medium for publication. It's
the printing press of the future, where everyone who puts together
a newsletter, magazine, sales brochure, and (in some cases) a
television show will have to have a presence.

Sounds pretty demanding, doesn't it?

[bookmark: TheForcedEvolutionofHTML]The Forced Evolution of
HTML

Along with these changing demands for the Web have come changing
demands for HTML. It's only in the last year or so that professional
designers, writers, layout artists, and their ilk have begun to
take an interest in the Web. And what did they find when they
got there? You have to use HTML, with no control over justification,
no wrapping text around graphics. In the Henry Ford tradition,
you could use any color for a background-as long as it was gray.
And HTML itself is some bizarre cross between word processing
and programming that designers aren't always thrilled to learn.

Given this atmosphere, it becomes clear why programs like Netscape
Navigator-with their special layout commands-are so popular. Many
professionally developed Web sites have shunned users other than
those with Navigator, thinking, "If they can't see it, too
bad. The design can't be compromised." It's up to each designer,
right?

		Tip:

		

Aside from Chapters 19 and 20, a very useful discussion of Netscape versus HTML standards can be found at Andrew King's web site at

http://webreference.com/html3andns/.

The problem with these extensions and extras is that HTML's entire
philosophy goes against the idea of strict layout and design.
From the beginning, HTML was conceived as a very nonspecific method
for presenting pages. With many implicit commands, it allowed
browser programs considerable flexibility when it came to emphasizing
text. Essentially, an HTML browser is given a suggestion like
"emphasize the word 'weight,'" but it isn't told exactly
how to do it. It could choose italics or bold or place the word
in a slightly different font face. In HTML 2.0, the font family
isn't specified, nor is alignment on the page. That's up to the
HTML browser-at least according to the original theorists.

But then again, HTML was only originally intended for scientists
to share ideas and figures-not for Madison Avenue to share its
latest campaigns.

[bookmark: TheCurrentStateofHTML]The Current State of HTML

With these commercial demands, however, have come different solutions.
For every extension Netscape adds to HTML, there is generally
(eventually) a standard agreed to by the World Wide Web Consortium
(W3C) that meets the same need. Unfortunately, the implementation
isn't always the same. So, it's possible for an HTML 3.0 level
standard, for instance, to provide for exactly the same layout
functions as Netscape-but do it in a way that isn't compatible
with Netscape's browser.

So HTML is currently in a bit of a flux. The best you can hope
for is that the HTML standard is agreed upon and maintained more
quickly in the future as more ideas pop up. At the same time,
it's important that the standard remain well thought-out, and
that it isn't allowed to become bloated and unworkable.

In fact, this is probably the justification for recent changes
to the standard's bodies. With the W3C taking control of HTML,
it suggests a shift in the ultimate power over HTML to the corporate
players. From now on, you can probably assume that HTML extensions
beyond what is generally considered HTML 2.0 will become standard
on a case-by-case basis. Overall, this is probably a good thing,
since standards can be agreed on as technology emerges-and competing
browsers can all use the same methods to incorporate new technology.

[bookmark: DecidingWhatTypeofHTMLToUse]Deciding
What Type of HTML To Use

So the question becomes, which side do you choose? Do you develop
pages that use Netscape-only commands? Do you develop two sets
of pages-for HTML 3.0 and for Netscape? What about those special
Internet Explorer commands?

There are a couple of different scenarios you should consider
when putting together your HTML pages. You'll need to know more
about HTML, but once you do, you can make an informed decision
about the types of commands you're most likely to use and which
ones you can do without. Of course, you can use as many different
flavors of HTML as you choose-as long as you remember to give
your users a choice (see fig. 4.4).

Figure 4.4 : A 'front door' page allows users with different browser programs to choose how they'd like to view the Web site.

		Tip

		

You can add to your site CGI scripts that identify a user's browser and serve it the correct type of HTML.

With that in mind, then, let's look at the possibilities.

[bookmark: TheHTML20Standard]The HTML 2.0 Standard

If you can get by with less sophisticated layout functions, go
with the lowest common denominator-currently HTML 2.0. This level
of HTML lets you add text, graphics, and different types of links
so that pages are very complete and useful. With any level of
HTML, hypermedia links can be made available, but they'll still
be limited to the browser's ability to handle them. Even text
browsers can save hypermedia files (like sound and video) which
the user can view or hear later using other programs.

What HTML 2.0 doesn't include are a great deal of explicit formating
tags. There's no way to center text and graphics, for instance,
and only limited ways you can format graphics on the page. Aside
from clickable graphics links and some calls to external scripts
and programs, there isn't much "interface design" you
can accomplish with HTML 2.0, either. Data-entry forms, tables,
frames, and other elements are all added by other levels of HTML.

[bookmark: TheHTML30LevelStandards]The HTML 3.0 Level Standards

As the HTML 3.0 level standards become more and more widely recognized,
you can easily update your pages from HTML 2.0 to HTML 3.0. It
may be a while before this is necessary-browsers have only just
begun to recognize some HTML 3.0 elements.

Remember, though, that even with HTML 3.0 you'll be preventing
a good number of viewers from getting the full effect of your
pages. HTML 3.0 incorporates special graphics features, background
colors and images, tables for displaying data, and other features
that may seem indispensable, but will be lost on users of older
graphical browsers-and any of the text browsers. If you're going
to use HTML 3.0 elements, you should include at least a text-only
option as well.

[bookmark: NetscapeandInternetExplorerHTML]Netscape and Internet
Explorer HTML

If you've spent any amount of time on the Web, you're sure to
have encountered pages that say something like "Netscape
Navigator is recommended for viewing these pages." With Netscape
controlling around 60 percent of the browser market, a number
of HTML designers have felt free to use HTML elements that can
be interpreted only by Netscape-including certain implementations
of tables, Netscape frames, special layout tags for centering
or right-aligning pages, and other features. You'll have to decide
for yourself if leaving out 40 percent of your potential users
is a good idea.

It's absolutely true that some of the most attractive Web sites
are designed using Netscape's variant of HTML (or special Internet
Explorer tags), and that might be most important to you. If so,
you should at least consider adding additional text-only or HTML
2.0-only pages to your site for other users.

[bookmark: MakingtheHTMLDecision]Making the HTML Decision

The bottom line is that you should always consider your HTML 2.0
and text-only users, and make efforts to include them in your
Web sites. Other extensions to HTML and add-ons for Web sites-including
the Virtual Reality Modeling Language (VRML), Java and JavaScript
programs, and others-will work only with certain browsers. Much
of the time, noncompliant browsers will simply ignore these commands,
but if this is the case, you need to be aware that some users
aren't seeing everything you have to offer.

When you use a non-HTML 2.0 element, it's a good idea to let your
users know. A simple statement such as "These pages are best
viewed in…" is a nice way to let folks know that they
might be missing out on something. If your first priority is the
appearance of your page, this is a decent compromise to make.

If your first priority is giving your users information, though,
then you're best off either using the lowest common denominator
of HTML (HTML 2.0 and, over the next few years, HTML 3.0) or offering
different ways to view your sites to your different users.

[bookmark: Summary]Summary

There are certain advantages to the Web, such as multimedia, interactivity,
timeliness, and a certain air of "tech awareness" that
make creating HTML pages something of a necessity for businesses
and a good idea for families, too. There are disadvantages as
well, including the cost in time and money, the learning curve
for Web design, and the constant need to update.

HTML has been forced to evolve over the last year because of the
involvement of millions of people, larger businesses, and commercial
artists. Spearheaded by Netscape Navigator, a number of extensions
to HTML for page-layout purposes have confused the mission of
the Web. As a designer, it's up to you to decide who your audience
will be and the most appropriate flavors of HTML to use in order
to reach that audience.

[bookmark: ReviewQuestions]Review
Questions

		Is it possible for a Web site to actually save businesses
money? What business services are often enhanced by Web sites?

		Why is the Web's multimedia capability an advantage in using
the Web for your business?

		Explain why the Web's "flexibility" was an advantage
for our fictional travel agent in the Travel Agent Web Site example.

		What's one of the worst things that can happen to a Web site?

		What is a Web application?

		The Web was originally conceived as a research tool-what has
it been touted as recently?

		What HTML standard is considered the lowest common denominator
of HTML?

		Give an example of an HTML extension to Netscape that doesn't
appear in the HTML 2.0 specification.

[bookmark: ReviewExercises]Review
Exercises

		Use a browser other than Netscape (preferrably an older version
of Mosaic or a text-based browser) to access the Netscape home
page at http://home.netscape.com/. Anything look different?

		With your browser, access some big-name corporate sites like
http://www.microsoft.com/, http://www.apple.com/,
and http://www.ibm.com/. Notice the types of information
they offer and how the information is presented.

		If your ISP offers a page of local business links (or if you
can find some via a Web search engine), take a look at those and
consider how (and if) you would improve on them in some way. What
do they do better or worse than the large corporate sites?

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch5.htm

Chapter 5

What You Need for a Web Site

CONTENTS[bookmark: CONTENTS]

		Finding a Web Server
		What is a Web Server?

		Speed of the Server

		Types of Internet Connections

		Dealing with an ISP
		Determining Costs

		What You Need To Know

		Organizing a Web Site
		Naming Your Files

		Example: Organizing a Site

		Updating Your Web Site

		Summary

		Review Questions

		Review Exercises

Although creating HTML pages is easily the most time-consuming
part of building your Web site, another equally important part
is figuring out how you're going to get those pages on the Web.
You'll need Web server software, an Internet connection, a Web
URL for your pages, and a system for organizing your pages and
graphics. Depending on how you gain access and how complicated
your site is, just getting your first page up on the Web can take
a certain amount of planning.

[bookmark: FindingaWebServer]Finding
a Web Server

Before you can display your HTML pages on the Web, you'll need
access to a Web server. This may already be taken care of for
you, especially if you work with an Information Systems (IS) department
in a larger corporation. If this is the case, you'll just need
to know how and where to send your HTML files when you want to
update the site. Otherwise, you'll need to make some arrangements
on your own.

It isn't terribly difficult to set up your own Web server-especially
if you already have a high-speed connection to the Internet. If
you access the Internet through an Internet service provider (ISP),
you'll want to discuss this with them, though. More than likely,
they're willing to provide you with space on their Web server
computers. If your Web site is a fairly small venture, or if you're
not ready for a heavy investment in equipment, then using your
ISP's Web server is a great (and very common) alternative.

[bookmark: WhatisaWebServer]What is a Web Server?

In its essence, it's the job of a Web server to accept connections
from Web browsers all over the Internet and, when requested, send
them the HTML documents that are available from your site. This
is done using the HTTP protocol discussed in Chapter 2.

A Web server is simply a computer with an Internet connection
that runs software designed to send out HTML pages and other file
formats (such as multimedia files) (see fig. 5.1). The server
computer should have a relatively high-speed connection to the
Internet (faster than any available modem connections, for instance)
and be powerful enough to deal with a number of simultaneous connections
from the Internet.

Figure 5.1: WebSTAR Web server software running on a Macintosh computer.

Web server software generally requires a fairly robust operating
system (like UNIX, Windows NT, or OS/2), although software is
available for other versions of Microsoft Windows, and the Macintosh
OS is a very popular choice for Web server computers. The software
you use depends on your level of experience with Internet connections
and various operating systems.

[bookmark: SpeedoftheServer]Speed of the Server

The other major consideration is how popular your Web site will
be. The more hits, or connections, your Web server receives
at one time, the more powerful the computer should be-and the
faster your connection to the Internet. What do I mean by a fast
connection?

Most Internet connections are measured in terms of bits per
second (bps), which translates loosely as "how
many bits of data can be transmitted across the Internet in a
second." In computerese, it takes eight bits to make up one
byte of computer information-and a byte is what is required
to create a character of text.

The typical modem connection is 14,400 bps, which translates to
roughly 1,800 characters (bytes) transferred every second. If
a typical page of text contains 300 words then, and each word
averages six characters per word, this connection would yield
roughly a page-per-second transmission rate. A 25-kilobyte (KB)
file (such as a very small GIF file) would take about 14 seconds
to transmit over this connection.

This doesn't sound terribly slow, until you start to take into
account the idea that more than one connection might occur with
the Web server. If ten people connect to our server over this
connection, it will take ten seconds to complete the task of sending
each of them a single page of data. If that page totaled 25 KB
in size (that is, if it included graphics and other elements),
it could take over 140 seconds to complete that same task.

		Note

		

These transmission rate numbers all reflect ideal conditions. In real life, phone line noise, traffic on the Internet, and other factors will slow down transmission rates. Throughput on a 14,400 bps connection is often somewhere between 1,100 and 1,300
characters per second.

If the typical well-designed Web page is between 30 KB and 50
KB in size, you can see that we're going to start running into
problems with this type of connection. There's the potential for
someone to wait a number of minutes between the transfer of each
page they request on your Web site. If the average commercial
break on television is three minutes, just think how annoyed your
users are going to get.

[bookmark: TypesofInternetConnections]Types of Internet Connections

So your server will need a faster connection. But how do you get
one? If Internet access is available to you through your company's
Local Area Network (LAN), you probably already have a high-speed
connection. Ask around your IS department. If you're running a
small business or home office, you won't have to worry about high
speed if you make your Web pages available on your ISP's Web server.

If you're going to use your own Web server computer, though, you'll
need a high-speed Internet connection that you can connect to
that computer. Table 5.1 details some of the possible connections.

Table 5.1 Internet Connection Speeds and
Technologies

		Connection Speed		Connection Technology

		14.4/28.8 Kbps		High-speed modem

		56 Kbps		56K leased line

		64 Kbps		Single-B-Channel ISDN

		128 Kbps		Basic Rate ISDN

		up to 1.5 Mbps		Primary Rate ISDN (U.S.)

		1.5 Mbps		T-1 dedicated line

		45 Mbps		T-3 dedicated line

The minimum for an acceptable Web server connection is probably
a basic-rate ISDN (Integrated Services Digital Network) connection,
which offers 128,000 bps connections to the Internet. ISDN technology
uses your existing phone wiring to provide an enhanced, digital,
telephone connection. Using a special network adapter card for
your computer, you can use the ISDN line to dial an appropriately
equipped ISP. You can also use the ISDN connection for regular
telephone calls.

		Note

		

ISDN is a service of your local telephone company, and you should contact them for more information. Also be aware that emerging technologies such as cable modems (offered by your cable TV company) may be another high-speed alternative.

The basic-rate ISDN connection is still somewhat slow, depending
on your Web site's traffic (that is, the number of visitors to
your site). But it's also the most reasonably priced, generally
falling between $50 and $150 a month for the ISDN line (from your
local phone company), with $50 to $100 for the ISDN account (from
your ISP), and $300 to $1,000 to purchase the ISDN equipment.

		Tip

		

Relatively low-cost ISDN "modems" are becoming more common for both PCs and Macs in the $300 to $500 range.

A T-1 line is the typical connection for an ISP or a large business,
and these lines generally cost thousands of dollars per month
for Internet access, as do primary-rate ISDN connections. T-3
lines currently serve as the backbone of the Internet, and are
generally only found connecting university, government, and supercomputing
organizations.

[bookmark: DealingwithanISP]Dealing
with an ISP

For any sort of connection to the Internet, you'll probably need
to deal with an Internet service provider. These companies offer
dial-up and special high-speed connections to the Internet, as
well as generally offering Web and other types of Internet servers
for your use.

		Note

		

Looking for a provider for your Web page? With your Web browser, you can access some lists of ISPs around the country (and world) at http://thelist.com

or http://www.yahoo.com/Business_and_Economy/Companies/Internet_Services/ Web_Presence_Providers/ which includes a listing of free Web page providers. You might also check with your current ISP for Web deals, and realize that many

popular online services offer free or cheap Web space.

For the typical smaller Web site, you'll want to buy space on
the ISP's Web site. Generally this will give you an URL that begins
with the name of the ISP's host computer, but points to a special
directory for your HTML pages, such as http://www.isp.com/username/index.html.

With most Web server programs, the default page that is first
loaded is named index.html,
so that's the name you'll use for the first page you'd like presented
to users when they access your Web site.

[bookmark: DeterminingCosts]Determining Costs

If you're looking for an ISP for your Web site (as opposed to
using your company's computers or your current ISP), it's important
to consider two factors. Most ISPs will charge you based on how
much disk space your Web site consumes and how much throughput
is registered for your pages.

Throughput can be seen as the average amount of information transferred
from your site to a user multiplied by the number of users who
access your Web site:

average amount of information X number
of users = throughput

If, for instance, each user who accesses your site transfers an
average of 50 KB, and 1,000 users access your site in a month,
then your throughput for that month would be 5 MB of data. If
your ISP charges $1 per megabyte of throughput, you'll be charged
$5 (not including the disk space charges and any monthly fees
the ISP may charge).

So why charge for throughput? If hundreds of people access your
site at any given time, this means that many fewer people can
access other services provided by the ISP, so they charge you
more. Consider the scenario where everyone is downloading a 250
KB shareware program from your Web site, and over 10,000 people
access your Web site in a month. This is approximately 2.5 gigabytes
of data transferred, for which you might be charged $2,500 (at
$1 per megabyte).

		Tip

		

Look for Web sites that offer monthly maximums and special deals to avoid surprise bills for hundreds or thousands of dollars.

A sum of $2,500 is a little high for that sort of traffic, but
it does make a good point-many ISPs will limit your site to a
certain amount of data transferred or a certain number of visitors
per month (for a particular price plan). To get past these limitations,
you may have to opt for the next higher plan available from the
ISP, or accept additional charges for extra throughput.

[bookmark: WhatYouNeedToKnow]What You Need To Know

Once you've decided on an ISP that you feel is reasonably priced,
you're ready to create your HTML pages and upload them to the
server. To do all this correctly, though, you'll probably need
to ask a few questions:

		What is my site's default URL?-This should be something
like the ISP's host address and a directory for your username.
For instance, if my username is tstauffer and my ISP's
Web server is www.webco.net, then the default URL for my
site might be http://www.webcom.net/tstauffer/. Different
ISPs will organize this in different ways, so you'll need to make
sure you get this right.

		Note

		

Many ISPs will give you the option, at an increased price, of creating your own domain name for your site. Then users could access your site at http://www.yourname.com/.

		How do I upload files to my site's directory?-You should
get instructions for accessing your Web site's directory on the
Web server computer using either FTP or a UNIX shell account.
We'll discuss this more in the section "Updating Your Web
Site," later in this chapter.

		Are there any limitations to the names I can give my files?-The
operating system in use by the Web server may not be instantly
obvious to you. If this is the case, you'll want to ask if there
is a certain filename length or a certain format for naming files
you need to follow.

		Tip

		

When in doubt, use the DOS 8.3 filename convention in the style filename.ext where filename can be no more than eight letters, and .ext is a three-letter filename extension, such as .htm.

		Can I create subdirectories within my main Web site directory?-Most
Web servers will give you this capability, but some will not allow
you to create new subdirectories.

		What support is offered for CGI programming? Some servers
won't allow you to add CGI scripts to your Web site for processing
forms or adding other interactive features. At the same time,
some will, but require you to pay extra or pay to have the provider
write those scripts (regardless of your ability). If you plan
a highly interactive site, then you should ask about CGI support.

[bookmark: OrganizingaWebSite]Organizing
a Web Site

The most important thing to remember when organizing a Web site
is how the server computer you're using will differ from the computer
you use to create Web pages. This is because you'll need to know
the exact path to HTML pages and multimedia files you use in creating
your Web page. As we've seen before, an URL requires both a server
name and a path statement to the file. This includes files that
you've placed on your own Web server-so while you're creating
your Web pages, you'll need to know where your files will eventually
be.

Although there are a number of different ways to arrange a Web
site, there are some rules of thumb to keep in mind. For the most
part, any organization you create for your Web site files should
be designed to make updating your pages easy in the future. If
you have to move all your files around every time you change something
on a Web page, you'll also be forced to change all the hypertext
links on many other pages-and that can be incredibly time-consuming.

Let's look at a couple of different types of organization for
Web sites:

		Single-directory sites-Smaller sites (with just a few
HTML pages and graphics) can often get by with a single directory
on the Web server. All your graphics and HTML pages are in this
one directory. One of the biggest advantages of this system is
that links to local files and graphics require no special path
statements.

		Directory by function-One way to organize more complicated
sites is to put each section of related Web pages in the same
directory. For instance, in your main directory you might offer
only your first (index) page and its associated graphics. For
a business site then, you'd have subdirectories for About the
Business, Product Information,
Technical Support, and so on. In each of these subdirectories,
you'd include all the related HTML files and the graphics for
those pages.

		Directory by file type-Some people prefer to create
subdirectories according to the type of file as opposed to the
content of the page. Your main directory may have only the index
page of your site. Other subdirectories might be Graphics, Web
Pages, Downloadable Files, and so on. The main advantage in organizing
this way is that files generally have to be replaced only once.
If you use a graphic on a number of different pages, for instance,
you replace it once in the Graphics subdirectory, and all the
HTML pages that access this graphic will use the new one.

		Hybrid-The best way to organize a large site might
be a hybrid of the last two methods above. Creating separate subdirectories
for nonrecurring items (such as individual Web pages in each category)
while creating other subdirectories for items used multiple times
(such as graphics) lets you get to all the files in an efficient
way.

[bookmark: NamingYourFiles]Naming Your Files

We've already mentioned that file extensions are an important
part of all the filenames you use for your Web site. Because other
Web browsers may rely on the file extension to know what sort
of document or file it is, you'll need to include the appropriate
extensions with all your Web site files.

Your Web site will almost always begin with a file called index.html.
Most Web server software programs will automatically load this
page if the URL of your site is accessed without a specific path
and file reference. For example, entering http://www.sun.com/
in your browser actually results in the URL http://www.sun.com/index.html
being loaded in your browser. Your Web site's first page (whether
it's a "front door" page or the first page of your site)
should be designed with this in mind. If you plan to offer only
Netscape-enhanced pages, for instance, you'll want to let your
users know this on the index.html
page.

The other consideration for naming your files is the organization
you plan to use for your site. If you're using a single-directory
organization, your filenames should be as unique as possible,
and graphics and other files should probably have names that relate
to associated Web pages. For instance:

about_company.html

about_header.jpeg

about_ceo_photo.jpeg

When possible, these names will help you determine which files
are associated with which HTML pages when you go to update those
files.

		Note

		

Remember that it's important to know what operating system your server uses. Some of the suggestions in this section for styles of filenames will not be helpful if you're using a DOS-based server, since names are limited to the 8.3 format.

For graphics and other files that show up on multiple pages, you
might want to come up with a memorable prefix, like gen_
or site, just so you can
easily replace these universal files when necessary.

[bookmark: ExampleOrganizingaSite]Example: Organizing a Site

To create a reasonably sized site for my home-business Web site,
I'm going to use the hybrid style of organization. I have three
different sections on my site: About My Business, Services, and
Samples. Each of these sections will have its own directory structure.
Graphics will be in their own subdirectory, as will downloadable
files that I'm including (see fig. 5.2).

Figure 5.2: The directory organization for my site.

The directory names, then, will be as follows:

about_pages

service_pages

sample_pages

graphics

sample_files

Files and graphics are named for where they appear, unless they
show up in multiple Web pages. For this site, the prefixes I'm
using are as follows:

about_

serv_samp_

gen_

index_

By naming files in this way, I'll be able to replace any graphics
or update my sample files easily-without being forced to load
each file or graphic to figure out what it is. Making the names
as descriptive as possible (aside from the prefix) will help too,
as in the following:

[bookmark: UpdatingYourWebSite]about_photo_me.jpeg

samp_resume1.doc

sampl_catalog_copy.txt

Updating Your Web Site

If you organize your site well, updating the site is simply a
matter of replacing an outdated file with a new file using the
same filename. For instance, if I wanted to replace the picture
of me in the previous example, I'd simply name the new file about_photo_me.jpeg,
and save it in the same directory. Now the associated Web page
will load the new graphic without requiring any changes to the
HTML codes.

