

Getting Started with ColdFusion MX

Building a Database Query Application with

Server-Side ActionScript

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 2

Table of Contents

Introduction... 3

The Scenario... 3

Installation Requirements..4

Server-Side ActionScript ..5

Setting up Your Server-Side ActionScript Files ...5

Creating Your First Server-Side ActionScript File ... 6

On the Client-Side.. 8

Writing the Client-Side ActionScript Code ... 10

Writing an Initialization Function ..11

Creating Classes... 14

Writing Change Handlers ...16

Wrapping It Up ..17

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 3

Introduction
This tutorial is designed to show you how to build a Macromedia Flash application that
integrates with server-side functionality built with ColdFusion MX. Before you get
intimidated by the prospect of having to learn a new language, you will be pleased to
know that ColdFusion MX allows Flash developers to write server-side code in a
language they already know: ActionScript.

Server-side ActionScript to be precise. Server-side ActionScript uses the same basic
syntax that you are used to in Flash, but rather than executing on the client inside of the
Flash Player, it executes on the ColdFusion MX server — seamlessly receiving arguments
from your Flash client as well as returning data structures, all without you having to write
code any more complicated than a simple ActionScript function.

The Scenario
You work for the National Institute of Park and Recreation Services designing, building,
and maintaining their extensive, rich, and interactive web presence. Your web site is
attracting a great deal of attention, and every day your office receives more and more
calls from people trying to find national parks and wildlife preserves near their homes or
vacation spots. Any organization with the words “National Institute” in it name has to
watch its costs. The most recent concern is the expense of maintaining an 800 number
and paying people to monitor it. Being the web guru that you are, your natural instinct is
to move the information online.

The plan seems sound enough, and after being promised raises on top of promotions if
you can pull it off, you settle down to figure it out. Clearly, you want to maintain the rich
and interactive tradition of your web site, so there is no question that the interface will be
built in Macromedia Flash. It doesn’t take you long to realize that designing the interface
is the easy part. Getting at the park data is what has you worried. The idea of hard-
coding information about the nearly 400 parks in the company Microsoft Access
database – and then having to maintain that list – immediately strikes you as absurd.
Fortunately, you remember reading a tutorial on Macromedia’s web site that described
how easy it is to get data from a database into your Flash movies using a few simple
Server-side ActionScript functions.

Your first order of business is to create a fairly simple proof of concept. Thanks to the UI
components available in Flash MX, throwing together a working mock-up won’t take long
at all. You decide that the user will be presented a list of states in a dynamically built
ComboBox (by dynamically built, I mean the items in the ComboBox will be built from a
list of states in the database). When the user selects a state, the names of all the parks in
that state will appear in a ListBox below the ComboBox of states. Then, when a user
selects a specific park name from the ListBox, a few details about that park will appear
below that. You imagine an unfinished proof of concept will look something like this:

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 4

Installation Requirements
To get started, you must have the following Macromedia products installed:

� Macromedia ColdFusion MX Server

� Macromedia Flash MX

� Macromedia Flash Remoting Components

� Macromedia Flash Player 6

Trial versions of each of these products can be downloaded from the Macromedia web
site (http://macromedia.com/downloads).

After Macromedia Flash MX is installed, download and install the Macromedia Flash
Remoting Components. These are the files you need in order for Flash to be able to
connect to your server. Don’t worry – Flash won’t appear any different next time you open
it after installing the Flash Remoting Components. You will just have access to a few
additional ActionScript objects and some documentation that wasn’t there before.

You can install ColdFusion MX on your local machine or on another machine on your
network. Follow the instructions provided to ensure your copy is configured correctly. It
can be installed with the built-in web server or it can be configured to run with 3rd party
web servers like IIS and Apache. The code in this tutorial assumes that you have
configured ColdFusion MX to use the built-in web server. The ColdFusion MX built-in
web server listens on port 8500, so requests should look like this:

http://localhost:8500/

If you configure ColdFusion MX to use a third-party web server, it will be configured to
listen on a different port. All the code in this tutorial will still work, but where you see the
port 8500, substitute the appropriate port number for your server.

What
You
Learned

The Flash Remoting Components allow the Macromedia Flash Player to
connect to ColdFusion MX. After installing them, you will have access to
new ActionScript objects that you will use to work with Flash Remoting.

