
Penetration Testing & Vulnerability Analysis

Brandon Edwards
brandon@isis.poly.edu

Source Code Auditing: Day 1

2

Agenda

 Introduction

 Goals

 What is Source Code Auditing

 Methodology

 Bug Classes

 Tools

3

Introduction
 I read lots of code, I like finding bugs

 Bugs can be grown into exploits

 Exploits let you own stuff

 Developer souls go in the jar

4

Day 1

 Scoping, targeting a large code base

 Using navigation tools / auditing tools

 See what vulnerabilities look like in code

 Cover some basic bug classes

 Mostly C/C++

5

Source Code Auditing

 The process of reading source code to find
vulnerabilities

 Great for finding implementation bugs

 Memory Corruption

 In-line Injection (SQL, filenames)

 Race Conditions

 Compliments a design review

6

Source Code Auditing

 Tedious

 Hard to estimate time required

 Thorough understanding of the language is
absolutely necessary

Methodology
Finding and attacking valuable targets

8

Methodology Approaches

 There can be different reasons to audit code…

 To find the most bugs possible?

 To find the easiest, most reliable bug to exploit?

 For the sake of offense, we are looking for the latter

9

Methodology

 There is NEVER enough time

 Large code bases

 Timed engagement

 Lifetime of target data value

 To rephrase that, you can never have your 0day too
soon ;)

 Since time is critical, so is having an attack plan

 I use methodology to mean attack plan for
approaching the app

10

Methodology

 Understand the application

 Review documentation, understand purpose

 Examine the attack surface

 From the attack surface, identify target components

 If you’ve already done a design + operational review,
the above is much easier

11

Targeting Components

 Traditional

 Input sources to related code paths

 Security mechanisms

 Complex parsing, protocols, data management

 Meta Targeting

 Comments indicating complexity or difficulty

 FIXME

 XXX

 Swearing

 Typos

12

Meta Targeting

 Old Code (Copyright 1998, etc)

 Code checked in at inopportune times

 2 AM near date of shipping

 At the same time that other buggy code was checked
in

 Patterns from other buggy code

 Profile developers for bad code, watch where else
they check in

13

Grep Targeting

 Looking for bad APIs, then checking if they’re
vulnerable

 Can find lots of “potential” bugs

 May find bugs in useless components

 Can be painful to trace back to input

 More useful if performed within a confined context

14

Grep In General

 Is great for finding keywords…

 These keywords can help you find things of value to
review

 Bad APIs

 Code related to keyword concepts

 Grep alone will not give you an understanding of the
code

 Without understanding, most awesome bugs are
missed

 It is not a golden unicorn

15

Reading Code

 Initial reading can be frustrating

 Understanding components requires context

 Read code iteratively to get a grasp on context

 The trick is learning to skim unimportant code

 You can always return to a previously skipped piece
of code if it becomes relevant

16

Reading Code Quickly

 Game of mental pattern matching; some intuition

 How to see the important?

 You’ll start to get an “eye” for things that actually do
important things, like

 Copy or move data around

 Perform Input/Output

 Funny smelling things

17

Reading Code Quickly

 How to know when to skim

 Getting an “eye” for things which are not important,
ignoring until they gain importance

 There is lots of filler code which will not relate to the
code you are interested in

18

Reading Code Quickly

 For example, most of these you can skip until they relate
to a target component

 Function prototypes

 #define macros

 Hard coded value assignment

 Initial value assignment

 Abstraction

 This does not mean these are all unimportant

 These just probably require less detailed attention until a
deeper understanding is gained of how the code uses
them

19

Reading Code Quickly
 Take the initial value assignment as an example..

 Failure to assign initial values can lead to vulnerabilities

int doAuth(char *name, char *pw)
{
 int auth;

 if (userIsBanned(name))
 {
 auth = 0;
 }

 if (authenticateUser(name, pw))
 {
 auth = 1;
 }

 return auth;
}

20

Reading Code Quickly
 In the previous example the lack of initialization

became important due to how the variable was used

 If you spot an uninitialized variable being used, jump
on it, there is probably a vulnerability!

 That being said, verifying every variable is initialized is
a waste of time

21

Reading Code Quickly

 Abstraction is another great example – lots of bug
potential!

 There will be misuses of it leading to vulnerabilities

 But developers who like abstraction, love abstraction;
so it is probably used in every possible place

 There is a lot of abstraction filler code you can skim

 Think more about their patterns in misusing it, look for
those patterns

22

Code Auditing Tools
 Various tools exist to aid in auditing

 Editors / reading tools

 Pattern matching tools

 Static analyzers

 Pen & pad ;)

23

Code Reading Tools
 Free syntax aware tools

 VI / VIM

 Emacs

 Notepad++

 Source Navigator

 Eclipse

 Commercial Products

 Visual Studio

 Understand

 Source Insight

24

Static Analysis Tools
 Commercial Tools

 Fortify

 Klocwork

 Coverity

 Free Products

 LLVM Clang Static Analyzer

 FindBugs (Java)

 RATS (more like fancy pattern matching)

25

Reading Code: Tools

 Static analyzers are cute

 Often miss vulnerabilities

 Will have many false positives

 They can aid in understanding a code base..

