
  

Vulnerability Assessment:
Code Auditing

Study Slides



  

Methodology – Why Is It Important?

►Game-plan for attack

►Coverage: emphasize on high-prize target code

►Time: never enough, make the the best of it

► Reporting: 

● Professional assessment is more than just busticating 
code

● Writing reports, often intended for a non-or-less technical 
audience

● Potentially writing extensive remediation documentation 
or patches 

● Clients love to hear about the business process



  

Methodology – Step 1: Scope

►Know the scope of the audit

● How much code is there to read?

● How much time is there to read it?

● What is the purpose of the audit?

● What tools are available to help?

● What components are out-of-scope (missing, etc)?

►The hardest part is learning how to gauge time



  

Methodology – Step 2: Background

►Gather background information on the application

● As much as possible

● Docs + Architecture Diagrams

● Talk with developers if possible

►Existing security concerns?

● Developers usually have security skeletons in their closet

● Often developers just don't have the time to fix them; 
security review results justify the time to management

● Known problems are still problems. Don't let them gather 
dust. 



  

Methodology – Example Arch Diagrams



  

Methodology – Step 3: Architecture + Purpose

►Knowing the purpose of the application(s)

● Intended functionality – what is it supposed to do?

● Users – who is supposed to use it? How?

● Inputs – network / file / etc

● Outputs – network / file / etc

● Intended restrictions – what is it not supposed to do?

● Other resources – what else does it interact with?



  

Methodology – Step 4: Big Picture Threats

►Think about high-level threats to the design

►Think outside of the realm of what the program was 
meant to do 

● In the intended design, what could introduce a threat to 
the system, users, etc?

● What are the security implications of how the application 
achieves its goals?

● How can the functionality be leveraged to an attackers 
advantage?

● What type of security mechanisms were missed in the 
design?

● Finally, skip what the program is, or meant to be, and Finally, skip what the program is, or meant to be, and 
instead consider what it can be used for. Game the instead consider what it can be used for. Game the 
system.system.



  

Methodology – Step 4: Continued

►Keep this mind-set persistent throughout the audit

►These types flaws are missed by automated analysis 
tools!!! Architectural understanding is crucial!

►Examples:

● Authentication / Authorization bypasses

● Sensitive information disclosure

● Cryptography use failures



  

Methodology – Step 5: Target Components

►Review and understand architecture 

►Determine high-value code targets

►Focus on these targets

►Examples:

● Network input/output code

● Protocol and format parsing code

● Database interaction; query generation



  

Methodology – Step 6: Component Exam

►Examine the logic in the targeted code area

● Is the logic behind the design of each component sound?

● Is the intended logic actually the logic that is 
implemented?

►Examine the component code implementation

● Are there implementation bugs?

● ...specifically in this case (C/C++), memory corruption?

● Does user-influenced data touch resources?

● ... if so, what resources and how? Implications?



  

Methodology – Step 7: Assess Risk

►Review the findings

►Likelihood

● How likely is each vulnerability to be discovered?

● How likely is each vulnerability to be successfully 
exploited

►Impact

● What type of impact can the vulnerability have if 
exploited?

● Is there anything that mitigates its impact?

►Likelihood * Impact = Severity



  

Methodology – Overview

►Understand full target purpose and architecture

►Determine which code targets are high-value

►Review high-value components

►Use product understanding along with potential likelihood and 
impact to determine severity of vulnerabilities

►Report!