As explained previously, all of the park data in our application will be coming from a
database. This tutorial uses “exampleapps,” a Microsoft Access database that comes
with ColdFusion MX. Once the server is installed, you are ready to start writing code.
Even the data source comes pre-configured.

In ColdFusion MX, a data source is a unique name that represents a set of database
configuration parameters. Data sources allow you to specify all your database
configuration parameters once (using the ColdFusion Administrator). Then, wherever you
use the database, you simply call it by its data source name. Depending on the type of
database you are configuring, these parameters might include the server the database is
running on, the port the database server is listening on, the name of the database or
database file, and the username and password required to interact with it. You might
want to take a moment to explore the web-based ColdFusion Administrator to get a
better understanding of how data sources work.

To explore the ColdFusion MX Administration, open your browser and go to the following
URL: http://localhost:8500/CFIDE/administrator/

If you are not running ColdFusion on your local machine, substitute “localhost:8500” in
the URL above for the server on which ColdFusion MX is installed.

 2002 Macromedia Inc. All Rights Reserved

http://localhost:81008500/
http://localhost:8500/CFIDE/administrator/

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 5

You will be presented with a screen that asks you to provide the administrator password.
You were asked to provide this during the installation process. If you did not install and
configure the ColdFusion server yourself, ask your system administrator for the password.

Once you log in, you will see the Administrator’s main menu. In the left-hand frame, under
the “Data & Services” section, click on the “Data Sources” link. You should see the
following three data sources already configured:

� cfsnippets

� CompanyInfo

� exampleapps

This screen allows you or your system administrator to view, add, edit, delete, and verify
ColdFusion data sources. If you wanted to add your own database as a data source, this is
the area where you would do so.

What
You
Learned

A data source is a unique name that represents a set of database
configuration parameters. Using data sources allows you to keep all your
database configuration parameters in one central location.

Server-Side ActionScript
As mentioned previously, Server-side ActionScript is very much like the client-side
version, except that it executes on the server instead of on the client. The advantage of
executing ActionScript on the server is that it gives your ActionScript code access to
server-related resources, like databases. In this section, we will write four Server-side
ActionScript functions. Three of these retrieve information from the exampleapps
database. Once these are in place, we will then write client-side ActionScript that calls
these functions to get the data from the server and deliver it to your Flash application.

Setting up Your Server-Side ActionScript Files
Server-side ActionScript resides in files with an .asr extension (ActionScript remote).
They can reside in any directory underneath the wwwroot directory of your server. For
this tutorial, you can either use the ParkQuery.asr file from the zip file, or you can follow

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 6

the tutorial and write your own by retyping the code. The ParkQuery.asr file should be in
the following directory:

wwwroot/com/macromedia/tutorial/

This may at first seem like an odd choice for directory names, however it actually makes
perfect sense. Just like using your social security number as a tax id or a driver’s license
number guarantees that the numbers will be unique, using your domain name as part of
your directory structure guarantees that you will never have a file overwrite another file by
the same name written by another party. Let’s say, for instance, that you put all your
Server-side ActionScript files in wwwroot/ssas. If you already had a file called
ParkQuery.asr, you would run into a naming conflict if you tried to copy my ParkQuery.asr
file into the same directory. Using domain names as directory structures will prevent this
type of situation by keeping your namespaces safe, not to mention the fact that it will keep
your code better organized. This a very common technique derived primarily from
common coding practices in Java and Perl.

What
You
Learned

Keep your .asr files in directories with unique names. If you own a domain
name, use it as a way to build a unique directory structure.

Creating Your First Server-Side ActionScript File
Go ahead and create a directory called “com” in the wwwroot directory of your server.
Inside of the “com” directory, create a directory called “macromedia”, and inside of
“macromedia”, create a directory called “tutorial”. Your directory structure should look
like this:

Create a file in the tutorial directory called “ParkQuery.asr” or copy the one from the zip
file. Although you can use any text editor to create Server-side ActionScript files,
Macromedia Dreamweaver MX includes integrated ActionScript support. You can
download a trial version of Dreamweaver MX from Macromedia’s web site at
http://www.macromedia.com/downloads.

Remember, we are going to be creating four Server-side ActionScript functions. Three
will contain database queries we will need in our application (one to build the ComboBox
of states, one to retrieve the list of parks in a particular state, and one last query to retrieve
a few details about a selected park), and the other will escape strings before they are
passed into an SQL statement. We’ll cover this last concept in detail when it comes time
to write the function.