You'll need to check with your company's IS contact or your ISP
to figure out exactly how you'll update files. With an ISP, you
can generally use an FTP program to put new files in your directory
organization on the Web site. You might instead be required to
use a UNIX-based shell account for your uploading. In either case,
it's a fairly simple process.

Your Web space provider will require you to enter a username and
password to gain access to the Web server, whether by FTP or shell
account. Generally, you will point your FTP server to the Web
server itself (for instance, www.isp.com), unless the provider
has created a mirror site to avoid direct access to the
Web server.

		Note

		

A mirror site is generally an exact replica of a Web server's hard disk, but it is kept separate for security reasons. For instance, you might not be able to directly access your company's Web site files-but you can change a mirror of that Web server, and

your changes will be handled by knowledgeable Internet specialists. Many companies prefer to isolate their Web servers from their corporate network so that important data is impossible to access from outside the company.

"Mirror" is more generally used to represent any more-or-less exact copy of an Internet server. The FTP site mirrors.aol.com, for instance, offers copies of nearly every shareware file available on other popular FTP servers around

the world. This gives more users access to the same files at the same time.

After clearing the security procedure, you'll most likely be in
your personal Web site's main directory. (If not, you'll need
to use the cd command in
UNIX or otherwise change directories in your FTP program.) From
that point, you can update files using the Put command. Simply
upload the updated files with the same names as the outdated files-in
nearly every case, the old files will simply be overwritten. If
you're using new files, upload them using the names and paths
that your Web page links use to refer to them.

		Tip

		

It's a good idea to maintain a folder or directory on your own hard drive that is as identical as possible to the Web site you make available on a server-so you can test your organization and filenames.

[bookmark: Summary]Summary

Before you can start showing the world your HTML pages, you'll
need to find a Web server where you can store them. This server
can be a corporate server, an Internet service provider, or a
computer you maintain yourself. In any case, it needs to run Web
server software and have a high-speed Internet connection.

Once you've established where you're going to put your HTML files,
you need to decide how you'll organize them. There are four basic
ways to do this: in one directory, in directories organized by
functions, in directories organized by file type, or a hybrid
of the latter two. For larger sites, a hybrid is most effective.

An important part of your Web site organization is the way you
name files. The best way to do this is to be as descriptive as
possible, while using name prefixes that best describe what Web
pages are used to access these files. This will also help immensely
when it's time to troubleshoot your Web site or update some of
the files.

[bookmark: ReviewQuestions]Review
Questions

		True or false. You'll need an extra, very powerful computer
if you expect to have a Web site on the Internet.

		Aside from the computer itself, what two basic things does
a Web server require to operate?

		If bps stands for bits per second, what does Kbps
stand for? How is this different from Mbps?

		How can you find out if ISDN phone service is available in
your area?

		What is throughput? Why do some Internet service providers
charge based on throughput?

		If your Web server runs the MS-DOS operating system, what
are your filename limitations?

		Explain the hybrid style of Web site organization.

		The file about_ceo_photo.jpeg
is most likely what sort of file? What might the HTML page that
it is linked to be about?

		What is the FTP command for uploading files over the Internet?
Does "uploading" mean you're currently sending the file
or receiving the file?

[bookmark: ReviewExercises]Review
Exercises

		After you have a Web site available to you, test it by creating
a text file called text.txt.
(Just use WordPad, SimpleText, VI, or a similar text editor and
type something in this file.) Then, upload the file to your Web
server. After it's there, use your Web browser to access it, using
the appropriate URL. An example might be http://www.webcom.net/tstauffer/text.txt.
After you get it to appear in your browser, you'll know you're
on the right track!

		Create a special hierarchy of directories on your own hard
drive that mirror the type of organization you're going to use
for the Web site. When possible, your lowest-level directory should
be named the same as your directory on the Web server.

		Access your ISP's other Web pages and, from the URLs, attempt
to determine what OS the ISP is using for its Web server. (Is
it Mac? UNIX? PC? This may be difficult, but not impossible to
tell.) Once you've guessed, contact your ISP to figure out if
you're right. Don't forget that you'll need to use that OS's naming
conventions when you create your site.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch6.htm

Chapter 6

Creating a Web Page and Entering
Text

CONTENTS[bookmark: CONTENTS]

		The Tools for Web Publishing

		Document Tags
		Example: Creating an HTML Template

		Example: Hello World

		Understanding Tags: Container and Empty Tags
		Container Tags

		Empty Tags

		Entering Paragraph Text on Your Web Page
		The
 Tag for Line Breaks

		The Comment Tag

		Example: Creating a Complete Web Page

		Summary

		Review Questions

		Review Exercises

With the basics behind you, it's time to start creating your first
HTML pages. As has already been mentioned, the basic building
block of an HTML page is text. To create these pages, all you
really need is a text editor and a Web browser for testing your
creation (you'll eventually need a graphics program to create
and edit your graphics, too). So let's look at the basic tools
for Web publishing, and then create your own HTML template.

[bookmark: TheToolsforWebPublishing]The
Tools for Web Publishing

I've already mentioned it above-all you need is a text editor.
In Windows 95, that's Notepad or WordPad. For Mac users, SimpleText
is the perfect HTML editor. UNIX users can opt for VI or Emacs.
Basically, all you need to remember is that HTML pages, while
they include the .htm or
.html file extensions, are
simply ASCII text files. Any program that generates ASCII text
files will work fine as an HTML editor-even a word processor like
WordPerfect or Microsoft Word.

		Tip

		

If you create an HTML page in a word processor, don't forget to use the Save As command to save it as an ASCII text file.

You'll also need a Web browser to check on the appearance of your
Web page as you create it. All Web browsers should have the ability
to load local pages from your hard drive, just as they can load
HTML pages across the Web. Check the menu of your Web browser
(if it's a graphical browser) for a command like File, Open (see
fig. 6.1).

Figure 6.1 : In Microsoft Internet Explorer for Windows 95, the File, Open command opens the the Open Internet Address dialog box which contains an Open File command button to open a file from a drive.

You may have heard of some dedicated HTML editing programs that
are designed to make your work in HTML easier. They do indeed
exist, and they can be very useful. Unfortunately, many of them
also hide the HTML codes from the designer, so they would be difficult
for us to use as you learn how HTML works. Once you understand
HTML, though, it can be a great benefit to use one of these browsers.
I'll talk about some of them in Chapters 27,
28, and 29.

[bookmark: DocumentTags]Document
Tags

The first HTML tags you're going to look at are the document tags.
These are the tags that are required for every HTML page you create.
They define the different parts of the document.

Just like a magazine article, an HTML document has two distinct
parts-a head and a body. The head of the HTML document is where
you enter the title of the page. It's also used for some more
advanced commands that you'll study later in Chapters, 10,
19, 22 and 23.

To create the head portion of your HTML document and to give the
document a title, type the following in your text editor:

<HEAD>

<TITLE>My First Page</TITLE>

</HEAD>

This tells a Web browser what information should be considered
to be in the head portion of of the document, and what it should
call the document in the title bar of the browser window.

If you've got a head, then you'll need a body, right? The body
is where you'll do most of your work-you'll enter text, headlines,
graphics, and all your other Web goodies. To add the body section,
start after the </HEAD>
tag, and enter the following:

<BODY>

</BODY>

Between these two tags, you'll eventually enter the rest of the
text and graphics for your Web page.

There's one last thing you need to consider. In order that all
Web browsers understand that this is an HTML document (remember
that you're saving it as ASCII text, so the browser could be confused),
you need to add some tags on either side of the head and body
tags you've created. Above the first <HEAD>
tag, enter the following:

<HTML>

After the last </BODY>
tag, type the following:

</HTML>

Now, at least as far as your Web browser is concerned, you have
a complete Web document!

[bookmark: ExampleCreatinganHTMLTemplate]Example: Creating
an HTML Template

Let's take what you know and create a template. By saving this
template as a generic text file, you'll have a quick way to create
new HTML files-simply load the template and use the File, Save
As command to save it as your new Web page.

Start by entering the following in a blank text file:

<HTML>

<HEAD>

<TITLE>Enter Title Here</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

And that's it. Now save this as an ASCII text file called template.html
(or template.htm if you're
using DOS or Windows 3.1). Now, whenever you're ready to create
a new HTML document, simply load template.html
into your text editor and use the Save As command to rename it.

		Note

		

If you use a word processor to create your HTML files, you may notice that sometimes you get more than one option for saving files as ASCII text. So which one is right? Fortunately, it doesn't really matter. The big problem comes in editing the text on
different platforms since DOS-based machines (including Windows) and Macs treat returns and linefeeds differently. If you plan to edit a Mac-created HTML file on a DOS machine, for instance, choose DOS text when you save it. Funny little newline characters

will now appear in a Mac text editor, but everything will look good on the DOS side.

[bookmark: ExampleHelloWorld]Example: Hello World

When learning a new programming language, it's traditional that
the first program you create is designed to say "Hello World."
Well, HTML isn't a programming language-but I can use the Hello
World example to prove that your template is a complete Web document.

Load the template.html file
into your text editor, and use the Save As command to rename it
hello_world.html or something
similar. Now, edit the document so that it looks like this:

<HTML>

<HEAD>

<TITLE>Hello World Page</TITLE>

</HEAD>

<BODY>

Hello World!

</BODY>

</HTML>

Select the File, Save command from your text editor. Now load
your Web browser and select the Open File (or similar) command
from the File menu. In the dialog box, find the document hello_world.html
and select OK to load it into your Web browser. If everything
goes as planned, your browser should display something similar
to figure 6.2.

Figure 6.2 : The Hello World page as viewed in Microsoft Internet Explorer.

And that's a Web page!

[bookmark: UnderstandingTagsContainerandEmpty]Understanding
Tags: Container and Empty Tags

In creating your HTML template, you've already dealt with some
of the most basic tags in HTML. The first thing you should notice
about these HTML tags is that all tags include <
and > on either side of
the tag's command. This is how HTML recognizes tags. If you don't
use the brackets, then a Web browser will assume your commands
are text that you want displayed-even if that text is the same
as an HTML command.

While a Web browser would consider the following to be a tag:

<HTML>

that same Web browser would interpret the following as text to
be displayed on-screen:

HTML

		Tip

		

Tags are not case-sensitive, so they don't have to be all uppercase-even though that's how they appear in this book. I suggest you type them as uppercase, though, since it makes them stand out in your text editor.

Because tags aren't considered text by the document, they also
don't show up in the document. If the browser interprets something
as a tag, it won't appear in the browser window.

[bookmark: ContainerTags]Container Tags

You may have noticed that for every tag, such as the title tag,
you actually entered two different HTML commands-an "on"
tag and an "off" tag. The off tag is the same as the
on tag, except for the /
after the <.

In HTML, tags that include both an on and an off tag are called
container tags. These tags wrap around text in your document
and perform some sort of formatting on the text. They hold, or
contain, the text between the two tags. The title, HTML, head,
and body tags are all container tags-the relevant text goes between
the on and off tags.

Container tags always have the following form:

<TAG>text being formatted or defined</TAG>

In fact, you've already been introduced to a fairly common container
tag in the first chapter of this book, the
(emphasis tag). An example of the emphasis tag would be:

Here's some really important
text.

Because is an
implicit formatting tag, it's up to the browser to decide what
to do to the text between the on and off tags. But only the words
really important will be
affected in this example, since they're the only text that is
being "contained" by the tags.

[bookmark: EmptyTags]Empty Tags

All other tags in HTML fall into one other category, called empty
tags. These tags have only an on tag-there are no off tags.
The reason for this is that empty tags don't act on blocks of
text. Instead, they do something all on their own. An example
of this would be the <HR>
(horizontal rule) tag. This tag draws a line across the width
of your document. For example:

The following is a horizontal line:

<HR>

The rest of this is just more text.

When viewed in a Web browser, the two sentences will be separated
by a horizontal line, as in figure 6.3.

Figure 6.3 : Here are your two sentences, separated by a horizontal line.

[bookmark: EnteringParagraphTextonYourWebPage]Entering
Paragraph Text on Your Web Page

With your template prepared, and with an understanding of the
two types of tags in HTML, you're ready to enter text on a Web
page. As mentioned earlier, all the text that you enter on a page
should come between the <BODY>
and </BODY> tags. Like
, the body tags
are container tags that tell a Web browser what parts of the HTML
document should be displayed in the browser window.

You've seen that you can just type text into an HTML document
and it will be displayed in the browser. Technically, though,
most of the text you type should be in another container tag:
the <P> (paragraph)
tag. This tag is used to show a Web browser what text in your
document constitutes a paragraph. For the most part, Web browsers
ignore more than one space between words and will ignore returns
that you add to your HTML file while you're creating it.

In order to give the appearance of paragraphs, then, you have
to use the paragraph container tag. The paragraph tag uses the
following format:

<P>Here is the text for my paragraph.
It doesn't matter how long it is, how many spaces are between
the words or when I decide to hit the return key. It will create
a new paragraph only when I end the tag and begin with another
one.

</P>

<P> Here's the next paragraph. </P>

		Note

		

Although it is technically a container tag, the </P> tag is not required at the ends of paragraphs by HTML 2.0. This tends to cause a little confusion. Many people end up using <P> as an empty tag, assuming that it's designed

to insert a line break at the end of paragraphs (or even to create multiple blank lines). That's not its purpose. Using <P> as a container, as I've shown previously, gets the most reliable results in all different types of browsers. In the
spirit of good HTML, the container is used to isolate all the text you want to call a "paragraph." Then it lets the browser render that in the way its programmers feel is most appropriate.

Like the emphasis tag, the paragraph container tells the Web browser
that all of the text between the on and off tags is in a single
paragraph. When you start another paragraph, the Web browser will
drop down a line between the two.

Here's that same example, except you'll throw in some spaces.
Remember, spaces and returns almost never affect the way the text
will be displayed on the screen. In a paragraph container, the
browser will ignore more than one space and any returns.

<P>Here is the text for my paragraph.

It doesn't matter how long it is, how many spaces are between
the words

or when I decide to hit the return key. It will create a new paragraph

only when I end the tag and begin with another one. </P>

<P> Here's the next paragraph. </P>

Both this example and the previous example will be displayed in
the Web browser in exactly the same way.

[bookmark: TheBRTagforLineBreaks]The

Tag for Line Breaks

But what if you want to decide where a line is going to end Consider
the example of entering an address in a Web document, as follows:

<P>

Richard Smith

14234 Main Street

Anycity, ST 00001

</P>

It looks about right when you type it into your text editor. However,
when it displays in a Web browser, it looks like figure 6.4.

Figure 6.4 : The Post Office would never deliver this.

We already know what the problem is: Web browsers ignore extra
spaces and returns! But if you put each of those lines in a paragraph
container, you'd end up with a space between each line-and that
would look wrong, too.

The answer is the empty tag
,
which forces a line return in your Web document. Properly formatted,
your address would look like this:

<P>

Richard Smith

14234 Main Street

Anycity, ST 00001

</P>

And it would look just right in your Web browser, just as in figure
6.5.

Figure 6.5 : This addres looks much better.

[bookmark: TheCommentTag]The Comment Tag

There's one other tag I'd like to discuss in this chapter, called
the comment tag. This tag is fairly unique, in that it's actually
used to make the Web browser ignore anything the tag contains.
That can be text, hypertext links, image links, even small scripts
and programs.

		Tip

		

It's best to delete obsolete links and tags from your documents, rather than just using the comment tag. Some browsers will display certain tags even if they are "commented out."

For now, you'll use the comment tag to hide text. The point in
hiding the text is that it allows you to create a private message
that is intended to remind you of something or to help those who
view the raw HTML document to understand what you're doing. That's
why it's called the comment tag. For instance:

<!--This is a comment that won't display
in a browser-->

The comment tag isn't the most elegant in HTML, but it usually
works. Anything you type between <!--
and --> should be ignored
by the browser. Even multiple lines are ignored-as with most tags,
the comment tag ignores returns.

Generally, you'll use the comment tag for your own benefit-perhaps
to mark a point in a particular HTML document where you need to
remember to update some text, or perhaps to explain a particularly
confusing part of your page. Since it's fairly easy for anyone
to view your raw HTML document, you might also use the comment
tag to create a copyright message or give information about yourself
(see the sidebar).

		Viewing the Source of Web Pages

		

Ever been out on the Web looking at a particularly well-designed HTML document-and wondering how they did it?

If you'd like to, most browsers will let you view the document source for any Web page they can load. This allows you to download the raw HTML codes and ASCII text, just as if you'd created the page yourself.

To do this, select the View Document command in the Edit menu of your Web browser (the command may differ slightly, so look for a similar name if you can't find View Document). What results is the plain ASCII text file that was used to create that Web
page.

Depending on your browser, this source file will either be displayed in the browser window, or saved to your hard drive and displayed in the default text editor. If the source is displayed in the browser window, then select File, Save As to save the source

to your hard drive.

Now you might be able to imagine how comments can come in handy. If you would rather not have people copy and use the source from your Web pages (or if your pages contain otherwise copyrighted material that you want to protect), you can use the comment tag

to let others know that you consider the page your property. For instance:

<!--Contents of this document Copyright 1996 Todd Stauffer. Please do not copy or otherwise reproduce the source HTML code of this document without permission.-->

Of course, that's not to say that you shouldn't also offer a visible copyright notice or other legal disclaimers. But comments within the code tend to talk directly to folks a little more HTML-savvy. Using a comment tag like this is a great way to
encourage other Web designers to ask you before using your HTML pages for their own private use. (But if they don't ask, any legal problems are your own I'm afraid.)

		Note

		

Don't let this confuse you, but the comment tag is an unusual one. It's not really a container tag, since it doesn't have two similar tags that are differentiated only by / in the second tag. At the same time, it's difficult to describe as an
empty tag, since it does do something to text in the document.

[bookmark: ExampleCreatingaCompleteWebPage]Example: Creating
a Complete Web Page

Let's take everything you've learned and build a complete Web
page. Start by loading the template and using Save As to create
a new document for this example. (Call it test1.html
or something similar.)

Now, create a document that looks something like Listing 6.1.
You should have to change only the title text; enter the other
text between the body tags.

Listing 6.1 test1.html Testing
Tags

<HTML>

<HEAD>

<TITLE>The Testing Tags Page</TITLE>

<!--This page is Copyright 1996 Todd Stauffer-->

</HEAD>

<BODY>

<P>On this page we're reviewing the different types of tags
that we've learned in this chapter. For instance, this is the
first paragraph.</P>

<P>In the second paragraph, I'm going to include the name
and address of one of my favorite people. Hopefully it's formatted
correctly.

Tom Smith

1010 Lovers Lane

Anywhere, US 10001

</P>

<HR>

<P>Now I'll start a completely new
idea, since it's coming after a horizontal line.</P>

<!--Don't forget to update this page with the completely new
idea here.-->

</BODY>

</HTML>

When you've finished entering the text and tags (you can use your
own text if you like; just try to use all of the tags we've reviewed
in the chapter), use the Save command in your text editor. Now
switch to your Web browser, and load your new page using the Open
File (or similar) command.

If everything went well, it should look something like figure
6.6.

Figure 6.6 : Here's how the example should appear in Netscape Navigator -- Notice how the comments do not appear.

[bookmark: Summary]Summary

A good text editor and a Web browser program are all you need
to start creating Web pages. Using these tools, you can create
a template for your Web pages that includes all of the appropriate
document tags. Since these are almost always the same for every
HTML document, you can reuse the template without retyping.

There are two basic types of HTML tags: container tags and empty
tags. The major difference between the two is that container tags
feature both an on and an off component (usually the same tag,
with a slash (/) before the name of the off tag). This is because
container tags act on specific blocks of text, while empty tags
generally perform some function on their own.

The most basic tags for entering text are the paragraph, line
break, comment, and horizontal line tags. The comment tag is a
special case-it's designed to keep text from being displayed by
a Web browser. Entering text on a Web page is a simple matter
of typing between the body tags, with an eye given to using the
basic tags correctly.

[bookmark: ReviewQuestions]Review
Questions

		Is it necessary to use a special program to create HTML pages?

		In what file format are HTML pages saved? What file extension
should be used for an HTML document?

		What are the three basic document tags?

		What tag have you learned is appropriate for the head area
of an HTML document?

		What's the first thing you should do after loading an HTML
template you've created into a text editor program?

		What is the main difference between container and empty tags?

		Give one example of an empty tag.

		Why is the comment tag different from most other container
tags?

		True or false. All text for your Web page should be typed
between the body container tags.

		Aside from line spacing, what is the main difference between
the
 and <P>
tags?

		Use your Web browser to view and save the main source code
for the following Web document: http://www.ibm.com/index.html.
(You may also need to use a text editor, depending on your Web
browser's capabilities.)

[bookmark: ReviewExercises]Review
Exercises

		Create a document that uses nothing but <P>
container tags to break up text. Then, create a document that
uses nothing but

tags. What's the difference in your browser?

		Try adding additional <P>
or
 tags to your
documents between lines or text or paragraphs. Do they add extra
lines in your browser? View them from more than one browser. (Hint:
adding lines between paragraphs for multiple

or <P> tags is not
supported by the HTML standard, although some popular browsers
recognize them.)

		Add a standard "header comment" to your template
using the comment tag. This is a great idea, especially if you
develop HTML pages for your company-after all, documenting your
efforts is what the comment tag is all about. Here's an example
for a template, which can be altered every time you create a new
document:

 <!--

 Page Designer: Todd A. Stauffer

 Creation Date: 00 Month 9?

 Revision Date: 00 Month 9?

 File type: HTML 2.0
-->

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch7.htm

Chapter 7

Changing and Customizing HTML Text

CONTENTS[bookmark: CONTENTS]

		Creating Headers and Headlines
		Example: A Topical Discussion

		Implicit and Explicit Text Emphasis
		Explicit Styles

		Implicit HTML Tags

		Example: Physical versus Logical

		Other Implicits: Programming, Quoting, and Citing
		Programmer's HTML Tags

		Quoting, Citing, Definitions, and Addresses

		Example: Using the <BLOCKQUOTE> and <ADDRESS> Tags

		Preformatted Text
		Example: Creating Your Own Layout with the <PRE> Tag

		Example: Using <PRE> for Spaces and Tables

		Summary

		Review Questions

		Review Exercises

HTML 2.0 is a standard created after the fact. What I mean is
that HTML was already in wide use when the standard was finally
written. As a result, there tend to be a few different ways to
do the same things. You'll take a look at most of them, and I'll
try to explain the theory behind each. I'll also recommend one
or two options that best do what you're interested in accomplishing-and
just leave the rest of the options for you to consult if the occasion
ever demands.

[bookmark: CreatingHeadersandHeadlines]Creating
Headers and Headlines

One of the first things you might have wondered when you were
entering text in Chapter 6 is, "How
can I change the size of the text?" HTML 2.0 doesn't have
any explicit tags or commands for changing the font size within
a document (although Netscape HTML does). Instead, it relies on
the implicit header tags to do this.

Header tags are containers, and unlike many other HTML tags, they
double as paragraph tags. Ranging from level 1 to level 6, headers
allow you to create different levels of emphasized headlines to
help you organize your documents. The following is an example;
see figure 7.1 for the results:

Figure 7.1 : HTML header tags at work. Notice that the fourth entry is regular text between <P> and </P>tags.

<H1>Header Level One is the largest
for headlines or page titles</H1>

<H2>Level Two is a little smaller for major subheads</H2>

<H3>Level Three is again smaller, for minor subheads</H3>

<P>This is regular text.</P>

<H4>Level Four is about the same size as regular text, but
emphasized</H4>

<H5>Level Five: again emphasized, but smaller than regular
text</H5>

<H6>Level Six is generally the smallest header</H6>

You cannot include a header tag on the same line as regular text,
even if you close the header tag and continue with unaltered text.
A header tag has the same effect as a <P>,
in that it creates a new line after its "off" tag. The
following:

<H1>This is a header</H1>
And this is plain text.

offers the same results as:

<H2>This is also a header</H2>

<P>And this is also plain text</P>

In both cases, the Web browser will place the header text and
plain text on different lines, with the header text appearing
larger and the plain text appearing "normal" in size.