  

Methodology – Tips

►Knowing when to give up on a bug

● Tracking vulnerabilities back to their source can be 
painful

● Often it is a far better use of time to make note of a time 
consuming bug and move on 

● If time permits, return to the bug and try and assess if its 
exploitable

● Regardless, report the bug, even if only as an 
informational finding for the developers to look into further



  

Methodology – Tips

►Try and get a building copy of the target application 
code

● All the code = all the context (at least, most of the 
context)

● The compiler warnings are your friend, especially for 
tracking down certain data type bugs (discussed later)

● Compiled binaries let you confirm and prove the 
existence of bugs



  

Memory Corruption – Introduction

►“Memory corruption happens when the contents of a 
memory location are unintentionally modified due to 
programming errors. When the corrupted memory 
contents are used later in the computer program, it 
leads either to program crash or to strange and bizarre 
program behavior.” - Wikipedia

►“crash” and “strange and bizarre program behavior” are 
developer code words for “...code is busticated, and can 
be exploitedexploited”



  

Memory Corruption – Implications

►Corruption of memory in the program could allow:

● Compromise of stack frames, used by the program to 
maintain state of execution (among other things)

● Compromise of meta-data, such as that used by the heap

● Compromise of variables used by the program – think 
about that for a second

►This ultimately means memory corruption could allow:

● At the very least, crashing the application :(

● Altering logic of the program, by altering it's variables

● Arbitrary code execution, by leveraging control program 
logic or internals (such as the stack frame)



  

Memory Corruption – Basic Example

►First example uses strcpy()

►Based on NULL-terminated C strings 

►This function copies byte-by-byte from a source buffer 
to a destination buffer until a NULL byte is encountered 
in the source

►The NULL is then stored in the destination buffer to 
terminate the destination string 



  

►char *strcpy(char *dest, const char *src);

Memory Corruption – Basic Example



  

Memory Corruption – Basic Example

int login(const char *user, const char *pass)
{
    int authenticated = 0;
    char username[16];
    char password[16];

   
    strcpy (username, user);
    strcpy (password, pass);

    if (passwordLookup(&username, &password))

)

    {
        authenticated = 1;
    }

    return authenticated;
}



  

Memory Corruption – Basic Example Impact

►Here it is assumed the user is able to submit input 

►The strcpy() will copy byte-for-byte into local stack 
array username until a NULL is encountered in user

►The authenticated integer (used as a sort of flag) sits 
higher on the stack 

►The byte-for-byte copy done by strcpy() is unaware of 
any bounds to the buffer – if username is longer than 
16 bytes, strcpy() will continue writing up the stack and  
into autenticated



  

Memory Corruption – Basic Example Visualized



  

Memory Corruption – Example Overview

►By supplying more than 16 bytes of non-NULL data for 
the user name input, the strcpy() will write past the 
buffer

►Writing past the buffer allows the user to write into the 
authentication variable, thus controlling it

►This alters the logic of the application; the user can be 
“authenticated” even if passwordLookup() does not 
authenticate them



  

Memory Corruption – Example Impact

►It gets worse

● The program internally stores state information on the 
stack

● The stack frame contains a stored location for execution, 
to execute after the function returns, called the EIP

● Overwriting past Authenticated writes into the stack 
frame

● This allows an attacker to control what code the program 
executes

● This is how modern software exploitation was started

►Exploitation segment of the class will go into more detail 
and do hands-on exploiting 



  

Memory Corruption – Example Impact

►Overwriting the stack frame is just one way to get code 
execution

►Heap meta-data, function pointers, many other useful 
targets to leverage

►Clever techniques innovated to leverage simple logic 
manipulation into code execution

►For now, just trust that in many (most) cases, memory 
corruption can be exploited in one form or another



  

Memory Corruption – Mind Set

►Observe the use of memory and how it is populated 
with data

►Try and visualize the sizes allocated and the data used

►Walk through loops and function use, considering the 
lengths of data used and the size of memory available

►Graph paper and pencil become useful with intricate 
code



  

Memory Corruption – Byte Sequence Overflows

►Byte-sequence overflows result from byte-for-byte 
manipulation: copies and moves 

►Historically, the APIs used for string manipulation 
introduce most of the vulnerabilities of this nature

● char *strcpy(char *dest, const char *src);

● char *strcat(char *dest, const char *src);

● int sprintf(char *str, const char *format, ...);

● Lists full of tons of these APIs

►Many of these functions do not let the developer specify 
the amount of data to write



  

►Things to consider while auditing use of these APIs:

● Where is the source of the data? 