Before we write any actual functions, type the following at the top of ParkQuery.asr:

var queryData = new Object();
queryData.datasource = "exampleapps";

The first thing we are doing here is creating a global variable called queryData (“global”,
means that the variable is available within any function in the file since the variable
declaration itself occurs outside of a function) and assigning it a single property called
datasource. The datasource property corresponds to the data source already set up in

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 7

your ColdFusion MX server. As you will see, we will end up passing this object into
another function which will be responsible for running the query and returning a
RecordSet object. Let’s go ahead and write the getStates function. getStates is
responsible for returning a RecordSet of states queried from the tblParks table.

Below your variable declarations, add the following:

function getStates() {
 queryData.sql = "SELECT DISTINCT state FROM tblParks WHERE state IS NOT null";
 var states = CF.query(queryData);
 return states;
}

The first thing we do inside the getStates function is add another property to queryData
called sql. This is the actual query we will run to retrieve the list of states. It is defined
inside the function as opposed to outside the function because it will be different for each
query. The datasource property is defined globally because it is the same for each query.
In fact, as we write the other two functions, you will see how each starts out by re-defining
the sql property of the queryData object so that the query will return the data specific to
that particular function.

The rest of the code in our getStates function calls one of the built-in server-side
ActionScript functions that are part of ColdFusion MX. The CF object is the ColdFusion
server, and the query function is the function you use to execute a query against a
database. The queryData object tells the server which data source to access and what
query to execute. After ColdFusion executes the query, it returns a RecordSet containing
the data we requested. Our function then assigns the resulting RecordSet object to the
states variable, which is what gets returned by the function. At this point, the function’s
work is done.

What
You
Learned

Now you know how to create a Server-side ActionScript file with a
function that can actually query data from a database and return it to a
Flash movie.

You may be wondering where the RecordSet was returned to. We will get into that in
more detail when we discuss the client-side ActionScript piece of this application, but for
the overly curious, the RecordSet object is being serialized (represented in a way that can
be sent over a network), and sent to Macromedia Flash, which will de-serialize the
RecordSet and use it to create a dynamic ComboBox.

The getParks and getParkDetails functions are not much different than getStates;
however, there is one thing fundamentally different. As you add the getParks function
below getStates, see if you can spot the difference.

Add the following to the ParkQuery.asr file:

function getParks(state) {
 queryData.sql = "SELECT parkname FROM tblParks WHERE state='" +
 state + "' AND parkname IS NOT null";
 var parks = CF.query(queryData);
 return parks;
}

If you noticed that that the sql property of the queryData object is defined differently, you
are correct. The biggest difference between getParks and getStates is the fact that
getParks takes an argument called state. As you can see, Server-side ActionScript

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 8

functions can accept arguments just like client-side ActionScript functions. This makes
them more dynamic. In this case, we are retrieving a list of parks corresponding to a
specific state, so the state we are interested in is passed in from the Flash client (details
on that to come).

Now, let’s add the last two functions (getParkDetails and escape) to the file:

function getParkDetails(park) {
 queryData.sql = "SELECT region, parktype, comphone FROM tblParks " +
 "WHERE parkname='" + escape(park) + "'";
 var details = CF.query(queryData);
 return details;
}

// Escape strings so that they can be passed into a SQL statement by
// replacing single quotes (') with two single quotes ('').
function escape(str) {
 var escapedStr = new String();
 for (var i = 0; i < str.length; ++i) {
 if (str.charAt(i) == "'") {
 escapedStr += "'";
 }
 escapedStr += str.charAt(i);
 }
 return escapedStr
}

Save the file.

The getParkDetails function is fairly straightforward, and only differs from getParks in that
it retrieves three columns of data rather than one. This means we will handle the
RecordSet object on the client slightly differently (more on that to come). It also passes
the “park” variable through the escape function before passing it into the query function.

The escape function searches through the string (in this case, the park name) character
by character looking for a single quotation mark. If it finds one, it adds a second single
quote to the string before the first. This is called SQL escaping. Since strings have to be
inside of single quotes in SQL, you obviously cannot have any single quotes in the string
that is inside the single quotes. If you do, the standard is to “escape” the single quotes by
replacing them with two single quotes.

Now, we’ll concentrate on the Flash movie so we can see how to make use of this
powerful new server component of Flash application development.