		Note

		

The HTML standard technically requires that using a particular header level requires that the larger header tags be used previously. So, for instance, if you use an <H2> tag, you should have an <H1> tag somewhere before it.
Very few browsers (if any) actually require this and, for the most part, HTML designers use header tags as simply a way to change the size of text for emphasis. That's how I use them, even going so far as to use <H5> or <H6>
for "fine print" on my pages. If you're an absolute stickler for standards, though, realize that it's more correct to only use header tags for true headers in your documents, and then only in order (i.e., <H1>, <H2>,

<H3>, and so on).

[bookmark: ExampleATopicalDiscussion]Example: A Topical Discussion

Now, with the addition of the header tags, you're suddenly able
to add a level of organization to your pages that was lacking
previously. Using the horizontal line and emphasis tags you saw
in Chapter 6, it's possible to create a
very useful text-oriented HTML document with what you now know.

Let's start just with headers and regular text. Load your HTML
template into a text editor and save it as a new HTML document
(headers.html or something
similar). Then fill in the template's body section using both
header containers and paragraph containers (see Listing 7.1).

Listing 7.1 headers.html The
Template's HTML Body Section

<BODY>

<H1>Welcome to my home on the Web</H1>

<P>Hi there! My name is Mark Williamson, and I'm an active
participant

in the Web. Aside from my Internet journeys I'm also a big fan
of the

science-fiction writer Wilhelm Norris, and I love collecting models
of

television spacecraft. As far as the boring stuff goes, I work
as a Macintosh programmer in Carmel, California.</P>

<H2>My Work</H2>

<P>I've recently moved from programming in a Microsoft Windows

environment to a Macintosh environment, and I must admit that
I've been more than a little overwhelmed. Fortunately I've had
good help from local user groups and my co-workers...plus, they've
introduced me to some exceptional tools for Mac programming.</P>

<H3>ProGraph</H3>

<P>If you've never worked in a visual programming environment,
you're

in for a treat. With my background in Windows and UNIX C programming,
I was surprised how quickly I picked up this object-oriented concept.
I definitely recommend it!</P>

<H3>MetroWerks</H3>

<P>I can't imagine I even need to say anything about this.
It's hands-down the best C and C++ development environment ever
created for Macintosh. In my opinion, it's the best created for
any platform!</P>

<H5>This document contains opinions that are my own and
do not

necessarily reflect those of my employer.</H5>

</BODY>

Entering text and using header tags in this way allows us to create
a document that has more of the feel of a well-outlined magazine
article, or even a chapter in a book. You may have noticed that
this book uses different-sized headlines to suggest that you're
digging deeper into a subject (smaller headlines) or beginning
a new subject (bigger headlines). HTML allows you to do the same
thing with the header tag (see fig. 7.2).

Figure 7.2 : Inserting header containers between paragraphs makes for a more readable page.

[bookmark: ImplicitandExplicitTextEmphasis]Implicit
and Explicit Text Emphasis

Implicit tags are those that allow the browser to choose, within
limitations, how the marked-up text will be displayed. Header
tags are actually an example of an implicit tag, since the HTML
designer has no control over how much bigger or smaller a header
tag will be. Although most browsers will render header tags in
somewhat similar ways, others (for instance, nongraphical browsers)
have to come up with another system for emphasis, such as underlining
or highlighting the text.

Because HTML was originally created with the overriding mission
of being displayed on nearly any computer system, implicit tags
for emphasis were a necessity. HTML allows the designer to decide
what text will be emphasized. But only explicit tags tell the
Web browser how to render that text.

[bookmark: ExplicitStyles]Explicit Styles

Explicit tags are also often called physical tags, since
they very specifically tell the Web browser how you want the text
to physically appear. The browser is given no choice in the matter.

The basic explicit tags are containers that let the user mark
text as bold, italic, or underlined (see Table 7.1).

Table 7.1 HTML Physical Container Tags

		Tags		Meaning

		,
		Bold text

		<I>, </I>
		Italic text

		<U>, </U>
		Underlined text

		Note:

		

Not all browsers will render underlined text (notable among them is Netscape Navigator), because hypertext links are also often displayed as underlined, which could potentially be confusing.

With these tags, the browser really has no choice-it must either
display the text as defined or, if it can't do that, then it must
add no emphasis to the text. This is both good and bad for you
as the designer. If you prefer that text not be emphasized at
all if it can't be italic, for example, then you should use the
<I> tag.

Another feature of explicit (physical) tags is that they can generally
be used in combination with other tags. As you'll see in the next
section, this isn't always a good idea with implicit tags. For
instance, most graphic browsers will render the following example
by applying both tags to the text (see fig. 7.3).

Figure 7.3 : Most browsers can render two physical tags applied to the same selection of text.

<H1><I>Welcome Home!</I></H1>

<I>This is bold and italic</I>

[bookmark: ImplicitHTMLTags]Implicit HTML Tags

Implicit styles are often called logical styles, since
they allow the browser some freedom in how it will display the
text. These tags, like the header tags, are generally relative
to one another, depending on the browser being used to view them.
See Table 7.2 for some of the common implicit (logical) tags

Table 7.2 Some Basic Logical HTML Tags

		Tags		Meaning
		Generally Rendered as…

		,
		Emphasis		Italic text

		,
		Strong emphasis		Bold text

		<TT>, </TT>
		Teletype		Monospaced text

Table 7.2 includes a section that tells you how these tags are
often rendered in graphical Web browsers. There's no rule for
this, though, and the tags don't necessarily have to be rendered
in that way.

There are two other distinctions between these tags and the physical
tags (such as bold and italic) that you've already discussed.
First, these logical tags will always be rendered by any Web browser
that views them. Even text browsers (which are unable to show
italic text) will display the
or tags by
underlining, boldfacing, or highlighting the text.

Second, these tags are generally not effective when used together.
Where <I>text</I>
will sometimes offer useful results, text
rarely will. Combining these tags with other tags (such as header
tags or physical tags) is often either ineffective or redundant.

		Note

		

My warning about combining logical tags isn't always applicable, even though it's a good rule to follow. Netscape Navigator, for instance, will render both and tags simultaneously with others. (Used together, the

tags would result in bold, italicized text in Navigator.)

[bookmark: ExamplePhysicalversusLogical]Example: Physical versus
Logical

Here's a great way to kill two birds with one stone. With this
example you can get a feel for using both the physical and the
logical tags discussed above. At the same time, you can also test
these tags in your browser to see how they're displayed. (If you
have more than one browser, test this example in all of them.
That way you can see how different browsers interpret logical
tags.)

To begin, load your template file in a text editor, and rename
it something intuitive, like tagtest1.html.
Then, enter the text between the body tags as it appears in
Listing 7.2.

Listing 7.2 tagtest1.html HTML
Body Tags Text

<BODY>

<P>

This is a test of the bold tag

This is a test of the strong emphasis tag

</P>

<P>

This is a test of the <I>italics tag</I>

This is a test of the emphasis tag

</P>

<P>

This is a test of the <I>bold and italics tags
together</I>

This is a test of the strong and emphasis
tags together

</P>

<P>

While we're at it, does <U>underlined text</U> appear
in this browser?

And what does <TT>teletype text</TT> look like?

</P>

</BODY>

		Note

		

Remember that using and together is not recommended in the HTML 2.0 standard. We did it just as an example to see how it renders in your browser.

When you've finished entering this text, save the file again in
your text editor, then choose the Load File command in your Web
browser to display the HTML document. If you have other Web browsers,
see how those respond to the tags, too (see fig. 7.4).

Figure 7.4 : Implicit and explict HTML codes in internet Explorer for Windows 95.

[bookmark: OtherImplicitsProgrammingQuotinga]Other
Implicits: Programming, Quoting, and Citing

At the beginning of this chapter, I mentioned that the proliferation
of HTML tags took place before the standard was ever conceived
of-which might explain some of the tags that we discuss in this
section. For the most part, these tags are implicit (logical)
and aimed directly at certain areas of expertise. At the same
time, however, the bulk of these tags will look exactly the same
in a Web browser.

[bookmark: ProgrammersHTMLTags]Programmer's HTML Tags

One of the early, more common uses for HTML was for documenting
computer programs and offering tips or advice to computer programmers.
Part of the HTML 2.0 standard, then, offers some implicit (logical)
HTML tags that allow HTML designers to mark text in a way that
makes it easier to present computer programming codes. Those tags
are in Table 7.3.

Table 7.3 HTML Tags for Computer Programming

		Tags		Meaning
		Generally Rendered as…

		<CODE>, </CODE>
		Programming lines		Monospaced (like <TT>)

		<KBD>, </KBD>
		Keyboard text		Monospaced

		<SAMP>, </SAMP>
		Sample output		Monospaced

		<VAR>, </VAR>
		Variable		Italic

Notice that the majority of these tags are often displayed in
exactly the same way-in the default monospaced font for the browser.
Then why use them?

First, not all browsers will necessarily follow the "general"
way. Some browsers will actually render these tags in slightly
different ways from one another, so that <SAMP>,
for instance, might appear in a slightly larger font than <CODE>.

		Note

		

These tags had more meaning with earlier browsers like Mosaic, which used to allow users to define their own fonts and sizes for specific tags. In an era where browsers give the designer control over actual font families and sizes (see

Chapters 19 and 21), these tags are used less and less.

Second, using these tags is a great way to internally document
your HTML pages, so that you can tell at a glance what certain
text is supposed to be. This will help you later when you return
to the document to update it or fix errors-especially as the document
becomes more complex.

[bookmark: QuotingCitingDefinitionsandAddres]Quoting, Citing,
Definitions, and Addresses

Along the same lines as the HTML "programmer's" tags,
you have available certain implicit tags that work as typographer's
or publisher's codes. As shown in Table 7.4, these codes often
work in ways similar to others you've already seen-with a few
twists.

Table 7.4 HTML Publisher-Style Tags

		Tags		Meaning
		Generally Rendered as…

		<CITE>, </CITE>
		Bibliographical citation		Italic text

		<BLOCKQUOTE>, </BLOCKQUOTE>
		Block of quoted text		Indented text

		<DFN>, </DFN>
		Term definition		Regular text

		<ADDRESS>, </ADDRESS>
		Street or e-mail address		Italic text

Again, notice that the <CITE>
tag isn't going to be rendered any differently from the italics,
emphasis, or variable tags you've seen previously. The <DFN>
tag is often not rendered as any special sort of text at all,
whereas the <ADDRESS>
tag is identical in function to the italics tag.

So the best use for these tags (with the exception of the <BLOCKQUOTE>
tag) is as internal documentation of your HTML documents. Remember,
of course, that some browsers may render them slightly differently
from what is suggested in Table 7.4.

[bookmark: ExampleUsingtheBLOCKQUOTEandADD]Example: Using the
<BLOCKQUOTE>
and <ADDRESS>
Tags

The only really new tag in the Table 7.4 is the <BLOCKQUOTE>
tag. This tag usually indents the left margin of regular text
in the browser window, just as you might find a blocked quotation
formatted in a printed document.

Also as part of the tag, <BLOCKQUOTE>
generally adds a return or one extra line on either side of the
tag, so no paragraph tags are needed. Paragraph tags should, however,
be used to contain text on either side of the blockquote.

Although the <ADDRESS>
tag is similar to italics or emphasis, I've thrown in an example
of using it correctly. Remember to include a line break after
each line of the address.

To begin this example, create and save a new HTML document from
the template you created in Chapter 6.
Enter Listing 7.3 between the body tags.

Listing 7.3 emphasis.html The
<BLOCKQUOTE>
and <ADDRESS>
Tags

<BODY>

<P>I believe it was Abraham Lincoln who once said (emphasis
is mine):

<BLOCKQUOTE>Four score and seven years ago our forefathers
brought

forth on this continent a new nation, conceived in <I>liberty</I>
and

dedicated to the proposition that all men are created equal.

</BLOCKQUOTE>

It was something like that, wasn't it?

</P>

<P>If you liked this quote, feel free to write me at:

<ADDRESS>

Rich Memory

4242 Sumtin Street

Big City, ST 12435

</ADDRESS>

</P>

</BODY>

Notice that an off paragraph tag isn't required before you get
into the address tag-remember, <ADDRESS>
works very much as italics does, and the

tag is designed to work as well inside a paragraph container as
it does outside one. So you can put the paragraph tag after the
address, to contain both address listing and the text in the same
paragraph.

What does all of this look like? Take a look at figure 7.5. <BLOCKQUOTE>,
unlike some of the tags you've looked at, really does offer unique
abilities that make it worth using in your documents.

Figure 7.5 : Blockquote and address HTML tags.

[bookmark: PreformattedText]Preformatted
Text

Are you ready to break some of the rules of HTML that I've been
harping on over the last two chapters? That's what you're about
to do-in fact, you're going to break two. I've said over and over
that the HTML 2.0 standard is not designed for layout. In fact,
you haven't even learned how to put two blank lines between paragraphs.

I've also said that spaces and returns in between tags (like the
paragraph tag) don't matter. Well, there is at least one exception
to this rule: the <PRE>
tag.

The <PRE> (preformatted
text) tag is designed to allow you to keep the exact spacing and
returns that you've put between the on and off tags. The basic
reasoning behind this tag is the notion that every once in a while
you'd like your text to stay exactly as you put it-for instance,
in a mathematical formula, or if you create a table. While there
are other ways to do both tables and math, they don't fall under
the HTML 2.0 standard. On top of that, you can use <PRE>
for a number of other reasons: lists, lining up decimals for dollar
figures, and even poetry.

Consider the following example:

<P>Oh beautiful, for spacious skies,

For amber waves of grain.

For purple mountains' majesty,

Above the fruited plains.</P>

Sure it's a familiar refrain, but it won't look so familiar in
a browser if you leave it between paragraph tags. Instead, you
can use the <PRE> tag
to keep things exactly the way you want them:

<PRE>Oh beautiful, for spacious
skies,

 For amber waves of grain.

For purple mountains' majesty,

 Above the fruited plains.</PRE>

In a browser, it'll look exactly the way you want it to (see fig.
7.6).

Figure 7.6 : Paragraph versus preformatted text.

You may have noticed that the preformatted text is in a monospaced
font-it will always be that way. Otherwise, the <PRE>
tag works pretty much like the paragraph font, except that it
lets you decide where the line breaks and spaces will appear.
Look at the following example:

<PRE>I simply
want to make this really clear to you.

</PRE>

With the above code, the browser will display this line in nearly
exactly the same way as it would using the <P>
tag, except that it will be in a monospaced font, and the extra
spaces and extra return will appear as well. In fact, there will
be two blank lines below the line of text-one for the return,
and one for the </PRE>
tag itself.

You can even use the <PRE>
tags to create extra lines in a document without typing any text
between them. This example adds two blank lines to a document:

<PRE>

</PRE>

For each additional blank line you want to add, just press Enter
after the first tag one time.

		Note

		

There is one potential drawback to the <PRE> tag. It doesn't allow the browser screen to wrap text automatically-instead, users need to expand their browser window if you use particular long lines within a <PRE> container.
Just keep this in mind, and make sure your lines of text are reasonably short so that all browsers can view them without scrolling.

[bookmark: ExampleCreatingYourOwnLayoutwitht]Example: Creating
Your Own Layout with the <PRE>
Tag

Let's take a look at a couple of different reasons why you might
want to use the <PRE>
tag in your HTML documents. Start by loading your template and
choosing the Save As command in your text editor to save the file
as pre_test.html, or something
similar.

Now between the body tags, let's create an example that uses some
of the benefits of preformatting-the ability to center text and
choose your own margins, for example. How? Let's format some screenplay
dialogue (see Listing 7.4).

		Tip

		

Text between <PRE> tags is easier to align if you hit Enter after the on tag, then start typing. Doing so will add an extra line, though.

Listing 7.4 pre_test.html Create
Your Own Layout

<BODY>

<P>

<TT>

(Int) Rick's Apartment, Late Afternoon

Rick is busying himself with his personal computer when Linda
walks through the door from the kitchen. Startled, Rick bolts
upright from his chair and swats frantically at the keyboard trying
to make something disappear. Linda moves closer to the computer.</TT></P>

<PRE>

 Linda

 (confused)

 What
were you doing?

 Rick

 Just
the finances.

 Linda

 But
you already printed checks

 last
Sunday.

 Rick

 I
know. But Tuesday is when I, uh,

 enter
my gambling debts. (Sighs deeply.)

 Honey,
I'm in big trouble.

</PRE>

</BODY>

It takes a little tapping on the space bar, but with the <PRE>
tag you can create some fairly elaborate layouts for getting your
point across-especially when layout is just as important as the
text itself. In a browser, it comes out looking like a big-budget
picture script (see fig. 7.7).

Figure 7.7 : The <PRE> tag at work.

[bookmark: ExampleUsingPREforSpacesandTabl]Example: Using <PRE>
for Spaces and Tables

In the same way that you created the film script using the <PRE>
tag, you can also format a primitive table using the <PRE>
tag along with some others. The key to making this work correctly
is alignment. Realize that each space taken up by a character
of an invisible tag (like)
will not appear in the browser's display, so you'll need to compensate.

		Tip

		

One way to keep the columns in a table straight is to type your table first, and then add emphasis tags afterward.

Load your template and save it as pre_tbl.html.
Now enter Listing 7.5 between the body tags.

Listing 7.5 pre_tbl.html Creating
Spaces and Tables

<BODY>

<PRE>

</PRE>

<HR>

<H2>Price Per Item in Bulk Orders</H2>

<PRE>

Quantity XJS100 RJS200
YJS50 MST3000

1-50
$40 $50 $75 $100

50-99 $35 $45 $70 $95

100-200 $30 $40 $65 $90

200+
$25 $35 $55 $75

</PRE>

<H5>Prices do not include applicable sales taxes.</H5>

</BODY>

You may need to play with the spacing a bit to line everything
up. Save the HTML document, then choose the Open File command
in your browser to proof it. Keep playing with it until it looks
right.

		Tip

		

If you use a more advanced text editor or word processor, fight your urge to use the Tab key to align <PRE> elements. Use the spacebar instead.

Once you have everything aligned correctly, it's actually a fairly
attractive and orderly little table (see fig. 7.8).

Figure 7.8 : Use the <PRE> tag to create a table.

		Note

		

You may be tempted to use or another emphasis tag for the column heads in your table. Realize, however, that it is nearly impossible to align columns so that they will appear correctly in every browser when one row is bold and other rows

are plain text. Different browsers make bold text a fraction wider than regular text, making the row increasingly misaligned. Even if it looks good in your browser, chances are it won't work in all of them.

[bookmark: Summary]Summary

HTML 2.0 offers us both explicit (physical) and implicit (logical)
tags with which to mark up text. The explicit tags are designed
to do something specific to the text, such as turn it bold or
italic. If a browser can't do what's asked, it doesn't do anything.

Implicit tags are more general commands, such as Emphasis or Strong
Emphasis. While most browsers will show these tags in a similar
way, there's no specific rule. Each individual browser will display
an implicit tag somehow, but not always in the same way that other
browsers do it.

There are a good number of implicit tags, many of which duplicate
certain types of emphasis. These are good for internally documenting
HTML documents, though, since the tags are generally designed
for some specific task-such as displaying computer programming
code or certain typographical elements.

The <PRE> tag is also
a very useful tag, although it breaks some of the rules for other
tags. It allows you to maintain the spaces and returns you've
entered between the two tags. This lets you preformat your HTML
documents so that tables and other elements are displayed correctly.

[bookmark: ReviewQuestions]Review
Questions

		What are the other names for explicit and implicit tags?

		What is the difference between an explicit and an implicit
tag?

		Why is the
(bold) tag considered explicit?

		Will the <I> tag
work in a text-based browser like Lynx? How about the
tag?

		What programmer's HTML tag is usually displayed differently
from the others?

		Why would you use a programmer's HTML tag?

		Is it possible to have more than one paragraph of text in
a single <BLOCKQUOTE>
container?

		What other common HTML tag is similar to the <PRE>
tag?

		Can you use other tags, such as
or <I>, within <PRE>
containers?

[bookmark: ReviewExercises]Review
Exercises

		Create a document that uses all of the different implicit
and explicit layout tags discussed, and note how your browser(s)
render them. Also note what happens when you combine tags and
view them in your browser(s).

		What creates spaces in your browser? Create a document that
uses multiple

and <P> tags, and returns
between <PRE> tags
to add blank lines to your document. Then test the page in your
browser to see which are most reliable. (In most cases, it should
be <PRE>, but it's
interesting to note the differences from browser to browser.)

		Create a document using the <PRE>
tag to work as an invoice or bill of sale, complete with aligned
dollar values and a total. Remember not to use the Tab key and
avoid using emphasis tags like
or within your
list.

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch8.htm

Chapter 8

Displaying Text in Lists

CONTENTS[bookmark: CONTENTS]

		Using Lists in HTML

		Ordered and Unordered Lists
		Example: Formatting Within Lists

		Directories, Definitions, and Menus
		Directory and Menu Lists

		Definition Lists

		Example: HTML Within Lists

		Nesting Tags and Combining List Types
		Nesting Tags

		Lists Within Lists

		Combining List Types

		Example: Nesting Definition Lists

		Summary

		Review Questions

		Review Exercises

You've probably all heard that one of the best ways to communicate
a great deal of information in a short amount of time is by using
bulleted lists to convey the message. That philosophy was not
lost on the early creators and designers of Web pages, and various
tags allow for easy formatting of a number of styles of lists,
including both bulleted and nonbulleted incarnations.

[bookmark: UsingListsinHTML]Using
Lists in HTML

List tags, like paragraphs and preformatted text, are generally
HTML containers that are capable of accepting other container
and empty tags within their boundaries. These list tags are responsible
for affecting the spacing and layout of text, not the emphasis,
so they are applied to groups of text, and allow individual formatting
tags within them.

Most HTML lists are created following the form:

<LIST TYPE>

<ITEM> First item in list

<ITEM> Second item in list

<ITEM> Third item

</LIST TYPE>

Each of the items appears on its own line, and the <ITEM>
tag itself is generally responsible for inserting either a
bullet point or the appropriate number, depending on the type
of list that's been defined. It's also possible that the <ITEM>
tag could insert no special characters (bullets or otherwise),
as is the case with definition listings.

You'll look at each type in the following sections. The basics
to remember are to use the main container tags for list type and
the individual empty tags to announce each new list item. The
type of list you choose is basically a question of aesthetics.

[bookmark: OrderedandUnorderedLists]Ordered
and Unordered Lists

It might be better to think of these as numbered (ordered)
and bulleted (unordered) lists, especially when we're talking
about their use in HTML. The only drawback to that is the fact
that the HTML codes for each suggest the ordered/unordered names.
For numbered/ordered lists, the tag is ,
and for bulleted/unordered lists, the tag is .
Confused yet? That's my job.

For either of these lists, a line item is designated with the
empty tag . In
the case of ordered lists, the
tag inserts a number; for unordered lists, it inserts a bullet
point. Examples of both follow. The following is an ordered list:

 Item number one.

 Item number two.

 Item number three.

And here's an unordered list:

 First item.

 Second item.

 Third Item.

Once you've got one of these under your belt, the other looks
pretty familiar, doesn't it? To see how these look in a browser,
check figure 8.1. (Note that I've added a line of text before
each to make each list easier to identify.)

Figure 8.1 : The subtle differences between ordered and unordered lists.

As I've already mentioned, both ordered and unordered lists can
take different types of internal HTML tags. It's even possible
to include paragraph, line break, and header tags in lists.

		Note

		

In the HTML 2.0 standard, it's considered bad form to use the header tags in bulleted lists, since your goal is probably only to change the size of the text for emphasis. Header tags are designed for page organization, not emphasis. Most browsers will
interpret them correctly, but you should also stop to consider that they usually look pretty ugly in lists.