● Where is the destination?

● Are there size checks performed prior to use?

● Is the source ever ensured to be NULL terminated?

● Is the destination buffer dynamically allocated? How?

►Where in the code does this happen?

● The closer to remotely controllable data, the worse (or 
better :P)

● What is the purpose?

Memory Corruption – Byte Sequence 
Considerations



  

Memory Corruption – Byte Sequence Example 2

 #include <stdio.h>
 #include <string.h>
 #define STRING1 "a string"
  int main(int argc, char *argv[])

[

  {
      char buf1[32];
      char buf2[128];

      if (!argv[1])

]

          exit(1);

     strcpy(buf1, STRING1);
     printf("we're going to build a string!");
     sprintf(buf2, "%s: %s", buf1, argv[1]);
     printf("here it is: %s", buf2);
  }



  

Memory Corruption – Length Delineated

►String functions

● char *strncpy(char *dest, const char *src, size_t n);

● char *strncat(char *dest, const char *src, size_t n);

● int snprintf(char *str, size_t size, const char *format, ...)

● Many more..

►Input/Output functions

● ssize_t read(int fd, void *buf, size_t count);

● size_t fread(void *ptr, size_t size, size_t nmemb, FILE 
*stream);

● ssize_t recv(int s, void *buf, size_t len, int flags);

● etc.



  

Memory Corruption – Length Delineated

►Although these allow the restriction of the length of 
data...

● Often developers use them incorrectly

● These functions aren't perfect, even with the best 
intention

● Just because developers can use them doesn't mean 
they choose to



  

Memory Corruption – Length Abuse

strncpy(buffer, userdata, strlen(userdata));

memcpy(buffer, userdata, strlen(userdata));

read(file, (char *)&usersize, 4);

read(file, buffer, usersize);



  

Memory Corruption – Length Abuse

►Consider string concatenation

● Adding to a buffer which may have existing data

● More data present means less space available for use

● This gets very dangerous, especially in loops

strncat(buf, userdata, sizeof(buffer)-1);

Should really be:

strncat(buf, userdata, 
sizeof(buffer) - strlen(buffer)-1);



  

Memory Corruption – Length Abuse

►Confusion between size and count

● Not all counts are measured in byte size

● Functions using multi-byte characters often measure in 
count of characters

● Conversions, copies, etc

►Example functions

size_t mbstowcs(wchar_t *dest, const char *src, size_t n);

int MultiByteToWideChar(UINT CodePage, DWORD dwFlags,
 LPCSTR lpMultiByteStr, int cbMultiByte,
  LPWSTR lpWideCharStr, int cchWideChar);



  

►These conversion functions measure the destination 
length in wide characters

►“Under Win32, wchar_t is 16 bits wide and represents a 
UTF-16 code unit. On Unix-like systems wchar_t is 
commonly 32 bits wide and represents a UTF-32 code 
unit.” - Wikipedia

►sizeof( ) only determines the size of bytes...

Memory Corruption – Length Abuse



  

Memory Corruption – Length Abuse

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>

void funcXYZ(int socket)
{
    wchar_t wcbuf[100];
    char *userdata;
    userdata = ImaginaryGetDataFromNetwork(socket);
    mbstowcs(wcbuf, userdata, sizeof(wcbuf));
    processData(wcbuf);
    return;
}



  

Memory Corruption – Pointer Byte Sequences

►Developers often perform similar tasks with pointers 

...
  char *p1 = buf;
  char *p2 = userdata;
  while (*p2)
  {
      if (*p2 == 'x')
      {
          break;
      }
      *p1++ = *p2++;
  }
...
 



  

Memory Corruption – Pointer Byte Sequences

►Tedious to read

►Often fraught with bugs

►Common in parsing code: file formats, protocols, etc

►Common in home-grown encoding/conversion functions

►Sometimes a length is specified in the loop, but 
determined by the source data

►Examine what initiates and concludes the loops, then 
busticate accordingly


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