On the Client-Side
In the previous section, we defined three server-side functions using Server-side
ActionScript. Now, ColdFusion has all it needs to make them available to a Flash client.
The Flash Remoting Service that is part of ColdFusion MX automatically handles all of the
communication between the Flash client and the ColdFusion server. To see how it works,
let’s switch to the client side of our application.

The Flash file we are interested in is called park_ui.fla. There are actually two versions of
the park_ui.fla included with this tutorial. park_ui.fla contains all the code from this tutorial
already written. park_ui_empty.fla does not contain any ActionScript and therefore will
allow you to write the ActionScript while following along with this tutorial. Go ahead and
open up whichever file you choose in your Flash MX authoring environment and let’s take
a look at how it works behind the scenes.

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 9

As far as Flash files go, this one is pretty straightforward (remember, this is just a proof of
concept – you’ll dress it up later). All you will find on the stage are a few components and
text fields. The topmost layer (called “script”) is where we will be writing the ActionScript
for this application. The layer below that contains a MessageBox component with the
instance name of “errorAlert.” As you will see, we will use this for displaying error
messages. The rest of the layers contain a ComboBox (with the instance name of
“states”), a ListBox (instance name of “parks”), and the text fields we use to display park
details (with the instance names of “phone”, “region”, and “partType”).

Before we actually start writing code, let’s examine at a high level application how this
application will work. The code explained below will carry out the following steps:

1. Configure a connection to the ColdFusion MX server.

2. Create objects with the callback functions the server needs to talk back to the
client.

3. Invoke remote Server-side ActionScript functions, passing them the objects we
created with the callback functions.

4. Use the data returned from the server to dynamically populate a ComboBox,
ListBox, and a few TextFields.

Callback functions are a very useful way for Flash developers to handle some kinds of
events. For instance, when you invoke a remote server-side function, there are two ways
the Flash Player could handle returning the result. The movie could either stop while
waiting on the response (a process is said to “block” when it pauses, waiting on another
process), or the movie could go on, and when then results are returned, a callback
function could automatically be called. The Flash player uses the latter method. While at
first this may seem slightly more complex, it is by far the more powerful model. Using
callback functions, your application can continue executing while the data Is being
retrieved, so you can show the user additional information or let them continue working.
We will look at callback functions in more detail once we begin to write a few.

What
You
Learned

Callback functions are a more sophisticated way to handle responses
from servers.

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 10

Writing the Client-Side ActionScript Code
At this point, we’re ready to start writing our client-side ActionScript code. The first few
lines simply help set up the rest of the application by including an object we need and
setting up a few variables.

Open the ActionScript editor to the first frame of the “script” layer and add the following:

#include "NetServices.as"

// Make sure you remove the include below in a production environment.
// It is for debugging and development purposes only because it causes
// unnecessary performance degradation.
#include "NetDebug.as"

stop();

// Define some constants.
var GATEWAY_URL = "http://localhost:8500/flashservices/gateway";
var SERVICE = "com.macromedia.tutorial.ParkQuery";

The first line is including the NetServices ActionScript file which you should have installed
in your ActionScript “include” directory. We will get to the importance of the NetServices
object soon enough; for now, just assume that it is important and must be included early
on.

The next line includes the NetDebug object. NetDebug enables the “NetConnect
Debugger,” which you can find under the Window menu. The NetConnect Debugger is a
very useful tool for debugging Flash Remoting code because it reports on the traffic
between the client and the server, allowing you to pinpoint exactly where problems are
occurring. Make sure you do not include the NetDebug object in your final movie because
logging causes significant performance degradation. It’s not an issue for development,
but you wouldn’t want it in your deployed application.

The following line stops the movie since we are not concerned with any type of animation.

The next two lines define a pair of “constants,” variables whose values will not change
throughout the lifecycle of the application (constants should always be capitalized). The
first one, GATEWAY_URL, points to your ColdFusion MX server (Remember: this tutorial
assumes your are running ColdFusion and Flash MX on the same computer. If you have
configured things differently, you’ll need to adjust the server name and/or port number
accordingly).

The “flashservices/gateway” path does not indicate an actual file on your server; rather, it
is an alias for the Macromedia Flash Remoting Service. The Remoting Service is a
service which comes pre-installed and pre-configured with ColdFusion MX and is
responsible for handling communication between Flash clients and server-side services.