While you may see the potential in creating ordered lists that
conform to standard outlining conventions (for instance, Roman
numerals and letters), HTML 2.0 doesn't really help much. There
is no way to change the
number from Arabic numbers, and there's no way in HTML 2.0 to
create a list that starts with something other than 1.

Netscape, however, has added both of these abilities, and you
can be much freer in your outline, as long as you warn your users
ahead of time to view your page with Netscape Navigator (or a
Netscape-compatible browser). Refer to Chapter 19
for more on this.

[bookmark: ExampleFormattingWithinLists]Example: Formatting
Within Lists

Different formatting within lists can offer some dramatically
different results, and you should take some time to experiment.
Load and save your template as a new HTML document, and enter
Listing 8.1 (or similar experiments) within the body tags.

Listing 8.1 lists.html Formatting
Example

<BODY>

<P>The following are some of the things that little boys
are made of:</P>

 Dirt

 Snails

 Puppy-dog tails

 Worms

 Various ramblings from <I>Boy Scout Magazine</I>

 An affinity for volume controls

<P> And, in order of importance, here are the things that
little girls are made of:</P>

<P>An instinctive ability to listen and reason.
Although relational in their logic, and often not as <I>spatial</I>
and detached in their thinking, a superior empathetic capability
general makes little girls better at conflict resolution.<P>

 Outstanding memories. Little girls can remember things
like

addresses with little or no difficulty. Consider this long lost
professor of my aging mother whose address she can still recall:

<ADDRESS>

1472 Wuthering Heights Circle

Poetsville, CT 31001

</ADDRESS>

She visited once, and his dogs were mean to her.</P>

 The gift of Absolute control
over all things sentient.

</BODY>

Notice that, in every instance, only a new
tag is capable of creating a new line in the list. Nearly any
other type of HTML markup is possible within a given line item.
Once you've saved this document, call it up in a browser and notice
how it's formatted (see fig. 8.2).

Figure 8.2 : Ordered and unordered lists with special HTML formatting.

[bookmark: DirectoriesDefinitionsandMenus]Directories,
Definitions, and Menus

Your other lists have something in common with one another that
they don't share with ordered and unordered lists: all of them
use some permutation of the previous line-item system, but none
of them consistently use numbers or bullets. Directories and menus
are basically just plain lists. Definitions are unique among all
lists because they offer two levels of line items within the list
structure-one for the definition item and one for the definition
itself.

[bookmark: DirectoryandMenuLists]Directory and Menu Lists

To create a directory or menu list, you start with its respective
container tag: <DIR>
or <MENU>. Of these
two, the directory list is probably more useful. Most browsers
don't currently render the <MENU>
command consistently-some use a bulleted list, others use no bullets.
The following is an example of <MENU>:

<MENU>

House Salad

Fresh Soup of the Week

Buffalo Wings

Escargot

Liver and Onions

Turkey Sandwich, open faced

Turkey Sandwich, pre-fab

</MENU>

		Note

		

You might use the <MENU> tag when creating a list of hypertext links. It's thought that future interpretations of the menu list may be built into future browsers, and that designers will eventually see more benefit in using the
<MENU> tag.

In theory, the <DIR>
tag is a little more limiting. It's designed as a mechanism for
listing computer file directories in HTML pages. Technically,
it doesn't support interior HTML tags, although most browsers
will display them. The <DIR>
tag is also supposed to be limited to 24 characters (for some
unknown reason) and show the filenames in rows and columns, like
a DIR/W command in MS-DOS,
but the bulk of browsers seems to ignore both of these constraints
as well, as in the following example:

<DIR>

 autoexec.bat

 config.sys

 .signature

 .password

 System Folder

 commaand.com

 .kernel

</DIR>

Most browsers (including Netscape) will use the same font and
layout for menus and directories as they will for unordered lists.
In some cases, browsers will display one or the other (more often
directory lists) without a bullet point, which can make them mildly
useful. Some browsers can be set to a different font for directories
and menus (versus ordered lists). So you may want to use these
types, if only because some Web-savvy users' browsers will make
an effort to display them differently (see fig. 8.3).

Figure 8.3 : Menu and directory lists in MS Internet Explorer.

[bookmark: DefinitionLists]Definition Lists

The final list tag is the definition list, which is designed to
allow for two levels of list items, originally conceived to be
the defined term and its definition. This is useful in many different
ways, though, and is also nice for its consistent lack of bullet
points or numbering items (as opposed to the menu and directory
listings, which are often rendered haphazardly by browsers).

The tags for this list are the container tag <DL>
(definition list) and two empty tags, <DT>
(definition term) and <DD>
(definition). The <DT>
tag is designed (ideally) to fit on a single line of your Web
page, although it will wrap to the beginning of the next line
if necessary. The <DD>
tag will accept a full paragraph of text, continuously indented
beneath the <DT> term.
The following is an example of all three tags:

<DL>

<DT>hero <I>(n.)</I>

<DD>A person admired for his or her brave or noble deeds.

<DT>hertz <I>(n.)</I>

<DD>A unit used in the measurement of the frequency of electromagnetic
 waves

<DT>hex <I>(n.)</I>

<DD>An evil spell or magical curse, generally cast by a
witch.

</DL>

Notice that standard HTML mark-up is permissible within the boundaries
of a definition list, and that using bold and italics for the
defined terms adds a certain dictionary-like quality (see fig.
8.4).

Figure 8.4 : A basic definition list.

		Tip

		

Not all browsers will display definition lists in the same way, so adding spaces to <DT> items (to get them to line up with the <DD> text) is often a waste of time.

It should also be pointed out that just because definition lists
allow for two different types of list items, you needn't necessarily
use both. Using just the <DT>
tag in your list, for instance, will result in a list not unlike
an unordered list-except that nearly all browsers will display
it without bullets:

<DL>

<DT>Milk

<DT>Honey

<DT>Eggs

<DT>Cereal

</DL>

And, although more difficult to find a use for, the <DD>
item could be used on its own to indent paragraphs repeatedly.
This book occasionally uses a similar device.

<P>I must say that I was shocked
at his behavior. He was:

<DL>

<DD><I>Rude.</I> Not rude in your standard sort
of affable way, or even in a way that would be justifiable were
he immensely weathly or critically wounded. It was just a rudeness
spilling over with contempt.

<DD><I>Unjust.</I> If there was something he
could accuse you of falsely,

he would do it. I could almost see him skulking around his apartment
after a particularly unsucessful party, doing his best to find
things stolen, which he could blame on people who hadn't actually
bothered to show up.

</DL>

</P>

The definition list offers some additional flexibility over the
standard lists, giving you more choices in the way you layout
the list items (see fig. 8.5).

Figure 8.5 : Definition lists using only one of the two elements.

[bookmark: ExampleHTMLWithinLists]Example: HTML Within Lists

With the definition list, there are many things you can accomplish
with formatting. You can experiment with different HTML tags to
see how they react within the list. Remember that, within the
<DL> and </DL>
tags, the two data item tags, <DT>
and <DD>, reign supreme.
For instance, even a new paragraph within a <DD>
tag will stay indented in most browsers.

Load your template and choose the Save As command to give it a
new name. Then type Listing 8.2 between the body tags (see fig.
8.6).

Figure 8.6 : Using extensive HTML formatting in a list.

Listing 8.2 lists2.html HTML
Within Lists

<BODY>

<H1>Computer Terms</H1>

<DL>

<DT>CPU

<DD>Central Processing Unit. This is the "brain"
of a computer, where

instructions created by the computers system software and application

software are carried out.

<DT>Hard Drive

<DD>Sometimes called a <I>fixed drive</I>, this
is a device (generally

mounted inside a computer's case) with spinning magnetic plates
that is

designed to store computer data. When a file is "saved"
to the hard drive, it is available for accessing at a later time.

Most system software and application programs are also stored
on the

computer's internal hard drive. When an applications name is typed
or icon is accessed with a mouse, the application is loaded from
the hard drive in RAM and run by the system software.

<DT>Application Software

<DD>Computers programs used to create or accomplish something
on a computer, as distinct from system software. Examples of computer
application software might include:

WordPerfect (a word processing application)

Microsoft Excel (a spreadsheet application)

QuarkXPress (a desktop publshing application)

Corel Draw (a computer graphics application)

</DL>

<BODY>

Using the
 tag
allows you to create an impromptu list within the list, although
everything remains indented because it's ultimately under the
influence of the <DD>
tag. The definition item tags (<DT>
and <DD>) stay in effect
until another instance of a definition item tag is encountered
or until the </DL>
tag ends the definition list.

[bookmark: NestingTagsandCombiningListTypes]Nesting
Tags and Combining List Types

Since most of your HTML lists can accept HTML tags within their
list items, it stands to reason that you could potentially create
lists within lists. In fact, creating a list, then creating another
list as part of an item in that first list is how you can create
an outline in HTML.

[bookmark: NestingTags]Nesting Tags

The idea of nesting comes to us from computer programming. Nesting
is essentially completing an entire task within the confines of
another task. For HTML, that means completing an HTML tag within
the confines of another container tag. This could be something
like the following:

<P>She was easily the most beautiful
girl in the room.</P>

This is an example of correctly nesting the
tag within a paragraph container. On the other hand, many browsers
would still manage to display this next code:

<P>She was easily the most beautiful</P>
girl in the room.

But this second example is really poorly constructed HTML. It
often works, but the
tag isn't properly nested inside the <P>.
In this example, that doesn't matter too much, since you can still
reason out what this statement is trying to do.

With lists, however, things can get complicated. So it's best
to remember the "nesting" concept when you begin to
add lists within lists. As far as HTML is concerned, a nested
list works as marked-up text within the previous list item. When
the next list item is called for, HTML moves on.

[bookmark: ListsWithinLists]Lists Within Lists

Let's look at an example of a simple nested list:

Introduction

Chapter One

 Section 1.1

 Section 1.2

 Section 1.3

Chapter Two

		Tip

		

It's a good idea to indent nested lists as shown in the example. The browser doesn't care-it's just easier for you (or other designers) to read in a text editor. (Regardless of your spacing, most browsers will indent the nested lists-after all, that's the

point.)

Notice that the nested list acts as a sublevel of the Chapter
One list item. In this way, you can simulate an outline
in HTML. Actually, the nested list is just HTML code that is part
of the Chapter One
list item. As you saw in Listing 8.2, you can use the

tag to create a line break in a list element without moving on
to the next list item. Following the same theory, an entire nested
list works as if it's a single list item in the original list.

The following:

Section Five

 This section discusses ducks, geese, finches
and swans.

Section Six

is essentially the same as the list that follows:

Section Five

 Ducks

 Geese

 Finches

 Swans

 Section Six

In both cases, the nest HTML container is simply a continuation
of the first list item. Both the text after the

in the first example and the ordered list in the second example
are part of the list item labeled Section
Five. That list item is over when the next list item
(Section Six) is put into
effect (see fig. 8.7).

Figure 8.7 : In both of the examples, the HTML container is simply part of the list.

[bookmark: CombiningListTypes]Combining List Types

When nesting lists, it's also possible to nest different types
of lists within one another. This is useful when you'd like to
vary the types of bullets or numbers used in an outline form.
For instance:

Introdution

Company Financial Update

 First Quarter

 Second Quarter

 Third Quarter

 Fourth Quarter

Advertising Update

 Results of Newspaper Campaign

 Additions to Staff

 New Thoughts on Television

Human Resources Update

There's nothing terribly difficult to learn here-just the added
benefit of being able to nest different types of lists within
others. You're still simply adding HTML markup code to items in
the original list. This time, however, you have more choice over
how your outline looks (see fig. 8.8).

Figure 8.8 : Nesting different types of lists.

[bookmark: ExampleNestingDefinitionLists]Example: Nesting Definition
Lists

Although creating outlines is nice, more often you're interested
in presenting actual information on your Web pages. Doing that
in an outline form can often be helpful to your Web users. You
have a number of different ways you can do that, including nesting
paragraphs within ordered and unordered lists. Or you can just
use definitions lists.

Load your template and choose the Save As command to rename it.
Then enter the following text between the body tags:

<BODY>

<H2>About Our Company</H2>

Our Leaders

 <DL>

 <DT>Richard B. McCoy,
CEO

 <DD> Raised on small farm
in Indiana, Dr. McCoy dreamed of something

bigger. By the time he'd graduated from Harvard Business School
with an MBA, he'd already realized part of his dream. He'd married
the most beautiful woman he'd ever met and was the proud father
of a baby girl. From there, his life took control of his career,
and his new found interest in parenting launched his idea of building
the better baby bed. His invention, the SleepMaker 3000, was an
instant success. Twenty years later, he finds his family room
couch is enough incentive for him to take a long nap on Saturdays
after a good morning round of golf.

 <DT>Leslie R. Gerald,
CFO

 <DD> Denying the fact that
she's an accountant is nearly a full-time

pursuit for Ms. Gerald. Having graduated at the top of her class
at Northwestern University, her life has been about 1/3 accounting,
1/3 daredevil athleticism and 1/3 sleep. In the meantime she's
found time for a steady beau, decorating her mountain retreat
and writing a book called <I>It's More Exciting Than You
Think </I> about, believe it or not, flying ultra-light
aircraft.

 <DT>David W. Deacon,
VP of Marketing

 <DD> Known as "Dave"
to anyone he's ever spoken to for more than five minutes, Mr.
Deacon displays the calm friendliness of the consummate salesman,
with a twist. He actually is a nice guy. When he's not doing his
best to promote our products, Dave is well known in the community
as a service volunteer. Last year he was awarded Seattle's prestigous
Man of the Year award in recognition of over 500 volunteer hours
and over $50,000 in personal contribution to various area charities.

 </DL>

Employees of the Month

 January: Bill Cable,
IS

 February: Janet Smiles,
Marketing

 March: Rich Lewis, Finance

 April: Wendy Right, Vendor
Relations

 May: Alice Cutless, Area
Sales

 June: Dean Wesley, Training

</BODY>

Combining different types of lists, then, is a great way to organize
your Web site in such a way that it's easy to get at interesting
information. At the same time, it's still possible to present
that information in many different ways using various list tags
(see fig. 8.9).

Figure 8.9 : Nesting and combining the various types of HTML lists.

[bookmark: Summary]Summary

HTML lists are an effective way to communicate a great deal of
information in a relatively small amount of space. HTML provides
tags for both ordered (numbered) lists and unordered (bullet-style)
lists. In addition to those, you can add menu lists, directory
lists, and definition lists.

The ordered and unordered lists are easily the most commonly used,
while the menu and directory lists don't often add much value
to your Web pages. Definition lists, however, are unique because
they allow you to have two different types of list items with
the lists-a term and its definition.

All of these lists can be used together in what's called nesting,
or creating lists within other lists. The definition list is especially
good for this because you can add all different types of lists
(such as bullet and numbered lists) within the descriptions in
your definition list.

It's also possible to nest different types of lists within numbered
lists to create multilevel outlines in your HTML documents.

[bookmark: ReviewQuestions]Review
Questions

		What are the two basic tags in an HTML list?

		What does a
create when used in an unordered list?

		Can you change the style of numbers in an ordered list (using
HTML 2.0 standards)?

		Which is less likely to display with bullet points-a directory
list or a

menu list?

		Can you use other HTML tags (such as
or) within HTML
list containers?

		What is unique about the definition list style?

		Do definition lists have to be used for words and their definitions?

		Does HTML force you to include both a <DT>
and a <DD> tag in your
definition lists?

		Is nesting something that happens only in HTML lists?

		Which of these is an example of a nested list?

(A)

Groceries

 Milk

 Soup

 Ice Cream

Other groceries

(B)

Groceries

 Milk

 Soup

 Ice Cream

Other Groceries

		What type of HTML lists would you use to create an outline,
the major points of which were numbered and the minor points used
bullets?

[bookmark: ReviewExercises]Review
Exercises

		Create a list using the <DIR>
and <MENU> tags. View
each in your different browser and note how some browsers render
these differently from one another.

		Create a <DL> definition
list with nothing but <DD>
elements, and one with nothing but <DT>
elements. Notice how they're rendered in your browser. Definition
lists used in this way are often very useful.

		Use nested definition lists to create your own HTML "outline."
You can use the <DL>
elements to number your own outline elements, like the following:

<DL>

<DT> I. Introduction

 <DL>

 <DT> A. Welcome!

 <DT> B. Description of Mission Statement

 <DT> C. Conventions in this Report

 </DL>

<DT> II. Chapter One

</DL>

[image:]
[image:]
[image:]
[image:]

HTML By Example/ch9.htm

Chapter 9

Adding Graphics to Your Web Pages

CONTENTS[bookmark: CONTENTS]

		The Special Nature of Graphics on the Web
		The Size of Graphics Files

		Example: Watching Graphical Sites Download

		Picking Your Web Graphics File Type

		Creating and Manipulating Graphics
		Creating Graphics for the Web

		Example: Creating Graphics in Paint Shop Pro

		Manipulating Web Graphics

		Example: Creating Thumbnails with LView Pro

		Creating Transparent GIFs
		Creating Transparent GIFs in Transparency for the Mac

		Example: Creating Transparent GIFs in LView Pro

		Embedding Graphics in Web Pages
		Adding Graphics to Other HTML Tags

		The ALT Attribute

		The ALIGN Attribute

		Example: Adding Graphics to Your Web Site

		Summary

		Review Questions

		Review Exercises

Now that you've seen the many ways you can add some character
to your text-and use different tags to better communicate your
ideas-it's time to jazz up your pages a little bit. Let's add
some graphics!

First, though, you should know a couple of important things about
placing graphics. Some of these considerations may seem a bit
foreign to you, especially if you're a graphic designer or commercial
artist. You have to think in a slightly different way about graphics
for your HTML pages.

[bookmark: TheSpecialNatureofGraphicsontheWe]The
Special Nature of Graphics on the Web

You may be comfortable using a program such as CorelDRAW! or Adobe
Photoshop to create and manipulate graphics. You may already know
the difference between a PICT file and a TIF file (and why that
difference might be important). You may even know a lot about
preparing graphics for professional printing or adding graphics
to desktop publishing documents.

But if you've never done any design for the World Wide Web, there's
also a good chance that you've never worried about one special
graphics issue, even if you are a print design expert. How big
is the graphics file that you created? Aside from using the correct
graphics format, this issue is the single most important consideration
in graphical Web design.

[bookmark: TheSizeofGraphicsFiles]The Size of Graphics Files

Why is the size of graphics files so important? Your Web users
have to download your pages to view them, including all the graphics
associated with the pages. Couple that fact with the Web speed
issues discussed in Chapter 5, and the
need for smaller graphics files becomes apparent.

The high-color, high-resolution graphics files that color printers
and professional designers work with are generally measured in
the number of megabytes of information required to create the
graphics file. Each image can take up more space than is available
on a floppy disk. Often, special tapes and cartridges are required
to transfer these files from the graphics shop to the printer.

A good average size for a Web graphic, on the other hand, is between
10K and 30K-about one to three percent of the size of those high-color,
high-resolution graphics. This could be tough.

[bookmark: ExampleWatchingGraphicalSitesDownlo]Example: Watching
Graphical Sites Download

Just to get a feel for how all this graphics stuff works, start
your Web browser and Internet connection. Make sure that your
browser has its preferences or options set so that it downloads
graphics automatically.

If you're using Netscape Navigator, use the Netscape home page
as your benchmark. If you're not using Netscape Navigator, point
your Web browser to http://www.netscape.com/.

Now, as the page downloads, watch the status bar at the bottom
of your browser's window. You should be able to watch as your
browser downloads the page and the various graphics, and your
browser may even tell you how large each graphics file is as you're
downloading.

Next, select an individual graphics file on the page, and save
it to your hard drive. In Windows 95, right-click a graphic and
then choose to save the graphic as a file (in Navigator or Internet
Explorer). On a Mac, hold down the mouse button and then choose
to save the graphic when the pop-up menu appears (see . 9.1).

Figure 9.1 : Use Netscape Navigator to download Web graphics.

Finally, look at the file, using the Windows Explorer or Mac Finder.
Check the file size of the graphic. Notice how small the file
is, and remember how long downloading it took. You'll have to
be aware of these considerations when you create your Web graphics.

[bookmark: PickingYourWebGraphicsFileType]Picking Your Web
Graphics File Type

The other thing that you need to concern yourself with is the
file type that you're going to use for Web graphics. In general
(at least currently), you can choose either of two file types:
GIF and JPEG. GIF (CompuServe Graphics Interchange Format)
is the more popular among Web browsers, but JPEG (Joint
Photographic Experts Group) is gaining popularity and becoming
more widely used.

Why have two standards? GIF and JPEG bring different advantages
to the table. Let's take a look.

GIF Format Graphics

Any graphical browser supports the display of GIF format files
inline, meaning that the browser doesn't require a special
viewer for these files. GIFs are compressed graphics, but they
tend to lose less image clarity than JPEGs. Images that have smaller
color palettes (those that use 256 colors or fewer) often look
better in GIF format. GIF is also the file format of choice for
creating transparent graphics-graphics that make the Web page
appear to be the actual background of the GIF graphic (see the
section,"Creating Transparent GIFs," later in this chapter).

Although GIF files are compressed, they tend to be a bit larger
than JPEGs, but they decompress more quickly and tend to be drawn
more quickly than JPEGs (given the same file size). Another problem
with the GIF file format is the fact that it includes certain
copyrighted elements that make it less than an open standard for
graphics interchange.

		Note

		

Folks in the press took the ball and ran with it in late 1994 when they became aware of the fact that the GIF file format, created by CompuServe, used a compression scheme called LZH-a scheme patented by the Unisys corporation. At the time, CompuServe and

UniSys had a licensing agreement under which CompuServe paid a royalty to Unisys but was granted the right to sublicense GIF and LZH technology to companies that made use of the graphics format in their programs. This publicity shifted some users and
developers to unrestricted file formats such as JPEG, although GIF remains the most popular format for Web graphics.

The JPEG Format

Gaining on GIF in popularity is the JPEG format, which is widely
used by Web designers. JPEG graphics can be viewed in most new
graphical browsers without a special helper application. JPEG
graphics have the advantage of being better for graphics that
have more colors (up to 16.7 million, in most cases) than similar
GIF files; in addition, the JPEG files are smaller (look ahead
to fig. 9.2). Also, the compression scheme is in the public domain.

Figure 9.2 : The paint Shop Pro interface.

On the down side, JPEGs can be a little more lossy than
GIFs, meaning that the higher rate of compression results in slightly
lower image quality. JPEGs also take a little longer to decompress
than do GIF files. So although the smaller size of JPEG files
allows them to be transmitted over the Internet more quickly,
the amount of time that it takes to decompress those files sometimes
negates this advantage.

		The Future of Web Graphics Formats

		

In the spring of 1996, the World Wide Web Consortium (W3C) announced a working paper standard for a new graphics format-the Portable Network Graphic (PNG) file type-as a possible replacement for the GIF and JPEG formats.

The PNG file format provides for high, lossless compression of graphics up through "true-color" depths, allowing transmission of very clean, crisp graphics over the Web. The specification uses public-domain compression schemes to avoid the
sublicensing issues associated with GIF.

The format is designed to be highly machine-independent, so that different types of computers and operating systems can easily deal with the creation and display of PNG graphics. The PNG format allows for transparency effects (like the GIF format). These
graphics often display more quickly in browsers that display graphics progressively (as the graphics are being downloaded).

Although the transition most likely will take some time, PNG is already making progress on the Web. You can expect many more browsers, graphics applications, and helpers to support the format in the future.

[bookmark: CreatingandManipulatingGraphics]Creating
and Manipulating Graphics

It's no secret that a lot of Web design has transitioned from
manipulating text-based HTML documents to designing and integrating
compelling graphics into Web pages. As the Web has become more
commercial, its graphical content has become more professional.
If you're not up to the task of creating professional graphics,
don't worry too much; programs are available that will help you.
Also, it's more important that graphics further the usefulness
of the text. The graphics in and of themselves are not the point.
The point is to make your Web pages more exciting and informative.