The value of the SERVICE constant should look vaguely familiar to you. Remember the
directory structure you created inside of the wwwroot directory on the server for the
ParkQuery.asr file? On the client, you refer to services by their filenames, relative to the
wwwroot directory with dots in place of slashes or backslashes. Eventually, you will see
how we use the value of the SERVICE constant to actually reference remote services.

What
You
Learned

Server-side services are referenced from the client by their full names
with dots in place of slashes or backslashes. Constants are variables
expressed in all caps which are intended not to change throughout the
execution of the application.

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 11

Add the next few lines to the actions panel. They help set up the connection we are going
to need to make to the Remoting Service so we can invoke our remote functions.

// Set the default gateway on the NetServices object and go ahead and create a
// connection object.
NetServices.setDefaultGatewayUrl(GATEWAY_URL);
var con = NetServices.createGatewayConnection();

We make use of our first constant here by passing it in as an argument to the
setDefaultGatewayUrl function on the NetServices object. The NetServices object
provides us with connections to the Remoting Service, so naturally it needs to know
which RemotingService to provide connections to.

The createGatewayConnection function on NetServices is a little misleading since it does
not actually open a socket and create a connection between the client and the server at
the time the function is called. Rather, it creates a NetConnection object, which we will
later use to make the actual connection.

What
You
Learned

Despite its name, calling createGatewayConnection on the NetServices
object does not actually establish a connection. Connections are not
made to the server until the actual remote function is invoked.

Writing an Initialization Function
Most applications need to be initialized in some way. Application initialization ensures
that certain pieces of code have already been run and certain objects and functions are
already set up before the user starts interacting with the application. Initialization is
essentially a guarantee that certain actions have occurred in your code so that you can
make assumptions based on those actions.

Our Macromedia Flash application needs an initialization sequence in order to perform
several actions:

� Configure the alert box that gets used to display error messages if something has
gone wrong on the server, then hide it until it’s needed.

� Set the size (width) of the state ComboBox so that it doesn’t look too big.

� Set up an object with callback functions that we will use to query the database for
a list of states to populate the states ComboBox with.

� Invoke the remote function which retrieves and returns the list of states.

� Set the rows (height) and width of the ListBox which eventually gets used to
display the list of parks in a specified state.

What
You
Learned

Most applications need some form of initialization to prepare them for
user interaction. Initialization ensures that certain variables and functions
have been properly set up.

Add the following code to the actions panel below the code you have already written.
Note that initialization code should always be the last ActionScript code in the panel, so
all of the rest of the ActionScript we write for this tutorial will actually go above this
initialization code.

// Initialize the application.

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 12

function init() {
 // Hide the error MessageBox and give it a title.
 errorAlert._visible = false;
 errorAlert.setTitle("application error occurred");
// Set the size of the state ComboBox.
states.setSize(50);

// Create a handler for the states combobox.
var resultHandler = new Object();
resultHandler.getStates_Result = function (result) {
 states.setDataProvider(result);
 states.setChangeHandler("onStateChange");
};

resultHandler.getStates_Status = handleError;

// Get the ParkQuery service from the gateway connection.
var service = con.getService(SERVICE, resultHandler);

// Invoke the getStates() function on the server.
service.getStates();

// Set the size and width of the listbox that displayes the park names.
parks.setRowCount(8);
parks.setWidth(310);
parks.setChangeHandler("onParkChange");
}

// Call the init function to initialize the application.
init();

The first few lines are straightforward enough. They give the MessageBox component a
title and hide it until such time as we need it (hopefully never!). We then set the width of
the ComboBox component to something relatively small since all it needs to display are
state abbreviations. Of course, you can also configure components through the property
window; however, many find it is easier to go through a single panel of ActionScript code
to make changes than it is to dig through multiple levels of movie clips.

Now this is probably where the code starts to get into unfamiliar territory. Let’s take a
moment to examine this line in particular:

// Get the ParkQuery service from the gateway connection.
var service = con.getService(SERVICE, resultHandler);

At this point, we are actually getting a reference to our remote ParkQuery service from our
NetConnection instance. The first argument to getService() is the SERVICE constant
which we defined at the top of our file. The second argument, however, is something a
little new.

As mentioned previously, Flash Remoting uses a callback paradigm. In other words,
when you execute a remote function, the client code does not block (stop or pause) to
wait for a response from the server. Rather, execution continues, and you know that your
data was returned when your callback function is called.