It is a fact, however, that Web sites are leaping forward daily
into a more professional, more graphical presentation of Web-based
information. Commercial artists and designers are continuing to
find new niches on the Web. If you're a skilled computer artist,
congratulations; this is where you'll put your skills to use.
If you're not, that's OK, too. Any Web designer needs to be able
to manipulate and edit graphics in a program such as Adobe Photoshop
or CorelDRAW!, but you don't necessarily have to create
those graphics, if that's not your forte.

[bookmark: CreatingGraphicsfortheWeb]Creating Graphics for
the Web

As you get started with a program such as Photoshop or CorelDRAW!,
keep in mind that the most important consideration in creating
Web graphics is the file size. File size isn't generally the first
consideration for creating print graphics; almost any print shop
or prepress house will accept large storage cartridges or tapes
that provide access to your huge full-color graphics. Not so on
the Web. Your target is as small as possible-between 15K and 35K
for larger (bigger on the screen) files.

You can come up with graphics to use on your Web pages in many
ways. Eventually, any graphic that you use needs to be in a standard
file format (for example, GIF or JPEG) and relatively small. But
how you come up with the final graphic has a lot to do with the
information that you're trying to communicate and with your skills
as an artist. The following are some of the different ways you
might come up with Web graphics:

		Create graphics in a graphics application. Many programs
for both professional and amateur artists can output GIF- or JPEG-format
files for use on the Web. Among these programs are Adobe Photoshop,
CorelDRAW!, Fractal Painter, and Fractal Dabbler.

		Tip

		

Any graphics program, even Microsoft Paint, can create Web graphics, although you may need to use another program to change the graphic to an acceptable file format.

		Download public-domain graphics. Tons of sites on the
Internet allow you to download icons, interface elements, and
other graphics for your Web site. At the same time, public-domain
clipart collections (such as those available on CD-ROM) can be
useful for Web pages.

		Use scanned photographs. Using scanned photographs
(especially those that you've taken yourself) is a great way to
come up with graphics for your Web pages. Unless you have access
to scanning hardware, though, you may need to pay someone to scan
the photos.

		Digital cameras. Cameras are available that
allow you to take photos that can be downloaded directly from
the camera to your computer. While some of this equipment can
be very expensive, cameras under $500 do exist, and those photos
can easily be converted for use on the Web.

		Use PhotoCDs. Many photo development shops can create
digital files of your photographs (from standard 35mm film or
negatives) and save those files in PhotoCD format. Most CD-ROM
drives allow you to access these photos, which you can then change
to GIF or JPEG format and display on your Web pages.

[bookmark: ExampleCreatingGraphicsinPaintShop]Example: Creating
Graphics in Paint Shop Pro

A popular program for creating Web graphics in Windows and Windows
95 is Paint Shop Pro, which has the added advantage of being try-before-you-buy
shareware. To download Paint Shop Pro, access the URL http://www.jasc.com/pspdl.html
with your Web browser, and find the hypermedia link for downloading
the program for your particular version of Windows.

		Note

		

As with any shareware program, you should register Paint Shop Pro (by sending in the requested fee) if you find it useful.

Paint Shop Pro arrives as a PKZip-compressed file archive, so
you also need a program on your hard drive to unzip it when the
download is complete. (WinZip is available from http://www.winzip.com/.)
Then install the program in Windows and start it. You should see
a window like the one shown in figure 9.2.

You can use Paint Shop Pro to create a simple graphic, such as
a logo or title, for your Web pages. Using the flood-fill tool,
for example, allows you to select a color and "pour"
it into the window, creating a background color for the rest of
your graphic.

Click the fill-tool icon and then choose a color from the color
palette. To apply that color to your graphic, click in the graphic
window.

Now select the text tool, choose another color from the palette,
and click the graphic window. Type your text (your company name,
for example) in the dialog box; then click OK. Now you should
be able to drag the text around the window. When you have the
text arranged correctly, click anywhere in the window to place
the text permanently (see fig. 9.3).

Figure 9.3 : Creating a simple graphic.

Before you save this graphic, you should make it as physically
small as possible so that it works well on your Web page. To cut
the image down a bit, select Paint Shop Pro's rectangular selector
tool. Click somewhere near the top left corner of the graphic
(at the point you want to make the new top left corner of your
cropped image), and drag the mouse pointer to the other side (bottom
right corner) of the image. When you release the mouse pointer,
a thin box should appear around this slightly smaller portion
of your graphic. From the menu, choose Image, Crop, and the graphic
is cropped to that size. If everything went well, you have a smaller
graphic that is just as useful for your Web site.

Our last step is to save the graphic in a file format that's useful
for the Web. Choose File, Save As. In the Save As
dialog box that appears, you can select the file type from a drop-down
list (see fig. 9.4). Select either GIF or JPEG, type a filename,
and click OK.

Figure 9.4 : Saving your graphic in a Web-compatible format.

Now you've created a graphic for use on your Web page. Use the
Windows Explorer or File Manager to check the file size. You want
the file to be somewhere around 20K-an ideal size for a Web page
graphic.

[bookmark: ManipulatingWebGraphics]Manipulating Web Graphics

After you decide what graphics to use, the next step is to manipulate
and edit those graphics for best use on the Web. The preceding
section discussed some of this manipulation (cropping and saving
a graphic to make it as small as possible). Following are some
other ways to use graphics applications to make your images lean,
attractive, and useful:

		Keep graphics small. Creating smaller graphics in the
first place, and using the cropping tool to take out backgrounds
and extra space, are great ways to keep graphics to a manageable
size.

		Use fewer colors. Many graphics applications allow
you to decide how much color information should be included in
the file. Do you want to use a possible 256 colors or millions
of colors? The fewer colors you choose, the smaller your image
file will be (see fig. 9.5).

Figure 9.5 : Adobe Photoshop allows you to choose the color bit-depth for a particular graphic.

		Note

		

Programs will often describe the number of colors in a graphic using either a number or something called bit-depth. An 8-bit graphic, for instance, offers 256 colors. How do you calculate these numbers? Two to

the power of the bit-depth is the number of possible colors (28 = 256 colors; 216 = 65536 colors).

		Create thumbnail graphics. At times, displaying a large
graphic may be necessary, especially if your user chooses to view
it. You can give users this option by creating thumbnail graphics
in your graphics programs and then using the thumbnails as links
to identical (but much larger) graphics files. This method allows
you to create pages that contain many images, all of which are
scaled down considerably (and, therefore, download more quickly).
If a user wants to view one of the graphics at full size, he or
she can simply click the thumbnail graphic.

		Note

		

Some browsers (notably, Netscape) can be used to resize the graphics on-the-fly. Although this is convenient for the designer, the entire file still must be transferred across the Internet, thereby negating the benefits that smaller thumbnail graphics
offer in terms of downloading speed.

[bookmark: ExampleCreatingThumbnailswithLView]Example: Creating
Thumbnails with LView Pro

Another must-have program for most Windows-based Web designers
is LView Pro, a shareware graphics-manipulation program. Although
the program has some of the same features as Paint Shop Pro, LView
is designed less for creating images and more for changing them
from one size to another or from one file format to another.

You can download LView by accessing the Web URL http://world.std.com/~mmedia/lviewp.html.
Choose the version for your flavor of Windows, down-load it to
your computer, extract it from its Zip archive, install it in
Windows, and start it.

To resize an image to create a thumbnail, follow these steps:

		Choose File, Open. The Open dialog box appears.

		In the Open dialog box, find the image that you want to resize.

		With the image in a window on the desktop, choose Edit,
Resize. The Resize Image window appears (see fig. 9.6).

		Now you can use the slider controls or enter a new size for
your thumbnails. A good rule is somewhere around 75 pixels wide
(width is the first field after New Size in the dialog box). Changing
the width also changes the height in order to preserve the aspect
ratio of your images.

		When you have finished resizing, click OK.

Figure 9.6 : Resizing graphics in LView Pro for Windows.

		Tip

		

If you plan to offer many thumbnails on one page, it's a good idea to make them a uniform width (or height) to keep the page orderly.

When you create thumbnails, you'll probably want to maintain the
aspect ratio of the current graphic in resizing, so that LView
keeps the height and width of the new graphic at the same ratio
as the original graphic, making the thumbnail smaller but similarly
proportioned. Don't forget to save the new file with a slightly
different name, using the appropriate file extension (GIF or JPG).

		Tip

		

Whenever an application gives you the choice, you should save GIF files as interlaced GIFs and JPEGs as progressive JPEGs. This lets the graphics display faster in many browsers.

[bookmark: CreatingTransparentGIFs]Creating
Transparent GIFs

One very popular way to edit Web graphics is to create transparent
GIFs. This process allows you to make one of the colors of your
graphic (generally the background color) transparent, so that
the Web page's color scheme or background graphics shows through
(see fig. 9.7). Most often, it's used to give the illusion that
the graphic is part of your Web page. You can use this method
to add impact to your pages and to limit the size of your graphics
by doing away with elaborate backgrounds.

Figure 9.7 : Regular vs. transparent GIFs.

To be rendered with a transparent background, a GIF file must
be saved in the GIF89a file format. This can be done with Paint
Shop Pro, LView Pro, Transparency for the Mac, and many other
programs. Saving a file in this format is simply a matter of deciding
what color is going to be the transparent color when the GIF is
displayed.

		Tip

		

Giving the image in your transparent GIF a shadow (in a graphics application) enhances the appearance of a graphic floating directly over the page.

[bookmark: CreatingTransparentGIFsinTransparenc]Creating Transparent
GIFs in Transparency for the Mac

One of the easiest ways to create a transparent GIF on the Mac
is to use a simple application called Transparency. You can download
the program from the Web page http://www.med.cornell.edu/~giles/projects.html
or http://www.med. cornell.edu/~giles/projects.html.

After you download and install Transparency, double-click the
program icon to start it. Pull down the File menu and choose Open.
In the Open dialog box that appears, open the GIF file that you
want to change to a transparent GIF. Your image is then presented
in its own window (see fig. 9.8).

Figure 9.8 : Transparency for the Mac, changing a white background to transparent.

Point to the color in the GIF that you want to turn transparent.
As you hold down the mouse button, a color palette appears, with
the current color selected. If you want that color to turn transparent,
release the mouse button. If you want some other color to be transparent
(or if you prefer to use no transparency), point to the color
that you want to make transparent and release the mouse button.
To turn off transparency, simply select the box marked None at
the top of the palette.

Now pull down the File menu and choose the Save As GIF89a command.
Rename the file (or use the same name, if you want), and save
it. The file now should appear in a Web browser as a transparent
GIF.

[bookmark: ExampleCreatingTransparentGIFsinLV]Example: Creating
Transparent GIFs in LView Pro

Windows users can create transparent GIFs in LView Pro. To do
so, follow these steps:

		Load the program, and choose File, Open to open
a graphics file. The Open dialog box appears.

		If the file isn't already a GIF image, choose Retouch,
Color Depth, and convert the file to a Palette Image.

		Select 256 colors in the palette creation and quantizing
options, and uncheck the Enable Floyd-Steinberg Dithering
checkbox.

		Click OK.

		Now you can decide which color will appear transparent. Choose
Retouch, Background Color and then click the color
that should be transparent. You can also use the dropper (click
the Dropper button) to select the color that should be transparent
(see fig. 9.9).

		With the correct color selected, choose File, Save
As, and save the graphic as a GIF89a. The background color
will appear transparent in a Web browser's window.

Figure 9.9 : Click the dropper to choose the transparent color.

[bookmark: EmbeddingGraphicsinWebPages]Embedding
Graphics in Web Pages

When your graphics are created, cropped, resized, and saved in
the appropriate formats, you're ready to add them to your Web
pages. To add graphics, you use an empty tag called the
(image) tag, which you insert into the body section of your HTML
document as follows:

or

SRC accepts the name of the
file that you want to display, and image
URL (or path/filename)
is the absolute (full URL) or relative path (for a local file
or a file in the current directory) to the image. As the first
example shows, you can display on your page any graphic file that
is generally available on the Internet, even if the file resides
on a remote server. For graphics files, however, it is much more
likely that the file is located on the local server, so a path
and filename are sufficient.

You could enter the following text in a browser:

<HR>

<P>This is a test of the Image tag. Here is the image I
want to

display:</P>

<HR>

In this case,
is a relative path URL, suggesting that the file image1.gif
is located in the same directory as the HTML document. The result
would be displayed by a browser as shown in figure 9.10.

Figure 9.10 : Displaying inline graphics on a Web page.

		Tip

		

You'll learn more about absolute and relative URLs in Chapter 10, "Hypertext and Creating Links."

An absolute URL is essential, however, if you were accessing an
image on a remote site, as in the following example:

(This example is fictitious.) Please realize that using a URL
to a distant site on the Internet causes that site to be accessed
every time this
tag is encountered on your page, so you should probably have some
sort of arrangement with that Web site's system administrator
before you link to a graphic on their server.

[bookmark: AddingGraphicstoOtherHTMLTags]Adding Graphics to
Other HTML Tags

You can add graphics links to HTML tags to do various things,
including placing graphics next to text (within paragraphs) and
even including graphics in lists. The following example displays
the graphic flush with the left margin, with the bottom of the
text that follows the image aligned with its bottom edge:

<P>
It's time to start our adventure in the world of

the Web. As you'll see below, there is much to learn. </P>

Words at the end of the first line wrap below the image (see fig.
9.11).

Figure 9.11 : Graphics within paragraph containers.

Another popular use for graphics is including them in HTML lists.
Best suited for this task is the <DL>
(definition) list, which allows you to use your own graphics as
bullet points. (Ordered and unordered lists display their numbers
or bullets in addition to the graphic.)

A <DT> (definition
term) tag can accept more than one <DD>
(definition) element, so you can create a bulleted list as follows:

<DL>

<DT>

<DD> This is the first
point

<DD> This is the second
point

<DD> Here's the third
point

<DD> And so on.

</DL>

		Tip

		

If you're not up to creating your own bullet points, many archives of common bullets, graphics, and clipart images exist on the Web. Try CERN's images at http://www.w3.org/hypertext/WWW/Icons or a popular site like Randy's Bazaar at http://www.infi.net/~rdralph/icons/.

At the same time, you could use a definition list in conjunction
with thumbnail graphics in a list that uses both the <DT>
and <DD> tags. An example
might be the following real estate agent's pages (see fig. 9.12):

Figure 9.12 : Use a <DL> tag to create custom bulleted lists and thumbnail lists.

<DL>

<DT>

<DD>14101 Avondale This executive 3/2/2
is nestled among the live oak, with a beautiful view of the foothills.
$139,900.

<DT>

<DD>3405 Main This timeless beauty
is a cottage made for a prince (and/or princess!) Spacious 2/1/1
is cozy and functional at the same time, with all-new updates
to this 1880s masterpiece. $89,995.

</DL>

[bookmark: TheALTAttribute]The ALT
Attribute

None of the HTML tags that you've encountered so far offer the
option of a tag attribute-an option that somehow affects
or enhances the way the tag is displayed on-screen.

The ALT attribute for the
 tag is designed
to accept text that describes the graphic, in case a particular
browser can't display the graphic. Consider the plight of users
who use Lynx or a similar text-based program to surf the Web (or
users of graphical browsers that choose not to auto-load graphics).
Because those users can't see the graphic, they'll want to know
what they're missing.

The ALT attribute works this
way:

<IMG SRC="image URL" ALT="Text
description of graphic">

The following is an example:

<IMG SRC="image1.gif" ALT="Logo
graphic">

For people whose browsers can't display the graphic, the ALT
attribute tells them that the graphic exists and explains what
the graphic is about.

		Tip

		

Test your site with the Load Images option turned off so that you can see how your ALT text displays.

[bookmark: TheALIGNAttribute]The ALIGN
Attribute

 can accept another
attribute that specifies how graphics appear relative to other
elements (like text or other graphics). Using the ALIGN
attribute, you can align other elements to the top, middle, or
bottom of the graphic. It follows this format:

<IMG SRC="image URL"
ALIGN="direction">

		Note

		

The ALIGN="BOTTOM" attribute isn't necessary, because it is the default setting for the tag.

The ALIGN attribute is designed
to align text that comes after a graphic with a certain part of
the graphic itself. An image with the ALIGN
attribute set to TOP, for
example, has any subsequent text aligned with the top of the image,
like in the following example:

Descriptive text aligned to top.

Giving the tag
an ALIGN="MIDDLE"
attribute forces subsequent text to begin in the middle of the
graphic (see fig. 9.13):

Figure 9.13 : The ALIGN attribute for the tag.

Descriptive text aligned to middle.

Order among the attributes that you assign to an image tag is
unimportant. In fact, because SRC="URL"
is technically an attribute (although a required one), you can
place the ALIGN or ALT
attribute before the SRC
information. Anywhere you put attributes, as long as they appear
between the brackets of the
tag, is acceptable.

[bookmark: ExampleAddingGraphicstoYourWebSit]Example: Adding
Graphics to Your Web Site

Now that you've learned how to add images to your Web pages, you
have almost doubled the things that you can do on the Web. In
this example, you add graphics to a typical corporate Web page,
using a couple of methods that you've learned.

To start, you need to create some graphics for your home page.
If you have a corporate logo and a scanner handy, go ahead and
scan in some graphics. Alternatively, you can use a graphics program
to create, crop, and save your graphics as GIF or JPEG files.
While you're at it, you may want to create some of your GIFs as
transparent GIFs.

Create a logo, a special bullet, and a photo for use on the page.
Name your GIFs LOGO.GIF,
BULLET.GIF, and PHOTO.GIF,
or something similar. (If you have already created a Web site,
feel free to name the files according to the organizational system
that you're using for the site. You can also use JPEG graphics
if you so desire.) Then load your HTML template, and save it as
a new HTML document. Between the body tags, type something like
Listing 9.1.

Listing 9.1 images.html Using

to Create Images

<BODY>

<H1>Welcome to RealCorp's Web Site</H1>

<H2><IMG SRC="photo.gif" ALT="Photo of
CEO Bob MacFay" ALIGN=MIDDLE>I'm Bob MacFay,
CEO of RealCorp...</H2>

<P>We at RealCorp make it our business to be as productive
and hard working as you are. That's why we've set up this Web
site...to work a little harder, so you don't have to. Take a look
at the various services our company offers, and maybe you'll see
why we like to say, "We're the hardest working corporation
all week, every week."</P>

<DL>

<DT>

<DD><IMG SRC="bullet.gif" ALT="-"
ALIGN=MIDDLE> Full service plans for any size of customers

<DD><IMG SRC="bullet.gif" ALT="-"
ALIGN=MIDDLE> On-time service calls, any time, any day of the
week

<DD><IMG SRC="bullet.gif" ALT="-"
ALIGN=MIDDLE> Fully-equipped mobile

troublshooting vans

<DD><IMG SRC="bullet.gif" ALT="-"
ALIGN=MIDDLE> Time honored appreciate for quality over expediency

</DL>

</BODY>

Although the ALT attribute
is optional and the bulleted list may survive without it, the
example uses ASCII to substitute hyphens for the bullet graphics
if the browser can't display images. In most cases, you'll want
to describe an image that a user can't view. For an element such
as a bullet, though, you can use the ALT
attribute to substitute an ASCII character for the graphic.

For the photo of the CEO, the
tag is called within the <H2>
tag, because the <H2>
container (like a paragraph) otherwise would insert a carriage
return and force the words I'm Bob MacFay...
to appear below the photo. Including the
tag inside the <H2>
tag allows the text to appear next to the photo (see fig. 9.14).

Figure 9.14 : Sample Web page, including some different attributes for the tag.

Play with this example a little bit to get a feel for when you
should place the
tag within another HTML container and when you can leave the tag
out on its own. A page sometimes looks completely different, based
only on where you place your image tags.

[bookmark: Summary]Summary

Creating and manipulating graphics for display on the World Wide
Web is somewhat different from the procedures for many other media,
because Web graphic files need to be much smaller. The smaller
a graphic, the fewer colors it uses; and the more compressed a
file, the better the experience for the user. Web designers need
to know how to use some fairly specialized graphics programs.

One of the most interesting manipulations of a Web graphic is
the transparent GIF file, which makes the graphic seem to be floating
above the Web page-or makes the Web page the actual background
for the graphic. You need special techniques and programs to create
such a file.

After you create some fast-loading, attractive graphics, placing
them on your Web pages is fairly simple. All you need is the
tag, complete with a path and filename to the graphic. Our discussion
of the tag introduces
something new for HTML tags: attributes. Various attributes for
the tag allow
you to add text to a graphic (for text-based browsers) and to
align the text with the top, middle, or bottom of the graphic.

[bookmark: ReviewQuestions]Review
Questions

		What's the single most significant concern in creating graphics
for display on the Web?

		True or false. The number of colors used to create a graphic
can affect the size of the graphic file.

		What are the two most common graphic formats used on the Web?
Can you use other formats?

		What does it mean when a graphic format (such as JPEG) is
lossy?

		Name four ways that you can obtain graphics for your Web site.

		What is the ideal size range for Web graphics?

		What are thumbnail graphics?

		What specific file format must a GIF be saved in for it to
work as a transparent GIF?

		When used with the
tag, what sort of command or HTML element

is SRC?

		What is the purpose of the ALT
attribute?

		True or false. The
tag automatically inserts a carriage return after displaying its
graphic.

		Why do you never have to set the ALIGN
attribute to BOTTOM?

[bookmark: ReviewExercises] Review
Exercises

		Use your graphics program to save the same graphic as both
a GIF and a JPEG image. Then create a Web page that loads both.
Note the differences in size and quality.

		Create a GIF image and turn the background transparent with
your graphics program (Paint Shop Pro, LView Pro, or Transparency
for the Mac, among others). Load both the original and the transparent
GIF into your browser (create a Web page if necessary), and notice
the difference that transparency makes. Also note whether or not
the file size changes.

		Use the ALIGN attribute
to an tag to
align another image to the top of the first image. Play with this
feature, aligning images to TOP,
MIDDLE, and BOTTOM.

[image:]
[image:]
[image:]
[image:]

HTML By Example/f1-1.gif

HTML By Example/f1-2.gif

HTML By Example/f1-3.gif

HTML By Example/f11-1.gif

HTML By Example/f11-2.gif

HTML By Example/f11-3.gif

HTML By Example/f11-4.gif

HTML By Example/f11-5.gif

HTML By Example/f11-6.gif

HTML By Example/f12-1.gif

HTML By Example/f12-2.gif

HTML By Example/f12-3.gif

HTML By Example/f12-4.gif

HTML By Example/f12-5.gif

HTML By Example/f12-6.gif

HTML By Example/f12-7.gif

HTML By Example/f15-1.gif

HTML By Example/f15-2.gif

HTML By Example/f15-3.gif

HTML By Example/f15-4.gif

HTML By Example/f15-5.gif

HTML By Example/f15-6.gif

HTML By Example/f15-7.gif

HTML By Example/f15-8.gif

HTML By Example/f18-1.gif

HTML By Example/f18-2.gif

HTML By Example/f18-3.gif

HTML By Example/f18-4.gif

HTML By Example/f18-5.gif

HTML By Example/f2-1.gif

HTML By Example/f2-2.gif

HTML By Example/f2-3.gif

HTML By Example/f2-4.gif

HTML By Example/f2-5.gif

HTML By Example/f2-6.gif

HTML By Example/f2-7.gif

HTML By Example/f2-8.gif

HTML By Example/f20-1.gif

HTML By Example/f20-2.gif

HTML By Example/f20-3.gif

HTML By Example/f20-4.gif

HTML By Example/f20-5.gif

HTML By Example/f20-6.gif

HTML By Example/f20-8.gif

HTML By Example/f24-1.gif

HTML By Example/f24-10.gif

HTML By Example/f24-2.gif

HTML By Example/f24-3.gif

HTML By Example/f24-4.gif

HTML By Example/f24-5.gif

HTML By Example/f24-6.gif

HTML By Example/f24-7.gif

HTML By Example/f24-8.gif

HTML By Example/f24-9.gif

HTML By Example/f25-1.gif

HTML By Example/f25-2.gif

HTML By Example/f25-3.gif

HTML By Example/f25-4.gif

HTML By Example/f25-5.gif

HTML By Example/f25-6.gif

HTML By Example/f30-1.gif

HTML By Example/f30-10.gif

HTML By Example/f30-11.gif

HTML By Example/f30-12.gif

HTML By Example/f30-13.gif

HTML By Example/f30-2.gif

HTML By Example/f30-3.gif

HTML By Example/f30-4.gif

HTML By Example/f30-5.gif

HTML By Example/f30-6.gif

HTML By Example/f30-7.gif

HTML By Example/f30-8.gif

HTML By Example/f30-9.gif

HTML By Example/f4-1.gif

HTML By Example/f4-2.gif

HTML By Example/f4-3.gif

HTML By Example/f4-4.gif

HTML By Example/f6-1.gif

HTML By Example/f6-2.gif

HTML By Example/f6-3.gif

HTML By Example/f6-4.gif

HTML By Example/f6-5.gif

HTML By Example/f6-6.gif

HTML By Example/f8-1.gif

HTML By Example/f8-2.gif

HTML By Example/f8-3.gif

HTML By Example/f8-4.gif

HTML By Example/f8-5.gif

HTML By Example/f8-6.gif

HTML By Example/f8-7.gif

HTML By Example/f8-8.gif

HTML By Example/f8-9.gif

HTML By Example/f9-1.gif

HTML By Example/f9-10.gif

HTML By Example/f9-11.gif

HTML By Example/f9-12.gif

HTML By Example/f9-13.gif

HTML By Example/f9-14.gif

HTML By Example/f9-2.gif

HTML By Example/f9-3.gif

HTML By Example/f9-4.gif

HTML By Example/f9-5.gif

HTML By Example/f9-6.gif

HTML By Example/f9-7.gif

HTML By Example/f9-8.gif

HTML By Example/f9-9.gif

HTML By Example/hb.gif

HTML By Example/index.htm

HTML

 By

 Example

by Todd Stauffer

C O N T E N T S[bookmark: CONTENTS]

Introduction

		What's the by Example Advantage?

		Who Should Use This Book?

		Why Should I Learn HTML?

		What Tools Do I Need?

		How This Book Works

		Overview of Chapters
		Part I: Internet, Web, and HTML Fundamentals

		Part II: Creating Basic Pages with HTML 2.0

		Part III: Interactive HTML

		Part IV: Page Layout and Formatting

		Part V: Internet Programming and Advanced Web Technologies

		Part VI: HTML Editors and Tools

		Part VII: HTML Examples

		Conventions Used in this Book

		Icons Used in this Book

		The Other Advantage

		

[bookmark: OLE_LINK2]Part I Internet, Web, and HTML Fundamentals

Chapter 1 What is HTML?

		HTML at a Crossroads

		HTML is not a Programming Language

		A Short HTML History

		Marking Up Text

		Who Decides What HTML Is?
		The HTML Working Group

		The World Wide Web Consortium

		Individual Companies and HTML

		Additional Information on HTML Standards and Organizations

		Summary

		Review Questions

Chapter 2 The World Wide Web and Web Servers

		What's the World Wide Web?

		The Hypertext Concept: Web Links
		Example: Thinking in Hypertext

		The Web Page

		The Web Site

		Example: A Corporate Web Site

		Hypermedia: Text and Graphics on the Web
		Helper Applications

		Common Multimedia Formats

		Internet Services and Addresses
		Internet E-mail

		UseNet Newsgroups

		Gopher and WAIS

		FTP

		Summary

		Review Questions

		Review Exercises

Chapter 3 How Web Browsers Work

		Web Browser Applications
		NCSA Mosaic

		Netscape Navigator

		Microsoft Internet Explorer

		Lynx

		Uniform Resource Locators
		Example: The URL Advantage

		The Different Protocols for URLs

		Example: Accessing Other Internet Services with URLs

		How Web Browsers Access HTML Documents
		Example: Watching the Link

		What Can Be Sent on the Web?

		Binaries on the Web

		Everything is Downloaded

		Summary

		Review Questions

		Review Exercises

Chapter 4 HTML's Role on the Web

		Why Create Web Pages?

		Web Applications
		Example: Searching on the Web

		Advantages and Disadvantages of the Web
		Advantages

		Example: Travel Agent Web Site
		Disadvantages

		HTML and the Changing World Wide Web
		The Forced Evolution of HTML

		The Current State of HTML

		Deciding What Type of HTML To Use
		The HTML 2.0 Standard

		The HTML 3.0 Level Standards

		Netscape and Internet Explorer HTML

		Making the HTML Decision

		Summary

		Review Questions

		Review Exercises

Chapter 5 What You Need for a Web Site

		Finding a Web Server
		What is a Web Server?

		Speed of the Server

		Types of Internet Connections

		Dealing with an ISP
		Determining Costs

		What You Need To Know

		Organizing a Web Site
		Naming Your Files

		Example: Organizing a Site

		Updating Your Web Site

		Summary

		Review Questions

		Review Exercises

		

Part II Creating Basic Pages with HTML 2.0

Chapter 6 Creating a Web Page and Entering Text

		The Tools for Web Publishing

		Document Tags
		Example: Creating an HTML Template

		Example: Hello World

		Understanding Tags: Container and Empty Tags
		Container Tags

		Empty Tags

		Entering Paragraph Text on Your Web Page
		The
 Tag for Line Breaks

		The Comment Tag

		Example: Creating a Complete Web Page

		Summary

		Review Questions

		Review Exercises

Chapter 7 Changing and Customizing HTML Text

		Creating Headers and Headlines
		Example: A Topical Discussion

		Implicit and Explicit Text Emphasis
		Explicit Styles

		Implicit HTML Tags

		Example: Physical versus Logical

		Other Implicits: Programming, Quoting, and Citing
		Programmer's HTML Tags

		Quoting, Citing, Definitions, and Addresses

		Example: Using the <BLOCKQUOTE> and <ADDRESS> Tags

		Preformatted Text
		Example: Creating Your Own Layout with the <PRE> Tag

		Example: Using <PRE> for Spaces and Tables

		Summary

		Review Questions

		Review Exercises

Chapter 8 Displaying Text in Lists

		Using Lists in HTML

		Ordered and Unordered Lists
		Example: Formatting Within Lists

		Directories, Definitions, and Menus
		Directory and Menu Lists

		Definition Lists

		Example: HTML Within Lists

		Nesting Tags and Combining List Types
		Nesting Tags

		Lists Within Lists

		Combining List Types

		Example: Nesting Definition Lists

		Summary

		Review Questions

		Review Exercises

Chapter 9 Adding Graphics to Your Web Pages

		The Special Nature of Graphics on the Web
		The Size of Graphics Files

		Example: Watching Graphical Sites Download

		Picking Your Web Graphics File Type

		Creating and Manipulating Graphics
		Creating Graphics for the Web

		Example: Creating Graphics in Paint Shop Pro

		Manipulating Web Graphics

		Example: Creating Thumbnails with LView Pro

		Creating Transparent GIFs
		Creating Transparent GIFs in Transparency for the Mac

		Example: Creating Transparent GIFs in LView Pro

		Embedding Graphics in Web Pages
		Adding Graphics to Other HTML Tags

		The ALT Attribute

		The ALIGN Attribute

		Example: Adding Graphics to Your Web Site

		Summary

		Review Questions

		Review Exercises

Chapter 10 Hypertext and Creating Links

		Using the <A> Tag
		Section Links

		Example: A More Effective Definition List

		Using Relative URLs
		Adding the <BASE> Tag

		Example: A Hybrid-Style Web Site

		Creating Links to Other Internet Services
		Hyperlinks for E-Mail Messages

		Other Internet Services

		Other Links for the <HEAD> Tag
		The <LINK> Tag

		The <ISINDEX> Tag

		Summary

		Review Questions

		Review Exercises

Chapter 11 Using Links with Other HTML Tags

		Using Links with HTML Formatting Tags
		Emphasis Tags and Hyperlinks

		Example: Hyperlinks in Context

		Using Hypertext Links in HTML Lists

		Example: An HTML Table of Contents

		Creating Graphical Links
		Example: A Graphical, Hyperlinked Listing

		Example: A Clickable Graphic Menu Bar

		Example: Custom Controls

		Using Hypermedia Links

		Summary

		Review Questions

		Review Exercises

		

Part III Interactive HTML

Chapter 12 Clickable Image Maps and Graphical Interfaces

		Image Maps Defined
		Example: The Apple Web Site

		Understanding How Image Maps Work
		The Map Server Program

		The Map Definition File

		The Various Shapes of Hot Zones

		Defining Your Image map Hot Zones
		MapEdit for Microsoft Windows and X-Windows

		Example: MapEdit and a Simple Button Bar

		WebMap for Macintosh

		Adding Image Maps to Your Web Page
		The Image Map URL

		Example: Testing Your Link

		Image Map Design Tips

		Summary

		Review Questions]

		Review Exercises

Chapter 13 HTML Forms

		Using Forms and Form-Capable Browsers

		Creating the Form
		Example: Someone Else's Form

		Text Fields and Attributes
		Example: Web-based Feedback Form

		The <INPUT> Tag
		TEXT

		PASSWORD

		CHECKBOX

		RADIO

		HIDDEN

		RESET

		SUBMIT

		Example: A More Complete Form

		Creating Pop-Up and Scrolling Menus
		Using <SELECT>

		Allowing More than One Selection

		Example: Order Form

		Summary

		Review Questions

		Review Exercises

Chapter 14 Form Design and Data Gathering with CGI Scripts

		Form Design Issues

		Line Breaks, Paragraphs, and Horizontal Lines
		Line Breaks

		Horizontal Lines

		Paragraph Tags

		Example: Fix-A-Site

		Other Tags for Form Formatting
		Using the <PRE> Tag

		Using List Tags for Forms
		Example: Customer Service Revisited

		CGI-BIN Scripts and Dealing With Form Data
		Using CGI-BIN Scripts

		Receiving Form Data

		Your Script's Output

		Summary

		Review Questions

		Review Exercises

		

Part IV Adding Tables to Your Documents

Chapter 15 Adding Tables to Your Documents

		Creating a Table

		The <TABLE> Tag
		Example: Playing with Table Attributes

		Captions, Table Headers, and Table Data
		<CAPTION>

		Table Rows

		Table Data and Rows

		Summary

		Review Questions

		Review Exercises

Chapter 16 Images, Multimedia Objects, and Background
Graphics

		
More Control with
		
Example: Magazine-Style Presentation

		
Inserting Multimedia Objects
		
The <INSERT> Tag

		
<INSERT>'s Attributes

		
Using <PARAM> and with <INSERT>

		
Background Graphics
		
Example: The HTML 3.0 Enhanced Graphics Page

		
Summary

		
Review Questions

		
Review Exercises

Chapter 17 Client-Side Image Maps

		What's a Client-Side Image Map?

		Determining Your Hot Zones
		Example: Creating a Map Definition File

		Adding a Client-Side Map to Your Web Page
		The Tag

		The <MAP> Tag

		The <AREA> Tag

		Example: Creating a Client-Side Button Bar

		Total Image Maps
		Using Both Sides

		Adding Text Links

		The Clickable Image Fallback

		Example: A Complex, Complete Map

		Summary

		Review Questions

		Review Exercises

Chapter 18 Other HTML 3.0 Proposals

		HTML Math
		Math Tags

		Other Math Tags

		The Banner Element

		Document-Defined Style Sheets
		The <STYLE> Tag

		The CSS Style Sheet Definition

		Example: Incorporating a Style Sheet

		External Style Sheets and Other Style Sheet Tags
		The <LINK> Tag

		Style Overrides

		Divisions and the ALIGN Attribute

		Example: Styles and the <DIV> Tag

		Summary

		Review Questions

		Review Exercises

Chapter 19 Netscape HTML

		Should You Use Netscapisms?

		Centering, Blinking, and Background Tags
		Background and Foreground Colors

		Example: Netscape Colors and Alignment

		Manipulating Text with Netscape HTML
		<NOBR> and <WBR>

		The and <BASEFONT> Tags

		[bookmark: OLE_LINK5]Example: Putting Fonts in Their Place

		Netscape Attributes for HTML Tags
		The <HR> Tag

		HTML Lists

		The Tag

		Example: Netscape Attributes at Work

		Client-Pull Tags and Attributes

		Sumary

		Review Questions

		Review Exercises

Chapter 20 Netscape Frames

		The Idea Behind Netscape Frames

		Creating Frames
		The <FRAME> Tag

		Example: A Simple Frame Document

		Attributes for <FRAME>

		The <NOFRAMES> Tag

		Example: Frames and No Frames

		Targeting Frame Windows
		The NAME Attribute

		Targeting Frame Windows

		Example: A Reason to Use Frames

		Advanced Targeting
		<BASE> Targets

		"Magic" Targets

		Thoughts on Using Frames
		The Elegant Frame Interface

		Summary

		Review Questions

		Review Exercises

Chapter 21 Internet Explorer Extensions

		Backgrounds and Fonts
		<BGSOUND>

		Font Color and Typeface

		Example: A Study in Absurdity

		IE Extensions for Tables

		IE Extensions to
		DYNSRC and CONTROLS

		LOOP and START

		Summary

		Review Questions

		Review Exercises

		

Part V Internet Programming and Advanced Web Technologies

Chapter 22 Using Java and JavaScript

		Adding Java Applications to Your Web Pages
		The <APPLET> Tag

		The <INSERT> Tag

		Example: Adding Java Applets

		Creating JavaScript Programs
		The <SCRIPT> Tag

		Hiding Code

		Example: Hello World

		Functions
		Declaring Your Functions

		Calling a Function

		Example: Calling All Declarations

		Handling Events
		Returning Values

		Possible Events

		Example: Event Handling, Part One

		Example: Event Handling, Part Two

		Summary

		Review Questions

		Review Exercises

Chapter 23 JavaScript Objects and Functions

		The JavaScript Object Model
		Methods

		Creating New Objects

		Example: Creating New Objects and Methods

		JavaScript Statements
		Comparison Operators and Conditions

		Boolean Operators

		if…else

		Loop Statements

		BREAK and CONTINUE

		Increments and Decrements

		Examples: Looping and Conditions

		Built-in Objects
		The String Object

		Example: Talking Decimals

		The Math Object

		Example: Rounding for Dollars

		Thoughts on JavaScript

		Summary

		Review Questions

		Review Exercises

Chapter 24 Understanding VRML and Creating VRML Objects

		VRML Standards

		How VRML Works on the Web
		VRML Worlds as Hypermedia

		Servers for VRML

		VRML Concepts
		The Basic Page

		Coordinates and Distances

		Example One: Starting Out

		Nodes

		VRML Primitives
		The Sphere

		Cylinders and Cones

		The Cube

		AsciiText

		Example: Occupying the Same Space

		Moving Your Primitives Around
		translation

		rotation

		scaleFactor

		The Separator Node

		Example: Moving and Flipping

		Summary

		Review Questions

		Review Exercises

Chapter 25 Creating VRML Worlds

		Primitive Appearances
		The Material Node

		Example: Adding a Little Color

		The Texture2 Node

		Example: Covering Up Primitives

		Adding Hyperlinks in VRML
		Example: Linking in Your VRML World

		More Fun with Shapes
		More Nodes: Coordinate3 and IndexedFaceSet

		Example: Up on the House Top

		Instancing

		Example: A VRML Neighborhood

		More VRML

		Summary

		Review Questions

		Review Exercises

Chapter 26 Adding Portable Documents to Web Sites

		What Are Portable Documents?

		Adding PDFs To Your Web Site
		MIME Type

		Other Acrobatic Moves

		Other PDF Formats

		Creating Your Own PDFs
		Creating the Word Document

		Using Rich Text Format

		Example: Creating a Portable Word File

		Summary

		Review Questions

		Review Exercises

		

Part VI HTML Editors and Tools

Chapter 27 Creating HTML Documents with Netscape Gold

		Editing HTML With Netscape Gold
		Example: Checking Under the Hood

		Creating HTML List Items

		Changing List Types

		Creating Definition Lists

		Inserting
 and <HR>

		Hyperlinks, Images, and Head Elements
		Adding Hyperlinks

		Adding Images

		Editing the Head

		Example: Putting it All Together

		Summary

		Review Questions

		Review Exercises

Chapter 28 Using Microsoft Internet Assistant

		Basic Markup in Internet Assistant
		HTML Lists

		Definition Lists

		Saving Your HTML Document

		Example: Simple Markup With Internet Assistant

		Links, Images, and Head Elements
		Hypertext Links

		Bookmark Links

		Inserting an Image

		Editing <HEAD> Elements

		Example: Finishing the Page

		Adding Form Fields
		Example: A Simple Form

		Summary

		Review Questions

		Review Exercises

Chapter 29 HTML with Adobe PageMill for Macintosh

		Basic Markup in PageMill
		HTML Lists

		Definition Lists

		Inserting <HR>

		Links, Images, and Special HTML
		Adding Links

		Adding Images

		Manipulating Images

		Transparency and Client-Side Maps

		Entering Unsupported HTML

		Example: The Basic Page in PageMill

		Creating Forms
		Laying Out the Form

		Document Info

		Summary

		Review Questions

		Review Exercises

		

Part VII HTML Examples

Chapter 30 HTML Examples

		Back to Basics: Basic HTML 2.0 Pages
		Example: The Personal Index Page

		Example: The Personal Biography

		Example: Simple Business Pages

		Example: John's Resume

		BigCorp's Client-Side Site
		Example: The Front Door

		Example: The Graphical Index

		Example: BigCorp's About Page

		Example: Using Frames

		Example: JavaScript and Forms

		Example: FTP and HTML

		Example: The Help Page

Appendix Answers
to Review Questions

		Chapter 1

		Chapter 2

		Chapter 3

		Chapter 4

		Chapter 5

		Chapter 6

		Chapter 7

		Chapter 8

		Chapter 9

		Chapter 10

		Chapter 11

		Chapter 12

		Chapter 13

		Chapter 14

		Chapter 15

		Chapter 16

		Chapter 17

		Chapter 18

		Chapter 19

		Chapter 20

		Chapter 21

		Chapter 22

		Chapter 23

		Chapter 24

		Chapter 25

		Chapter 26

		Chapter 27

		Chapter 28

		Chapter 29

Credits

© 1996 by Que‚
Corporation

All rights reserved. Printed in the United States of America.
No part of this book may be used or reproduced, in any form or
by any means, or stored in a database or retrieval system, without
prior written permission of the publisher except in the case of
brief quotations embodied in critical articles and reviews. Making
copies of any part of this book for any purpose other than your
own personal use is a violation of United States copyright laws.
For information, address Que, 201 W. 103rd St., Indianapolis,
IN 46290. You may reach Que's direct sales line by calling 1-800-428-5331.

ISBN: 0-7897-0812-4

[bookmark: CREDITS]HTML conversion by :

 M/s. LeafWriters (India) Pvt. Ltd.

 Website : http://leaf.stpn.soft.net

 e-mail :
leafwriters@leaf.stpn.soft.net

This book is sold as is, without warranty of any kind,
either express or implied, respecting the contents of this book,
including but not limitied to implied warranties for the book's
quality, performance, merchantability, or fitness for any particular
purpose. Neither Que Corporation nor its dealers or distributors
shall be liable to the purchaser or any other person or entity
with respect to any liability, loss, or damage caused or alleged
to be caused directly or indirectly by this book.

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Que cannot
attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark
or service mark.

Screen reproductions in this book were created using Capture from
Mainstay, Camarillo, CA.

		President:		Roland Elgey

		Publisher		Joseph B. Wikert

		Publishing Manager
		Jim Minatel

		Editorial Services Director
		Elizabeth Keaffaber

		Managing Editor		Sandy Doell

		Acquisitions Manager
		Cheryl D. Willoughby
		Product Director
		Mark Cierzniak

		Production Editor
		Maureen A. Schneeberger

		Editors		Gill Kent, Kathy Simpson, Patrick Kanouse, Elizabeth A. Bruns,

		Product Marketing Manager
		Kim Margolius		Assistant Product Marketing Manager
		Christy M. Miller

		Strategic Marketing Manager
		Barry Pruett		Technical Editors		Jim Minatel, Tobin Anthony

		Technical Support Specialist
		Nadeem Muhammed
		Acquisitions Coordinator
		Jane K. Brownlow

		Software Relations Coordinator
		Patricia J. Brooks
		Editorial Assistant
		Andrea Duvall

		Book Designer		Kim Scott		Cover Designer
		Ruth Harvey

		Production Team		Marcia Brizendine, Jenny Earhart, Bryan Flores, Trey Frank, Amy Gornik, Daniel Harris, Damon Jordan, Bob LaRoche, Michelle Lee, Casey Price, Kaylene Riemen, Laura Robbins, Kelly Warner, Paul Wilson

		Indexer		Brad Herriman

Dedication

To Mom: In addition to everything else you've given me over the
years, thanks for the time, support, help, concern, cash, and,
perhaps most of all, your technical writing gene.

About the Author

Todd Stauffer has been writing nonstop about computers
since his graduation from Texas A&M University, where he studied
English, Management Information Systems, and entirely too much
golf. Since that time, he has worked as an advertising writer,
freelance magazine writer, and magazine editor-all in the computer
industry.

Todd is currently the Internet-issues columnist for Peak Computing
Magazine and host of the weekly Peak Computing Hour Radio
Show in Colorado. He has written a number of other books published
by Que including Using Your Mac, Using the Internet
with Your Mac, Easy AOL, Special Edition Using Netscape,
and Special Edition Using the Internet with Your Mac.

He does other, non-computer-related things, too-just in case you
were concerned.

Acknowledgments

As is generally the case, this book was only brought to fruition
by the dedication and hard word of a big chunk of the staff at
Que, without whom this project would just be a bunch of random,
poorly edited text characters in generic-looking Courier. Thanks
especially to Cheryl Willoughby, Mark Cierzniak, Maureen Schneeberger,
Jim Minatel, and all the copy editors who worked on this book.

I'd also like to thank the folks at Peak Computing Magazine
for being so understanding about deadlines, helping me make the
transition to Colorado living, and giving me enough money to keep
buying Campbell's soup for the duration of writing this book.
Editor-in-Chief Laura Austin-Eurich was especially helpful in
talking me down out of trees, and I appreciate General Manager
Dean Jacobus' willingness to let me sleep through his meetings.

Big thanks to Dad (Chris Stauffer) for buying me dinner and a
game of golf every once in a while to keep me sane. (Not to mention
helping me through the trauma of tax session.) And, finally, thanks
to all my friends back in Texas for calling every once in a while,
just to make sure I wasn't dead.

We'd Like to Hear from You!

As part of our continuing effort to produce books of the highest
possible quality, Que would like to hear your comments. To stay
competitive, we really want you, as a computer book reader
and user, to let us know what you like or dislike most about this
book or other Que products.

You can mail comments, ideas, or suggestions for improving future
editions to the address below, or send us a fax at (317) 581-4663.
For the online inclined, Macmillan Computer Publishing has a forum
on CompuServe (type GO QUEBOOKS at any prompt) through
which our staff and authors are available for questions and comments.
The address of our Internet site is http://www.mcp.com
(World Wide Web).

In addition to exploring our forum, please feel free to contact
me personally to discuss your opinions of this book: I'm mcierzniak@que.mcp.com
on the Internet, and 76245,476 on CompuServe.

Thanks in advance-your comments will help us to continue publishing
the best books available on computer topics in today's market.