That brings us to the second argument of the getService function, resultHandler.
resultHandler is an instance of an object created especially for handling callbacks from
the server. The code just above the getService function builds the resultHandler object:

var resultHandler = new Object();
resultHandler.getStates_Result = function (result) {

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 13

 states.setDataProvider(result);
 states.setChangeHandler("onStateChange");
};
resultHandler.getStates_Status = handleError;

What
You
Learned

When you invoke a remote function on the server, application execution
does not block or pause. The movie continues to play, and your callback
function gets called when then data is returned from the server.

Note: Typically, you would not create objects in this fashion as it is not the most efficient
technique in cases where you need to make more than one instance of the object.
Creating a generic object instance and assigning that specific instance properties and
functions means that every instance created in that manner will require new memory
allocation to store those functions and properties. An alternative and much more efficient
method for creating objects is to create objects from classes. We’ll explore this later. In
this case, we can get away with this particular technique only because we are creating a
single instance of the resultHandler and we know that the init function is only going to get
called once.

After creating a new resultHandler object, we assign it two functions. The first function is
called getStates_Result. It probably already occurred to you that getStates is the name of
the first function in our ParkQuery Server-side ActionScript file. The prefix “_Result” tells
the server that this is the callback function for the getStates server-side function. As you
can see, the server passes back a data structure which we call “result”. If you refer back
to our Server-side ActionScript file, you will recall that the object that getStates returns is
a RecordSet of data queried from the database. In this particular case, the RecordSet
contains state abbreviations.

Although we have set up a callback function to handle the response from the server, that
function will not get called until we actually invoke the remote service. That’s done by the
following code.

// Invoke the getStates() function on the server.
service.getStates();

Once we are inside the getStates_Result function, we know for a fact that the server has
returned a RecordSet object. The question is, what do we do with it? It just so happens
that a RecordSet object extends the DataProvider object, which happens to be the data
type that most UI components take in their setDataProvider methods. Therefore, all we
have to do is pass the RecordSet object into the setDataProvider function of the states
ComboBox, and the ComboBox automatically updates itself with the list of state
abbreviations. If you have ever achieved a similar effect by dynamically building an HTML
select input, then you can appreciate how wonderfully simple and elegant this technique
is.

The last thing we do in the getStates_Result function is set a changeHandler on the states
ComboBox so that we know when the user has selected a state. By passing in the string
“onStateChange”, our onStateChange function (which we will review shortly) is
automatically called whenever the ComboBox gets changed.

Now what if something went wrong on the server and the RecordSet object was not
returned? What if the database was down, or there was a syntax error in our Server-side
ActionScript code? In such a case, the second function we assigned to resultHandler
gets called: getStates_Status. Rather than implementing the getStates_Status function
at the moment of assignment, we assigned it to another generic error-handling function
instead called handleError. handleError is a very simple function. It gets the “description”

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 14

property of the error object passed in from the server and displays the message in the
errorAlert MessageBox component.

The remainder of the init method simply sets the height and width of the parks ListBox
component and assigns it a changeHandler. As always, more on that changeHandler to
come.

Since all of this initialization code is inside of a function (called init, a very common name
for functions which initialize applications), it will not run until it is explicitly called, which we
do with the very last line of code in the actions panel:

// Call the init function to initialize the application.
init();

What
You
Learned

Some Flash UI Components can take in a DataProvider which RecordSet
extends. That means you can pass query results directly into a UI
component, and the component will automatically update itself with the
data from the ResultSet.

Now is probably as good a time as any to ask ourselves why we would want to go through
all this trouble to build the states ComboBox dynamically as opposed to just hard-coding
a list of states in the Flash file. It may be easier to hard-code the data initially, but in the
long run, it always pays to take a little extra time to do things in a way that makes it easier
to maintain. In your case, you wouldn’t want to add and remove states every time a new
entry made it into the database. Or what if this were an application that you needed to
deliver to a client? How many times would they pay you to update a simple ComboBox
before turning the account over to your competition who promised a maintenance-free
application? The truth is that we live in a dynamic word, and the only way to truly model it
and keep up with it is though dynamic processes and applications.

What
You
Learned

Dynamic is good, hard-coding is bad. Hard-code that which will almost
never change; everything else, externalize.