Mark Cierzniak

Product Director

Que Corporation

201 W. 103rd Street

Indianapolis, Indiana 46290

USA

[bookmark: Introduction]Introduction

If you're ready to jump into the world of creating HTML pages,
you've found the right book-regardless of your previous experience
with programming or the World Wide Web. That's because HTML
by Example uses a "hands-on" approach to creating
Web pages that will make learning HTML a pleasure. Forget about
tired reference manuals or overly technical treatises that make
HTML actually seem difficult. It's not! If you've got a text editor
in DOS, Windows, OS/2, Mac, or a UNIX variant, the only other
tool you need is this book. Now you're ready to create your presence
on the Web.

[bookmark: WhatsthebyExampleAdvantage]What's
the by Example
Advantage?

There are two major reasons why learning HTML is easier when it's
by Example. First, HTML isn't a typical programming language-in
fact, it isn't a programming language at all. It's a "mark-up"
language that builds on very basic concepts that are all somewhat
related to one another. Learning by example, then, allows you
to start with the initial concepts and learn to build to make
complex Web pages come to life easily.

Second, with the included CD-ROM, HTML by Example gives
you a major headstart in Web creation. Why? Because if you see
an example that's similar to what you want to create, just copy
the example from the CD and alter it to suit your needs. It's
possible to have a Web page created within minutes of finding
a suitable example! Just copy and paste.

[bookmark: WhoShouldUseThisBook]Who
Should Use This Book?

Before you get to the point of actually creating HTML documents
(Web pages), you'll go through a little refresher course on the
Internet and the World Wide Web. So, even if you're not terribly
familiar with the Web, I'll try to get you there before throwing
any strange codes or address at you.

Essentially, all you need to use this book is a rudimentary grasp
of the Internet and Web, and a desire to create your own presence.
If you've just "heard" of the Web, or even if you've
been surfing for a while and want to know more about Web page
creation, you've found the right book.

Programmers and graphic artists will also find this book useful
for making the transition to the Web-although I should make the
point that Web design is not in any way as complicated or cerebral
as programming. For the basics (and even for the best looking
Web pages), no programming expertise is required. Later in this
book, you'll learn how to make your pages "cutting-edge"
with emerging tools like JavaScript. But even for that, programming
is not a prerequisite.

[bookmark: WhyShouldILearnHTML]Why
Should I Learn HTML?

The World Wide Web is easily the fastest growing part of the Internet,
and thousands of new sites are added daily. As business and commerce
begin to embrace the Web more fully, HTML skills are a wonderful
enhancement to any résumé.

Creatives like writers, designers, and artists should also be
learning more about the Web. The commercial art and advertising
worlds are already making this transition to the new medium, and
you should be getting yourself ready for it as well. A solid understanding
of HTML will take you a long way into the future of your craft.

By the same token, nearly any computer professional should have
some notion of how HTML works and why the Web is based on it.
But that doesn't mean it takes a scientist to create Web pages.
Office workers, editors, public relations specialists, salespeople,
real estate agents, financial advisors, and consultants of all
flavors should all have a Web presence, and can benefit from doing
it themselves.

And the Web is so diverse that it's impossible to categorize all
the reasons to learn HTML page creation. Home office pages, small
businesses online, family photo sessions, and even hobbyists are
all hanging their shingle on the Web-and finding new contacts,
comrades, and cohorts in the process. And perhaps the most important
reason to learn about HTML is to find out that it simply isn't
that difficult to master. This book will give you a wonderful
reason not to pay $150 an hour for Web services.

[bookmark: WhatToolsDoINeed]What
Tools Do I Need?

For the approach you're taking to Web creation, all you need is
a text editing program like Windows 95 Notepad, WordPad, the Mac's
SimpleText, and VI or Emacs on UNIX platforms. Any basic ASCII
text editor will work fine.

There are a number of HTML editing programs that are beginning
to appear, both in shareware and commercial versions, but you're
not going to start with them. (Some of the more popular of these
are discussed in the final chapters of this book.) The reasoning
is simple-even the most advanced HTML editors require an understanding
of HTML if you're going to create anything more than the most
rudimentary of pages. It's still an industry in its infancy, and
you're much better off if you know what you're doing.

Once you're through with this book (which shouldn't take long!)
and you've got a solid grasp of HTML, feel free to try out some
of the graphical HTML editing programs. They'll make creating
basic pages much easier-although you still have to fire up your
text editor to get some of the sophisticated design accomplished.

You'll also need a stand-alone (i.e., not part of an online service)
Web browser program or two for viewing and critiquing your documents.
If you don't have a Web browser program (like Netscape Navigator
or Microsoft Internet Explorer), some popular versions are available
on the included CD-ROM. You don't necessarily need an Internet
connection for most of this book, since you'll be dealing with
files that you create or copy from the CD-ROM.

[bookmark: HowThisBookWorks]How
This Book Works

Each chapter starts by explaining a particular concept, giving
examples in "snippets" of HTML markup as you go along.
Once you've got that concept under your belt, you'll be ready
to work with a full-blown example. You can either type in the
example or copy it from the CD-some of the examples will also
suggest that you modify the text to make it more suitable for
you personally. When you're done, you can simply view the document
in your Web browser, if appropriate.

The key to the organization of this book is simple: it builds.
You'll start out very simply, by going over Web concepts and creating
basic pages. From there, you'll learn the various "standards"
of HTML and how to decide which one is right for you. Then, you'll
work from that foundation to learn the latest in HTML and Web
developments, including all of the current codes for Netscape,
Internet Explorer, and HTML 3.0 level development. Finally, you'll
end with a look at virtual reality on the Web and do a little
programming in JavaScript.

You'll also notice that nearly every chapter includes review questions
and exercises to help you reinforce what you've learned. If you
gave up review questions in grammar school, that's fine. Just
skip to the next chapter. If you'd like to make sure you've covered
all the material, though, the "Summary" section will
help you know for sure that you're ready to move on.

[bookmark: OverviewofChapters]Overview
of Chapters

This books is divided into logical parts and chapters to help
you find the lessons that are most appropriate for your knowledge
level. What follows is a description of each part of the book,
including a look at each chapter.

[bookmark: PartIInternetWebandHTMLFundamen]Part I: Internet,
Web, and HTML Fundamentals

Chapter 1, "What is HTML?," introduces
you to the fundamentals of creating documents for the Web. Chapter 2,
"The World Wide Web and Web Servers," discusses the
different conventions used to addressing computers, servers, and
services on the Internet. Chapter 3, "How
Web Browsers Work," takes a look at how the typical Web browser
program reads HTML documents that you create, and what you need
to consider to create better pages.

Chapter 4, "HTML's Role on the Web,"
is concerned with the different standards for HTML, and it helps
you decide what's best to use on your pages. Chapter 5,
"What You Need for a Web Site," rounds out this introduction
with a discussion of the arrangements you need to make to make
your Web pages visible to the online world.

[bookmark: PartIICreatingBasicPageswithHTML]Part II: Creating
Basic Pages with HTML 2.0

This section discusses creating the basic Web page with HTML 2.0
standard commands. Chapter 6, "Creating
a Web Page and Entering Text," and Chapter 7,
"Changing and Customizing HTML Text," show you how to
get started with your Web document and emphasize regular text.
In Chapter 8, "Displaying Text in
Lists," you learn the various types of HTML list that can
be used to organize text in a more readable way.

Chapter 9, "Adding Graphics to Your
Web Pages," is your first look at adding basic images to
enhance your Web page presentation. Chapter 10,
"Hypertext and Creating Links," and Chapter 11,
"Using Links with Other HTML Tags," show you how to
get serious about your Web pages by adding clickable hypertext
links.

[bookmark: PartIIIInteractiveHTML]Part III: Interactive HTML

Here's where things really start to get fun. Still using only
HTML 2.0 elements (although these are not all supported by every
Web browser anymore), we take three chapters to discuss making
your Web site truly interactive. In Chapter 12,
"Clickable Image Maps and Graphical Interfaces," we
discuss creating images that move your user around the Web site.
Chapter 13, "HTML Forms," and
Chapter 14, "Form Design and Data
Gathering with CGI Scripts," shows you how to gather information
from your users, whether it's for statistical data, online ordering,
or just for fun.

[bookmark: PartIVPageLayoutandFormatting]Part IV: Page Layout
and Formatting

These chapters move you out of the HTML 2.0 standard and into
some of the more recent additions to HTML. Coverage includes HTML
3.0 level standards and HTML elements added by the popular browsers
Netscape Navigator and Microsoft Internet Explorer.

In the HTML 3.0 discussion, you get Chapter 15,
"Adding Tables to Your Documents," Chapter 16,
"Images, Multimedia Objects, and Background Graphics,"
and the exciting new standard for adding clickable images to any
Web page in Chapter 17, "Client-Side
Image Maps." Chapter 18, "Other
HTML 3.0 Proposals," is a catch-all chapter for some of the
HTML 3.0 commands you may be seeing in the near future.

Next up are the Netscape-specific commands. Although some of these
are slowly being adapted by other browsers, at the time of this
writing they aren't "official" standards, so we set
them off on their own. In Chapter 19,
"Netscape HTML," you learn about the appearance-oriented
additions that make Netscape pages standout from HTML 2.0. Chapter 20,
"Netscape Frames," shows you exactly how to use the
exciting new frames interface that's sweeping the Web.

Chapter 21, "Internet Explorer Extensions,"
takes a quick look at some of the additions offered by Microsoft's
entry in the browser wars. These commands are specific to Microsoft
and have yet to be incorporated into an official standard.

[bookmark: PartVInternetProgrammingandAdvance]Part V: Internet
Programming and Advanced Web Technologies

In this section of the book, you delve into some of the most cutting-edge
and exciting technologies to be introduced to the World Wide Web.
Chapter 22, "Using Java and JavaScript,"
and Chapter 23, "JavaScript Objects
and Functions," are an easy-to-follow look at the world of
JavaScript, showing you how to do your own programming in one
of the most advanced scripting languages available for Web developers.

Chapter 24, "Understanding VRML and
Creating VRML Objects," and Chapter 25,
"Creating VRML Worlds," show you how to use a standard
text editor to create 3D virtual reality worlds for use on your
Web pages. Chapter 26, "Adding Portable
Documents to Web Sites," introduces you to the concept of
portable documents and offers advice for creating your own "nearly-free"
portable documents for distributing on the Web.

[bookmark: PartVIHTMLEditorsandTools]Part VI: HTML Editors
and Tools

In this section, we discuss some of the more popular applications
for creating Web pages quickly and easily. As Web development
becomes more popular, the tools become more advanced. Chapter 27,
"Creating HTML Documents with Netscape Gold," introduces
you to the all-in-one solution to Web browsing and editing from
Netscape Corp. Chapter 28, "Using
Microsoft Internet Assistant," discusses Microsoft's powerful
(and free) HTML add-on for Microsoft Word. Chapter 29,
"HTML with Adobe PageMill for Macintosh," takes a look
at the tool that many feel may soon change the way you look at
HTML and the Web.

[bookmark: PartVIIHTMLExamples]Part VII: HTML Examples

This last part of the book has only one chapter, Chapter 30,
"HTML Examples," but it's a long one. Here, you'll take
a look at two completely different reasons to create a Web site:
personal and business. In each, you'll review some of the basic
and advanced Web concepts you've encountered throughout the book.
The best part is that all of these pages are on the included CD-ROM.
If you find a page that does something you want to add to your
Web site, then just copy it from the CD and alter it to suit your
needs!

[bookmark: ConventionsUsedinthisBook]Conventions
Used in this Book

This books uses the following typeface conventions:

		Typeface		Meaning

		Italic		Variables in "pseudocode" examples and HTML terms used the first time

		Bold		Text you type in, as well as URLs and addresses of Internet sites, newsgroups, mailing lists, and Web sites

		Computer type
		Commands, filenames, and HTML tags

		Note

		

Notes provide additional information related to a particular topic.

		Tip

		

Tips provide quick and helpful information to assist you along the way.

[bookmark: IconsUsedinthisBook]Icons
Used in this Book

Pseudocode is a special way of explaining a section of code by
using placeholders, set in italic. In this book, pseudocode usually
precedes a code example and is indicated by this icon.

[bookmark: TheOtherAdvantage]The
Other Advantage

In my experience writing computer-oriented books, I've found that
one advantage I can offer might be more valuable to many readers
than nearly any other. That advantage is my personal e-mail address.
I will take any question, concern, praise, or complaint you have
about this book, and its examples, errors, or anything else that
comes up. Write me at tstauffer@aol.com via the Internet
or TStauffer on the America Online service.

It is very important to me that you are satisfied with everything
you come across in this book. If you get through a chapter and
review questions and still have trouble with a concept, do not
hesitate to send me an e-mail and ask about it. I'll return your
e-mail as quickly as possible. I don't want you wasting time on
a concept that I've explained poorly or on an error (however impossible)
that I've made. So write before you lose too much time hitting
yourself over the head.

Also, I'll continue to post updates, errata, and anything else
that might be of interest on my personal Web site, currently located
at http://members.aol.com/tstauffer/. That address may
change in the future, but I'll do my best to leave a link to the
new address, if and when it changes. For now, at least, that page
on the Web will be a great place to stop by and check on HTML
by Example developments.

[image:][image:]

HTML By Example/index.html

HTML

 By

 Example

by Todd Stauffer

C O N T E N T S[bookmark: CONTENTS]

Introduction

		What's the by Example Advantage?

		Who Should Use This Book?

		Why Should I Learn HTML?

		What Tools Do I Need?

		How This Book Works

		Overview of Chapters
		Part I: Internet, Web, and HTML Fundamentals

		Part II: Creating Basic Pages with HTML 2.0

		Part III: Interactive HTML

		Part IV: Page Layout and Formatting

		Part V: Internet Programming and Advanced Web Technologies

		Part VI: HTML Editors and Tools

		Part VII: HTML Examples

		Conventions Used in this Book

		Icons Used in this Book

		The Other Advantage

		

[bookmark: OLE_LINK2]Part I Internet, Web, and HTML Fundamentals

Chapter 1 What is HTML?

		HTML at a Crossroads

		HTML is not a Programming Language

		A Short HTML History

		Marking Up Text

		Who Decides What HTML Is?
		The HTML Working Group

		The World Wide Web Consortium

		Individual Companies and HTML

		Additional Information on HTML Standards and Organizations

		Summary

		Review Questions

Chapter 2 The World Wide Web and Web Servers

		What's the World Wide Web?

		The Hypertext Concept: Web Links
		Example: Thinking in Hypertext

		The Web Page

		The Web Site

		Example: A Corporate Web Site

		Hypermedia: Text and Graphics on the Web
		Helper Applications

		Common Multimedia Formats

		Internet Services and Addresses
		Internet E-mail

		UseNet Newsgroups

		Gopher and WAIS

		FTP

		Summary

		Review Questions

		Review Exercises

Chapter 3 How Web Browsers Work

		Web Browser Applications
		NCSA Mosaic

		Netscape Navigator

		Microsoft Internet Explorer

		Lynx

		Uniform Resource Locators
		Example: The URL Advantage

		The Different Protocols for URLs

		Example: Accessing Other Internet Services with URLs

		How Web Browsers Access HTML Documents
		Example: Watching the Link

		What Can Be Sent on the Web?

		Binaries on the Web

		Everything is Downloaded

		Summary

		Review Questions

		Review Exercises

Chapter 4 HTML's Role on the Web

		Why Create Web Pages?

		Web Applications
		Example: Searching on the Web

		Advantages and Disadvantages of the Web
		Advantages

		Example: Travel Agent Web Site
		Disadvantages

		HTML and the Changing World Wide Web
		The Forced Evolution of HTML

		The Current State of HTML

		Deciding What Type of HTML To Use
		The HTML 2.0 Standard

		The HTML 3.0 Level Standards

		Netscape and Internet Explorer HTML

		Making the HTML Decision

		Summary

		Review Questions

		Review Exercises

Chapter 5 What You Need for a Web Site

		Finding a Web Server
		What is a Web Server?

		Speed of the Server

		Types of Internet Connections

		Dealing with an ISP
		Determining Costs

		What You Need To Know

		Organizing a Web Site
		Naming Your Files

		Example: Organizing a Site

		Updating Your Web Site

		Summary

		Review Questions

		Review Exercises

		

Part II Creating Basic Pages with HTML 2.0

Chapter 6 Creating a Web Page and Entering Text

		The Tools for Web Publishing

		Document Tags
		Example: Creating an HTML Template

		Example: Hello World

		Understanding Tags: Container and Empty Tags
		Container Tags

		Empty Tags

		Entering Paragraph Text on Your Web Page
		The
 Tag for Line Breaks

		The Comment Tag

		Example: Creating a Complete Web Page

		Summary

		Review Questions

		Review Exercises

Chapter 7 Changing and Customizing HTML Text

		Creating Headers and Headlines
		Example: A Topical Discussion

		Implicit and Explicit Text Emphasis
		Explicit Styles

		Implicit HTML Tags

		Example: Physical versus Logical

		Other Implicits: Programming, Quoting, and Citing
		Programmer's HTML Tags

		Quoting, Citing, Definitions, and Addresses

		Example: Using the <BLOCKQUOTE> and <ADDRESS> Tags

		Preformatted Text
		Example: Creating Your Own Layout with the <PRE> Tag

		Example: Using <PRE> for Spaces and Tables

		Summary

		Review Questions

		Review Exercises

Chapter 8 Displaying Text in Lists

		Using Lists in HTML

		Ordered and Unordered Lists
		Example: Formatting Within Lists

		Directories, Definitions, and Menus
		Directory and Menu Lists

		Definition Lists

		Example: HTML Within Lists

		Nesting Tags and Combining List Types
		Nesting Tags

		Lists Within Lists

		Combining List Types

		Example: Nesting Definition Lists

		Summary

		Review Questions

		Review Exercises

Chapter 9 Adding Graphics to Your Web Pages

		The Special Nature of Graphics on the Web
		The Size of Graphics Files

		Example: Watching Graphical Sites Download

		Picking Your Web Graphics File Type

		Creating and Manipulating Graphics
		Creating Graphics for the Web

		Example: Creating Graphics in Paint Shop Pro

		Manipulating Web Graphics

		Example: Creating Thumbnails with LView Pro

		Creating Transparent GIFs
		Creating Transparent GIFs in Transparency for the Mac

		Example: Creating Transparent GIFs in LView Pro

		Embedding Graphics in Web Pages
		Adding Graphics to Other HTML Tags

		The ALT Attribute

		The ALIGN Attribute

		Example: Adding Graphics to Your Web Site

		Summary

		Review Questions

		Review Exercises

Chapter 10 Hypertext and Creating Links

		Using the <A> Tag
		Section Links

		Example: A More Effective Definition List

		Using Relative URLs
		Adding the <BASE> Tag

		Example: A Hybrid-Style Web Site

		Creating Links to Other Internet Services
		Hyperlinks for E-Mail Messages

		Other Internet Services

		Other Links for the <HEAD> Tag
		The <LINK> Tag

		The <ISINDEX> Tag

		Summary

		Review Questions

		Review Exercises

Chapter 11 Using Links with Other HTML Tags

		Using Links with HTML Formatting Tags
		Emphasis Tags and Hyperlinks

		Example: Hyperlinks in Context

		Using Hypertext Links in HTML Lists

		Example: An HTML Table of Contents

		Creating Graphical Links
		Example: A Graphical, Hyperlinked Listing

		Example: A Clickable Graphic Menu Bar

		Example: Custom Controls

		Using Hypermedia Links

		Summary

		Review Questions

		Review Exercises

		

Part III Interactive HTML

Chapter 12 Clickable Image Maps and Graphical Interfaces

		Image Maps Defined
		Example: The Apple Web Site

		Understanding How Image Maps Work
		The Map Server Program

		The Map Definition File

		The Various Shapes of Hot Zones

		Defining Your Image map Hot Zones
		MapEdit for Microsoft Windows and X-Windows

		Example: MapEdit and a Simple Button Bar

		WebMap for Macintosh

		Adding Image Maps to Your Web Page
		The Image Map URL

		Example: Testing Your Link

		Image Map Design Tips

		Summary

		Review Questions]

		Review Exercises

Chapter 13 HTML Forms

		Using Forms and Form-Capable Browsers

		Creating the Form
		Example: Someone Else's Form

		Text Fields and Attributes
		Example: Web-based Feedback Form

		The <INPUT> Tag
		TEXT

		PASSWORD

		CHECKBOX

		RADIO

		HIDDEN

		RESET

		SUBMIT

		Example: A More Complete Form

		Creating Pop-Up and Scrolling Menus
		Using <SELECT>

		Allowing More than One Selection

		Example: Order Form

		Summary

		Review Questions

		Review Exercises

Chapter 14 Form Design and Data Gathering with CGI Scripts

		Form Design Issues

		Line Breaks, Paragraphs, and Horizontal Lines
		Line Breaks

		Horizontal Lines

		Paragraph Tags

		Example: Fix-A-Site

		Other Tags for Form Formatting
		Using the <PRE> Tag

		Using List Tags for Forms
		Example: Customer Service Revisited

		CGI-BIN Scripts and Dealing With Form Data
		Using CGI-BIN Scripts

		Receiving Form Data

		Your Script's Output

		Summary

		Review Questions

		Review Exercises

		

Part IV Adding Tables to Your Documents

Chapter 15 Adding Tables to Your Documents

		Creating a Table

		The <TABLE> Tag
		Example: Playing with Table Attributes

		Captions, Table Headers, and Table Data
		<CAPTION>

		Table Rows

		Table Data and Rows

		Summary

		Review Questions

		Review Exercises

Chapter 16 Images, Multimedia Objects, and Background
Graphics

		
More Control with
		
Example: Magazine-Style Presentation

		
Inserting Multimedia Objects
		
The <INSERT> Tag

		
<INSERT>'s Attributes

		
Using <PARAM> and with <INSERT>

		
Background Graphics
		
Example: The HTML 3.0 Enhanced Graphics Page

		
Summary

		
Review Questions

		
Review Exercises

Chapter 17 Client-Side Image Maps

		What's a Client-Side Image Map?

		Determining Your Hot Zones
		Example: Creating a Map Definition File

		Adding a Client-Side Map to Your Web Page
		The Tag

		The <MAP> Tag

		The <AREA> Tag

		Example: Creating a Client-Side Button Bar

		Total Image Maps
		Using Both Sides

		Adding Text Links

		The Clickable Image Fallback

		Example: A Complex, Complete Map

		Summary

		Review Questions

		Review Exercises

Chapter 18 Other HTML 3.0 Proposals

		HTML Math
		Math Tags

		Other Math Tags

		The Banner Element

		Document-Defined Style Sheets
		The <STYLE> Tag

		The CSS Style Sheet Definition

		Example: Incorporating a Style Sheet

		External Style Sheets and Other Style Sheet Tags
		The <LINK> Tag

		Style Overrides

		Divisions and the ALIGN Attribute

		Example: Styles and the <DIV> Tag

		Summary

		Review Questions

		Review Exercises

Chapter 19 Netscape HTML

		Should You Use Netscapisms?