Creating Classes
If you were to publish the application at this point, you should understand everything you
see. You should see the states ComboBox automatically populated with all the unique
states from the database, ready for a user to interact with. Before writing code to handle
the event of a state being chosen, however, we need to write a few class definitions.

The first class will contain callback functions for the getParks server-side function. That
means that we will create a new object from this class and pass it into the getService
function of our NetConnection instance.

Above the init function definition, add the following code:

// Defines the ParkHandler class.
function ParkHandler() { };
ParkHandler.prototype.getParks_Result = function(result)
{
 parks.setDataProvider(result);
}
ParkHandler.prototype.getParks_Status = handleError;
var parksQuery = con.getService(SERVICE, new ParkHandler());

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 15

Remember when we discussed a more efficient way to create objects than the method
used in the init function? Well, this is it. The function definitions above don’t actually
create an instance of anything; rather they define a class from which instances of objects
can be made. Assigning functions and properties to the prototype property of a class
makes for a more efficient use of memory since new memory is not allocated for every
function and property of every instance; rather, memory is allocated at the time you assign
properties and functions to the prototype property, and that same memory space is
referenced for every instance you create. Using more efficient memory allocation on the
client means that your movie (and any other applications the user has open) will execute
more efficiently.

As you already know, the ParkHandler class contains callback functions for the getParks
Server-side ActionScript function. Notice how handleError gets reused once again for
handling errors (naturally), and how we call getService on our NetConnection instance to
set up our service for later when we’re actually ready to call it. Look inside the
getParks_Result function and you will see a familiar technique for mapping a RecordSet
to a client-side UI component. In this case, we are dynamically populating the parks
ListBox with names of parks.

What
You
Learned

There are two ways of creating your own objects in Flash. Make sure you
choose the way that will lead to the most efficient code. If you only need
a single instance of the object, it is ok to create an generic object
instance, then add functions and properties to that instance. If you need
to create more than one instance, create a class by assigning properties
and functions to the prototype property of the class and create instances
from the class.

We have one more class definition to write since we have one more function on the server
which needs callback functions. The class definition we are about to write will contain
callback functions for the getParkDetails server-side function. The getParkDetails_Result
function is going to be a little different than the other callback functions we have written
so far because we cannot map the RecordSet directly to a UI component. Instead, we will
extract the data from the RecordSet and use it to populate dynamic TextFields.

Add the following code to your actions panel above the init function definition:

// Defines the DetailsHandler class.
function DetailsHandler() { };
DetailsHandler.prototype.getParkDetails_Result = function(result) {
 var UNKNOWN = "(unknown)";
 var row = result.getItemAt(0);
 phone.text = (row["comphone"] == null) ? UNKNOWN : row["comphone"];
 parkType.text = (row["parktype"] == null) ? UNKNOWN : row["parktype"];
 region.text = (row["region"] == null) ? UNKNOWN : row["region"];
}
DetailsHandler.prototype.getParkDetails_Status = handleError;
var detailsQuery = con.getService(SERVICE, new DetailsHandler());

Let’s take a closer look at the implementation of the getParkDetails_Result function.
Since the details of a park are being displayed in dynamic TextFields rather than being
mapped to a UI component, the code isn’t quite as clean and elegant as we have seen in
previous callback implementations. The good news is that this gives us the opportunity to
explore a little more closely the anatomy of a RecordSet.

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 16

A RecordSet contains data structures that represents rows returned from a query. You
use the getItemAt function to access individual rows. In the example above, we only
expect a single row to be returned, so we know we always want the first item (which has
an index of 0). As shown in the example above, once you have a reference to the row,
you can access the row’s data through the name of the column in square brackets. You
could also access the row’s data using dot notation, instead. For instance:

row[“parktype”]

and

row.parktype

will return the same result. As you can see, we simply assign the three different column
values to the text properties of our three different TextFields, and they automatically
update themselves.

What
You
Learned

RecordSets are very powerful objects that model database query results.
Although they may seem a little complex at first, they are very well
designed data structures.

Writing Change Handlers
Let’s review what happens when a user picks a state from the states ComboBox:

1. When a user selects a state, it triggers the changeHandler on the states
ComboBox.

2. Our onStateChange function (which we will write momentarily) gets called and
passed a reference to the states ComboBox.

3. The onStateChange function finds out which state was chosen, then calls the
remote getParks function on the server, passing in the name of the chosen state.

4. The ParkHandler’s getParks_Result callback function gets called when the server
returns the data. The resulting RecordSet object is used to populate the parks
ListBox.

Let’s go ahead and write the changeHandler for the states ComboBox.

Add the code below above the init function definition:

// This function is called whenever a state is chosen. It updates the list of
// parks in order to correspond to the selected state.
function onStateChange(statebox) {
 var selectedState = statebox.getSelectedItem();
 parksQuery.getParks(selectedState.state);
}

The “statebox” argument that gets passed into the onStateChange function is a reference
to the ComboBox that was just changed. To find out which item was selected, we call the
getSelectedItem function on the instance of the ComboBox. getSelectedItem returns an
object that contains a property corresponding to the column name of the RecordSet
object that we used to build the ComboBox. "selectedState.state”, therefore, returns the
name of the selected state since “state” refers to the state column of the tblPark database
table. As you can see, the state name is getting passed into the getParks remote function
call on the parksQuery service. This is where the connection to the Remoting Service is
actually made. ColdFusion executes the query on the server, and the RecordSet is
returned. Where does it get returned to? An instance of the ParkHandler class, which
proceeds to set the RecordSet on the “parks” ListBox component.

 2002 Macromedia Inc. All Rights Reserved

Getting Started With ColdFusion MX - Tutorials for Macromedia Flash Developers 17

 2002 Macromedia Inc. All Rights Reserved

When a user selects a park from the “parks” ListBox, the process is almost identical,
except that the onParkChange changeHandler is called instead of the onStateChange
changeHandler. Before we write the changeHandler for the ListBox, let’s review the
process:

1. The user selects a park, triggering the parks ListBox’s changeHandler which we
assigned inside of the init function.

2. Our onParkChange function (which we will write momentarily) gets called and
passed a reference to the parks ListBox.

3. The onParkChange function finds which park was chosen, then calls the remote
getParkDetails function on the server, passing in the name of the chosen state.

4. The DetailsHandler’s getParkDetails_Result callback function gets called when
the server returns the data. Each column is extracted from the RecordSet object
and set on one of the three dynamic TextFields.

Let’s go ahead and write the onParkChange changeHandler function. Its only job will be
to find out which park was chosen in the ListBox and call the getParkDetails remote
function, passing it the name of the chosen park. Add the code below to the actions panel
above the init function definition.

// This function is called whenever a specific park is chosen. It updates
// the park detail TextBoxes in order to correspond to the selected park.
function onParkChange(parkbox) {
 var selectedPark = parkbox.getSelectedItem();
 detailsQuery.getParkDetails(selectedPark.parkname);
}

As you can see, the getParkDetails remote function is called on detailsQuery, and when
the data gets returned from the server, the getParkDetails_Result function of the
DetailsHandler will be called and passed the RecordSet containing the details we are
interested in. As we already discussed, the data is extracted from the RecordSet object
and set on the details TextFields.

Publishing the Application
Go ahead and publish the application to the directory we created at the beginning of the
tutorial. Make sure your ColdFusion server is running on a computer that is in the same
domain as the computer your Flash movie is on or else the Flash player will not be allowed
to communicate with the server due to security restrictions.

Double-click on the generated HTML file to load the movie into your default browser and
start exploring all the parks in the US. Congratulations! You have just built a fully
functional application which integrates a rich Flash user interface with ColdFusion MX.

Wrapping It Up
You demo your application to your manager and, naturally, he is amazed. Of course, he
tries to take credit for it as you demo it to your president, but your president is too smart
for that and you are given the promotion you deserve. What everyone is most impressed
with is the time it took you to develop a robust, working prototype. Had you opted for any
other technology, the job might have taken days of set-up, configuration, reading
documentation, development, and finally testing. Fortunately, Macromedia has given you
enough tools that putting together a dynamic client/server application is literally as simple
as snapping together a few components. This is when the possibilities really start to dawn
on you.

	Getting Started with ColdFusion MX
	Building a Database Query Application with Server-Side ActionScript

	Introduction
	The Scenario
	Installation Requirements
	Server-Side ActionScript
	Setting up Your Server-Side ActionScript Files
	Creating Your First Server-Side ActionScript File

	On the Client-Side
	Writing the Client-Side ActionScript Code
	Writing an Initialization Function
	Creating Classes
	Writing Change Handlers
	Publishing the Application

	Wrapping It Up