		Centering, Blinking, and Background Tags
		Background and Foreground Colors

		Example: Netscape Colors and Alignment

		Manipulating Text with Netscape HTML
		<NOBR> and <WBR>

		The and <BASEFONT> Tags

		[bookmark: OLE_LINK5]Example: Putting Fonts in Their Place

		Netscape Attributes for HTML Tags
		The <HR> Tag

		HTML Lists

		The Tag

		Example: Netscape Attributes at Work

		Client-Pull Tags and Attributes

		Sumary

		Review Questions

		Review Exercises

Chapter 20 Netscape Frames

		The Idea Behind Netscape Frames

		Creating Frames
		The <FRAME> Tag

		Example: A Simple Frame Document

		Attributes for <FRAME>

		The <NOFRAMES> Tag

		Example: Frames and No Frames

		Targeting Frame Windows
		The NAME Attribute

		Targeting Frame Windows

		Example: A Reason to Use Frames

		Advanced Targeting
		<BASE> Targets

		"Magic" Targets

		Thoughts on Using Frames
		The Elegant Frame Interface

		Summary

		Review Questions

		Review Exercises

Chapter 21 Internet Explorer Extensions

		Backgrounds and Fonts
		<BGSOUND>

		Font Color and Typeface

		Example: A Study in Absurdity

		IE Extensions for Tables

		IE Extensions to
		DYNSRC and CONTROLS

		LOOP and START

		Summary

		Review Questions

		Review Exercises

		

Part V Internet Programming and Advanced Web Technologies

Chapter 22 Using Java and JavaScript

		Adding Java Applications to Your Web Pages
		The <APPLET> Tag

		The <INSERT> Tag

		Example: Adding Java Applets

		Creating JavaScript Programs
		The <SCRIPT> Tag

		Hiding Code

		Example: Hello World

		Functions
		Declaring Your Functions

		Calling a Function

		Example: Calling All Declarations

		Handling Events
		Returning Values

		Possible Events

		Example: Event Handling, Part One

		Example: Event Handling, Part Two

		Summary

		Review Questions

		Review Exercises

Chapter 23 JavaScript Objects and Functions

		The JavaScript Object Model
		Methods

		Creating New Objects

		Example: Creating New Objects and Methods

		JavaScript Statements
		Comparison Operators and Conditions

		Boolean Operators

		if…else

		Loop Statements

		BREAK and CONTINUE

		Increments and Decrements

		Examples: Looping and Conditions

		Built-in Objects
		The String Object

		Example: Talking Decimals

		The Math Object

		Example: Rounding for Dollars

		Thoughts on JavaScript

		Summary

		Review Questions

		Review Exercises

Chapter 24 Understanding VRML and Creating VRML Objects

		VRML Standards

		How VRML Works on the Web
		VRML Worlds as Hypermedia

		Servers for VRML

		VRML Concepts
		The Basic Page

		Coordinates and Distances

		Example One: Starting Out

		Nodes

		VRML Primitives
		The Sphere

		Cylinders and Cones

		The Cube

		AsciiText

		Example: Occupying the Same Space

		Moving Your Primitives Around
		translation

		rotation

		scaleFactor

		The Separator Node

		Example: Moving and Flipping

		Summary

		Review Questions

		Review Exercises

Chapter 25 Creating VRML Worlds

		Primitive Appearances
		The Material Node

		Example: Adding a Little Color

		The Texture2 Node

		Example: Covering Up Primitives

		Adding Hyperlinks in VRML
		Example: Linking in Your VRML World

		More Fun with Shapes
		More Nodes: Coordinate3 and IndexedFaceSet

		Example: Up on the House Top

		Instancing

		Example: A VRML Neighborhood

		More VRML

		Summary

		Review Questions

		Review Exercises

Chapter 26 Adding Portable Documents to Web Sites

		What Are Portable Documents?

		Adding PDFs To Your Web Site
		MIME Type

		Other Acrobatic Moves

		Other PDF Formats

		Creating Your Own PDFs
		Creating the Word Document

		Using Rich Text Format

		Example: Creating a Portable Word File

		Summary

		Review Questions

		Review Exercises

		

Part VI HTML Editors and Tools

Chapter 27 Creating HTML Documents with Netscape Gold

		Editing HTML With Netscape Gold
		Example: Checking Under the Hood

		Creating HTML List Items

		Changing List Types

		Creating Definition Lists

		Inserting
 and <HR>

		Hyperlinks, Images, and Head Elements
		Adding Hyperlinks

		Adding Images

		Editing the Head

		Example: Putting it All Together

		Summary

		Review Questions

		Review Exercises

Chapter 28 Using Microsoft Internet Assistant

		Basic Markup in Internet Assistant
		HTML Lists

		Definition Lists

		Saving Your HTML Document

		Example: Simple Markup With Internet Assistant

		Links, Images, and Head Elements
		Hypertext Links

		Bookmark Links

		Inserting an Image

		Editing <HEAD> Elements

		Example: Finishing the Page

		Adding Form Fields
		Example: A Simple Form

		Summary

		Review Questions

		Review Exercises

Chapter 29 HTML with Adobe PageMill for Macintosh

		Basic Markup in PageMill
		HTML Lists

		Definition Lists

		Inserting <HR>

		Links, Images, and Special HTML
		Adding Links

		Adding Images

		Manipulating Images

		Transparency and Client-Side Maps

		Entering Unsupported HTML

		Example: The Basic Page in PageMill

		Creating Forms
		Laying Out the Form

		Document Info

		Summary

		Review Questions

		Review Exercises

		

Part VII HTML Examples

Chapter 30 HTML Examples

		Back to Basics: Basic HTML 2.0 Pages
		Example: The Personal Index Page

		Example: The Personal Biography

		Example: Simple Business Pages

		Example: John's Resume

		BigCorp's Client-Side Site
		Example: The Front Door

		Example: The Graphical Index

		Example: BigCorp's About Page

		Example: Using Frames

		Example: JavaScript and Forms

		Example: FTP and HTML

		Example: The Help Page

Appendix Answers
to Review Questions

		Chapter 1

		Chapter 2

		Chapter 3

		Chapter 4

		Chapter 5

		Chapter 6

		Chapter 7

		Chapter 8

		Chapter 9

		Chapter 10

		Chapter 11

		Chapter 12

		Chapter 13

		Chapter 14

		Chapter 15

		Chapter 16

		Chapter 17

		Chapter 18

		Chapter 19

		Chapter 20

		Chapter 21

		Chapter 22

		Chapter 23

		Chapter 24

		Chapter 25

		Chapter 26

		Chapter 27

		Chapter 28

		Chapter 29

Credits

© 1996 by Que‚
Corporation

All rights reserved. Printed in the United States of America.
No part of this book may be used or reproduced, in any form or
by any means, or stored in a database or retrieval system, without
prior written permission of the publisher except in the case of
brief quotations embodied in critical articles and reviews. Making
copies of any part of this book for any purpose other than your
own personal use is a violation of United States copyright laws.
For information, address Que, 201 W. 103rd St., Indianapolis,
IN 46290. You may reach Que's direct sales line by calling 1-800-428-5331.

ISBN: 0-7897-0812-4

[bookmark: CREDITS]HTML conversion by :

 M/s. LeafWriters (India) Pvt. Ltd.

 Website : http://leaf.stpn.soft.net

 e-mail :
leafwriters@leaf.stpn.soft.net

This book is sold as is, without warranty of any kind,
either express or implied, respecting the contents of this book,
including but not limitied to implied warranties for the book's
quality, performance, merchantability, or fitness for any particular
purpose. Neither Que Corporation nor its dealers or distributors
shall be liable to the purchaser or any other person or entity
with respect to any liability, loss, or damage caused or alleged
to be caused directly or indirectly by this book.

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Que cannot
attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark
or service mark.

Screen reproductions in this book were created using Capture from
Mainstay, Camarillo, CA.

		President:		Roland Elgey

		Publisher		Joseph B. Wikert

		Publishing Manager
		Jim Minatel

		Editorial Services Director
		Elizabeth Keaffaber

		Managing Editor		Sandy Doell

		Acquisitions Manager
		Cheryl D. Willoughby
		Product Director
		Mark Cierzniak

		Production Editor
		Maureen A. Schneeberger

		Editors		Gill Kent, Kathy Simpson, Patrick Kanouse, Elizabeth A. Bruns,

		Product Marketing Manager
		Kim Margolius		Assistant Product Marketing Manager
		Christy M. Miller

		Strategic Marketing Manager
		Barry Pruett		Technical Editors		Jim Minatel, Tobin Anthony

		Technical Support Specialist
		Nadeem Muhammed
		Acquisitions Coordinator
		Jane K. Brownlow

		Software Relations Coordinator
		Patricia J. Brooks
		Editorial Assistant
		Andrea Duvall

		Book Designer		Kim Scott		Cover Designer
		Ruth Harvey

		Production Team		Marcia Brizendine, Jenny Earhart, Bryan Flores, Trey Frank, Amy Gornik, Daniel Harris, Damon Jordan, Bob LaRoche, Michelle Lee, Casey Price, Kaylene Riemen, Laura Robbins, Kelly Warner, Paul Wilson

		Indexer		Brad Herriman

Dedication

To Mom: In addition to everything else you've given me over the
years, thanks for the time, support, help, concern, cash, and,
perhaps most of all, your technical writing gene.

About the Author

Todd Stauffer has been writing nonstop about computers
since his graduation from Texas A&M University, where he studied
English, Management Information Systems, and entirely too much
golf. Since that time, he has worked as an advertising writer,
freelance magazine writer, and magazine editor-all in the computer
industry.

Todd is currently the Internet-issues columnist for Peak Computing
Magazine and host of the weekly Peak Computing Hour Radio
Show in Colorado. He has written a number of other books published
by Que including Using Your Mac, Using the Internet
with Your Mac, Easy AOL, Special Edition Using Netscape,
and Special Edition Using the Internet with Your Mac.

He does other, non-computer-related things, too-just in case you
were concerned.

Acknowledgments

As is generally the case, this book was only brought to fruition
by the dedication and hard word of a big chunk of the staff at
Que, without whom this project would just be a bunch of random,
poorly edited text characters in generic-looking Courier. Thanks
especially to Cheryl Willoughby, Mark Cierzniak, Maureen Schneeberger,
Jim Minatel, and all the copy editors who worked on this book.

I'd also like to thank the folks at Peak Computing Magazine
for being so understanding about deadlines, helping me make the
transition to Colorado living, and giving me enough money to keep
buying Campbell's soup for the duration of writing this book.
Editor-in-Chief Laura Austin-Eurich was especially helpful in
talking me down out of trees, and I appreciate General Manager
Dean Jacobus' willingness to let me sleep through his meetings.

Big thanks to Dad (Chris Stauffer) for buying me dinner and a
game of golf every once in a while to keep me sane. (Not to mention
helping me through the trauma of tax session.) And, finally, thanks
to all my friends back in Texas for calling every once in a while,
just to make sure I wasn't dead.

We'd Like to Hear from You!

As part of our continuing effort to produce books of the highest
possible quality, Que would like to hear your comments. To stay
competitive, we really want you, as a computer book reader
and user, to let us know what you like or dislike most about this
book or other Que products.

You can mail comments, ideas, or suggestions for improving future
editions to the address below, or send us a fax at (317) 581-4663.
For the online inclined, Macmillan Computer Publishing has a forum
on CompuServe (type GO QUEBOOKS at any prompt) through
which our staff and authors are available for questions and comments.
The address of our Internet site is http://www.mcp.com
(World Wide Web).

In addition to exploring our forum, please feel free to contact
me personally to discuss your opinions of this book: I'm mcierzniak@que.mcp.com
on the Internet, and 76245,476 on CompuServe.

Thanks in advance-your comments will help us to continue publishing
the best books available on computer topics in today's market.

Mark Cierzniak

Product Director

Que Corporation

201 W. 103rd Street

Indianapolis, Indiana 46290

USA

[bookmark: Introduction]Introduction

If you're ready to jump into the world of creating HTML pages,
you've found the right book-regardless of your previous experience
with programming or the World Wide Web. That's because HTML
by Example uses a "hands-on" approach to creating
Web pages that will make learning HTML a pleasure. Forget about
tired reference manuals or overly technical treatises that make
HTML actually seem difficult. It's not! If you've got a text editor
in DOS, Windows, OS/2, Mac, or a UNIX variant, the only other
tool you need is this book. Now you're ready to create your presence
on the Web.

[bookmark: WhatsthebyExampleAdvantage]What's
the by Example
Advantage?

There are two major reasons why learning HTML is easier when it's
by Example. First, HTML isn't a typical programming language-in
fact, it isn't a programming language at all. It's a "mark-up"
language that builds on very basic concepts that are all somewhat
related to one another. Learning by example, then, allows you
to start with the initial concepts and learn to build to make
complex Web pages come to life easily.

Second, with the included CD-ROM, HTML by Example gives
you a major headstart in Web creation. Why? Because if you see
an example that's similar to what you want to create, just copy
the example from the CD and alter it to suit your needs. It's
possible to have a Web page created within minutes of finding
a suitable example! Just copy and paste.

[bookmark: WhoShouldUseThisBook]Who
Should Use This Book?

Before you get to the point of actually creating HTML documents
(Web pages), you'll go through a little refresher course on the
Internet and the World Wide Web. So, even if you're not terribly
familiar with the Web, I'll try to get you there before throwing
any strange codes or address at you.

Essentially, all you need to use this book is a rudimentary grasp
of the Internet and Web, and a desire to create your own presence.
If you've just "heard" of the Web, or even if you've
been surfing for a while and want to know more about Web page
creation, you've found the right book.

Programmers and graphic artists will also find this book useful
for making the transition to the Web-although I should make the
point that Web design is not in any way as complicated or cerebral
as programming. For the basics (and even for the best looking
Web pages), no programming expertise is required. Later in this
book, you'll learn how to make your pages "cutting-edge"
with emerging tools like JavaScript. But even for that, programming
is not a prerequisite.

[bookmark: WhyShouldILearnHTML]Why
Should I Learn HTML?

The World Wide Web is easily the fastest growing part of the Internet,
and thousands of new sites are added daily. As business and commerce
begin to embrace the Web more fully, HTML skills are a wonderful
enhancement to any résumé.

Creatives like writers, designers, and artists should also be
learning more about the Web. The commercial art and advertising
worlds are already making this transition to the new medium, and
you should be getting yourself ready for it as well. A solid understanding
of HTML will take you a long way into the future of your craft.

By the same token, nearly any computer professional should have
some notion of how HTML works and why the Web is based on it.
But that doesn't mean it takes a scientist to create Web pages.
Office workers, editors, public relations specialists, salespeople,
real estate agents, financial advisors, and consultants of all
flavors should all have a Web presence, and can benefit from doing
it themselves.

And the Web is so diverse that it's impossible to categorize all
the reasons to learn HTML page creation. Home office pages, small
businesses online, family photo sessions, and even hobbyists are
all hanging their shingle on the Web-and finding new contacts,
comrades, and cohorts in the process. And perhaps the most important
reason to learn about HTML is to find out that it simply isn't
that difficult to master. This book will give you a wonderful
reason not to pay $150 an hour for Web services.

[bookmark: WhatToolsDoINeed]What
Tools Do I Need?

For the approach you're taking to Web creation, all you need is
a text editing program like Windows 95 Notepad, WordPad, the Mac's
SimpleText, and VI or Emacs on UNIX platforms. Any basic ASCII
text editor will work fine.

There are a number of HTML editing programs that are beginning
to appear, both in shareware and commercial versions, but you're
not going to start with them. (Some of the more popular of these
are discussed in the final chapters of this book.) The reasoning
is simple-even the most advanced HTML editors require an understanding
of HTML if you're going to create anything more than the most
rudimentary of pages. It's still an industry in its infancy, and
you're much better off if you know what you're doing.

Once you're through with this book (which shouldn't take long!)
and you've got a solid grasp of HTML, feel free to try out some
of the graphical HTML editing programs. They'll make creating
basic pages much easier-although you still have to fire up your
text editor to get some of the sophisticated design accomplished.

You'll also need a stand-alone (i.e., not part of an online service)
Web browser program or two for viewing and critiquing your documents.
If you don't have a Web browser program (like Netscape Navigator
or Microsoft Internet Explorer), some popular versions are available
on the included CD-ROM. You don't necessarily need an Internet
connection for most of this book, since you'll be dealing with
files that you create or copy from the CD-ROM.

[bookmark: HowThisBookWorks]How
This Book Works

Each chapter starts by explaining a particular concept, giving
examples in "snippets" of HTML markup as you go along.
Once you've got that concept under your belt, you'll be ready
to work with a full-blown example. You can either type in the
example or copy it from the CD-some of the examples will also
suggest that you modify the text to make it more suitable for
you personally. When you're done, you can simply view the document
in your Web browser, if appropriate.

The key to the organization of this book is simple: it builds.
You'll start out very simply, by going over Web concepts and creating
basic pages. From there, you'll learn the various "standards"
of HTML and how to decide which one is right for you. Then, you'll
work from that foundation to learn the latest in HTML and Web
developments, including all of the current codes for Netscape,
Internet Explorer, and HTML 3.0 level development. Finally, you'll
end with a look at virtual reality on the Web and do a little
programming in JavaScript.

You'll also notice that nearly every chapter includes review questions
and exercises to help you reinforce what you've learned. If you
gave up review questions in grammar school, that's fine. Just
skip to the next chapter. If you'd like to make sure you've covered
all the material, though, the "Summary" section will
help you know for sure that you're ready to move on.

[bookmark: OverviewofChapters]Overview
of Chapters

This books is divided into logical parts and chapters to help
you find the lessons that are most appropriate for your knowledge
level. What follows is a description of each part of the book,
including a look at each chapter.

[bookmark: PartIInternetWebandHTMLFundamen]Part I: Internet,
Web, and HTML Fundamentals

Chapter 1, "What is HTML?," introduces
you to the fundamentals of creating documents for the Web. Chapter 2,
"The World Wide Web and Web Servers," discusses the
different conventions used to addressing computers, servers, and
services on the Internet. Chapter 3, "How
Web Browsers Work," takes a look at how the typical Web browser
program reads HTML documents that you create, and what you need
to consider to create better pages.

Chapter 4, "HTML's Role on the Web,"
is concerned with the different standards for HTML, and it helps
you decide what's best to use on your pages. Chapter 5,
"What You Need for a Web Site," rounds out this introduction
with a discussion of the arrangements you need to make to make
your Web pages visible to the online world.

[bookmark: PartIICreatingBasicPageswithHTML]Part II: Creating
Basic Pages with HTML 2.0

This section discusses creating the basic Web page with HTML 2.0
standard commands. Chapter 6, "Creating
a Web Page and Entering Text," and Chapter 7,
"Changing and Customizing HTML Text," show you how to
get started with your Web document and emphasize regular text.
In Chapter 8, "Displaying Text in
Lists," you learn the various types of HTML list that can
be used to organize text in a more readable way.

Chapter 9, "Adding Graphics to Your
Web Pages," is your first look at adding basic images to
enhance your Web page presentation. Chapter 10,
"Hypertext and Creating Links," and Chapter 11,
"Using Links with Other HTML Tags," show you how to
get serious about your Web pages by adding clickable hypertext
links.

[bookmark: PartIIIInteractiveHTML]Part III: Interactive HTML

Here's where things really start to get fun. Still using only
HTML 2.0 elements (although these are not all supported by every
Web browser anymore), we take three chapters to discuss making
your Web site truly interactive. In Chapter 12,
"Clickable Image Maps and Graphical Interfaces," we
discuss creating images that move your user around the Web site.
Chapter 13, "HTML Forms," and
Chapter 14, "Form Design and Data
Gathering with CGI Scripts," shows you how to gather information
from your users, whether it's for statistical data, online ordering,
or just for fun.

[bookmark: PartIVPageLayoutandFormatting]Part IV: Page Layout
and Formatting

These chapters move you out of the HTML 2.0 standard and into
some of the more recent additions to HTML. Coverage includes HTML
3.0 level standards and HTML elements added by the popular browsers
Netscape Navigator and Microsoft Internet Explorer.

In the HTML 3.0 discussion, you get Chapter 15,
"Adding Tables to Your Documents," Chapter 16,
"Images, Multimedia Objects, and Background Graphics,"
and the exciting new standard for adding clickable images to any
Web page in Chapter 17, "Client-Side
Image Maps." Chapter 18, "Other
HTML 3.0 Proposals," is a catch-all chapter for some of the
HTML 3.0 commands you may be seeing in the near future.

Next up are the Netscape-specific commands. Although some of these
are slowly being adapted by other browsers, at the time of this
writing they aren't "official" standards, so we set
them off on their own. In Chapter 19,
"Netscape HTML," you learn about the appearance-oriented
additions that make Netscape pages standout from HTML 2.0. Chapter 20,
"Netscape Frames," shows you exactly how to use the
exciting new frames interface that's sweeping the Web.

Chapter 21, "Internet Explorer Extensions,"
takes a quick look at some of the additions offered by Microsoft's
entry in the browser wars. These commands are specific to Microsoft
and have yet to be incorporated into an official standard.

[bookmark: PartVInternetProgrammingandAdvance]Part V: Internet
Programming and Advanced Web Technologies

In this section of the book, you delve into some of the most cutting-edge
and exciting technologies to be introduced to the World Wide Web.
Chapter 22, "Using Java and JavaScript,"
and Chapter 23, "JavaScript Objects
and Functions," are an easy-to-follow look at the world of
JavaScript, showing you how to do your own programming in one
of the most advanced scripting languages available for Web developers.

Chapter 24, "Understanding VRML and
Creating VRML Objects," and Chapter 25,
"Creating VRML Worlds," show you how to use a standard
text editor to create 3D virtual reality worlds for use on your
Web pages. Chapter 26, "Adding Portable
Documents to Web Sites," introduces you to the concept of
portable documents and offers advice for creating your own "nearly-free"
portable documents for distributing on the Web.

[bookmark: PartVIHTMLEditorsandTools]Part VI: HTML Editors
and Tools

In this section, we discuss some of the more popular applications
for creating Web pages quickly and easily. As Web development
becomes more popular, the tools become more advanced. Chapter 27,
"Creating HTML Documents with Netscape Gold," introduces
you to the all-in-one solution to Web browsing and editing from
Netscape Corp. Chapter 28, "Using
Microsoft Internet Assistant," discusses Microsoft's powerful
(and free) HTML add-on for Microsoft Word. Chapter 29,
"HTML with Adobe PageMill for Macintosh," takes a look
at the tool that many feel may soon change the way you look at
HTML and the Web.

[bookmark: PartVIIHTMLExamples]Part VII: HTML Examples

This last part of the book has only one chapter, Chapter 30,
"HTML Examples," but it's a long one. Here, you'll take
a look at two completely different reasons to create a Web site:
personal and business. In each, you'll review some of the basic
and advanced Web concepts you've encountered throughout the book.
The best part is that all of these pages are on the included CD-ROM.
If you find a page that does something you want to add to your
Web site, then just copy it from the CD and alter it to suit your
needs!

[bookmark: ConventionsUsedinthisBook]Conventions
Used in this Book

This books uses the following typeface conventions:

		Typeface		Meaning

		Italic		Variables in "pseudocode" examples and HTML terms used the first time

		Bold		Text you type in, as well as URLs and addresses of Internet sites, newsgroups, mailing lists, and Web sites

		Computer type
		Commands, filenames, and HTML tags

		Note

		

Notes provide additional information related to a particular topic.

		Tip

		

Tips provide quick and helpful information to assist you along the way.

[bookmark: IconsUsedinthisBook]Icons
Used in this Book

Pseudocode is a special way of explaining a section of code by
using placeholders, set in italic. In this book, pseudocode usually
precedes a code example and is indicated by this icon.

[bookmark: TheOtherAdvantage]The
Other Advantage

In my experience writing computer-oriented books, I've found that
one advantage I can offer might be more valuable to many readers
than nearly any other. That advantage is my personal e-mail address.
I will take any question, concern, praise, or complaint you have
about this book, and its examples, errors, or anything else that
comes up. Write me at tstauffer@aol.com via the Internet
or TStauffer on the America Online service.

It is very important to me that you are satisfied with everything
you come across in this book. If you get through a chapter and
review questions and still have trouble with a concept, do not
hesitate to send me an e-mail and ask about it. I'll return your
e-mail as quickly as possible. I don't want you wasting time on
a concept that I've explained poorly or on an error (however impossible)
that I've made. So write before you lose too much time hitting
yourself over the head.

Also, I'll continue to post updates, errata, and anything else
that might be of interest on my personal Web site, currently located
at http://members.aol.com/tstauffer/. That address may
change in the future, but I'll do my best to leave a link to the
new address, if and when it changes. For now, at least, that page
on the Web will be a great place to stop by and check on HTML
by Example developments.

[image:][image:]

HTML By Example/nc.gif

HTML By Example/pc.gif

HTML By Example/Thumbs.db