 They can not replace the mind

26

Reading Code: Tools

 Highlighted editors & navigators are useful

 Basic useful functionality in auditing tools:

 Tracking where variables defined

 Tracking where functions are implemented

 Function call-graphing

 Generic search/regex codebase

 As a free tool, I like Source Navigator

Implementation Bugs
Where the bling happens

28

Implementation Bugs

 A bug in how the code was implemented, which can
allow an attacker to cause the application to deviate
from its design

 These are commonly caused by:

 Failure to validate input

 Misuse or misunderstanding of an API

 Miscalculation of an operation

 Failure to verify the result of an operation

 Application state failures

29

Implementation Bugs

 Notoriously affect complex code or parsing

 Complex file formats & protocols can be difficult to
properly implement

 Trusting, or assuming the structure or validity of input

 Failure to track relationships, such as object references

Memory Corruption

31

Memory Corruption

“Memory corruption happens when the contents of a
memory location are unintentionally modified due to
programming errors. When the corrupted memory
contents are used later in the computer program, it leads
either to program crash or to strange and bizarre
program behavior.” – Wikipedia

32

Memory Corruption

 “program crash” and “...strange program behavior” is
fancy developer speak for “busticated and exploitable”

 Has been infamously responsible for vulnerabilities

 “There is no such thing as a crash or DoS, there are
only vulnerabilities which you can not exploit”

 – Ryan Permeh

33

Memory Corruption

 The classic implementation bug

 Has been infamously responsible for vulnerabilities

 Can result in the complete compromise of the
application, and in turn the machine

 Been public since the 1980’s, still happen today

34

Memory Corruption

 Basic example..

int vuln_function(char *userstring)

{

 char buf[128];

 /* make copy of data to manipulate */

 strcpy(buf, userstring);

 /* ... */

 return;

}

35

Memory Corruption

 The strcpy() function performs a copy from a source
string to a destination string

 The string is determined by a sequence of bytes
terminated by a NULL byte

36

Memory Corruption

 In this example, it copies from an argument onto the
function's local stack

 Because the copy is unbounded, if there is more data
in the source than there is space available, it will
overwrite data on the stack

 This means if an attacker could reach this, they could
overwrite contents on the stack

37

Memory Corruption

38

Memory Corruption

39

Memory Corruption

40

Memory Corruption

 Trivial example

 While this example shows overwriting the stack,
corruption of other memory regions such as heap or
BSS are often exploitable

 More is taught on these concepts later in the course by
Dino Dai Zovi

41

Memory Corruption

 Lots of memory corruption can happen from byte-by-
byte copies

 Lots of APIs do this, not just strcpy()

 strcpy()

 strcat()

 sprintf()

 gets()

 …list goes on

42

Memory Corruption

 Homegrown byte-by-byte copies

int vuln_function(char *userstring)

{

 char buf[128];

 char *src, *dst;

 src = userstring;

 dst = buf;

 while(*src != 0x0)

 {

 *dst++ = *src++;

 }

 /* ... */

 return;

}

43

Memory Corruption

 So.. Unbounded data copying is bad..

 Newer, safer APIs do exist to allow developers to
specify the amount of data to be copied

 strcpy() probably unlikely to be seen in modern code,
but easy to grep for and find in your audits

 Memory corruption from pointer loops copying data
can still be found, so examine any place this is seen

44

Memory Corruption

 Just because a better API exists, does not mean it is
used properly

 Consider strncpy() instead..

 Bounded string copy:

 Now there's a parameter to limit length of data copied

char *strncpy(char *dest, const char *src, size_t n);

45

Memory Corruption

 The length variable can be completely misunderstood
or misused

int vuln_function(char *userstring)

{

 char buf[128];

 strncpy(buf, userstring,strlen(userstring));

 /* ... */

 return;

}

46

Memory Corruption

 The length does not account for NULL termination

 If amount of data to copy is greater than or equal to
size of buf, no NULL byte will be placed by strncpy()

int vuln_function(char *userstring)

{

 char buf[128];

 strncpy(buf, userstring, sizeof(buf));

 /* ... */

 return;

}

47

Memory Corruption

 Remember, C string functions need there to be a NULL
byte to know where a string ends…

 Later on, code may be assuming the string is only as
long as the sizeof(buf), when in reality the string is as
long as wherever the next NULL is in memory

 This could be an adjacent piece of memory the
attacker controls, such as another buffer declared on
the stack

48

Memory Corruption

 Bugs from copy & pasting

int vuln_function(char *string)

{

 char buf1[256];

 char buf2[256];

 char buf3[128];

 /* … */

 strncpy(buf1, string, sizeof(buf1)-1);

 strncpy(buf2, string, sizeof(buf1)-1);

 /* ... */

 strncpy(buf3, string, sizeof(buf1)-1);

 return;

}

49

Memory Corruption

 Lots of developers have learned to consider the size
and NULL byte

 Some still confuse or forget which functions do what

 You can find this in string concatenation functions like
strcat()

 This function appends a string from the source buffer
to the destination buffer, adding to the end of an
existing C string in dest

char *strncat(char *dest, const char *src, size_t n);

50

Memory Corruption

 Note that strncat() size parameter n does not account
for data already in the destination buffer

 If there is already data in buf1, it can overwrite beyond
the buffer!

int vuln_function(char *string)

{

 char buf1[256];

 strncat(buf1, “static data”, sizeof(buf1)-1);

 /* … */

 strncat(buf1, string, sizeof(buf1)-1);

 return;

}

51

Memory Corruption

 Other common misunderstandings of size can happen
with wide-characters, like wchar_t

“Under Win32, wchar_t is 16 bits wide and represents a
UTF-16 code unit. On Unix-like systems wchar_t is
commonly 32 bits wide and represents a UTF-32 code
unit.”

 –Wikipedia

52

Memory Corruption

 Size miscalculation can happen by not considering that
sizeof() returns count of 8bit chars, and wchar_t is
larger than that:

int vuln_function(char *string1)

{

 wchar_t buf1[256];

 mbstowcs(buf1, string1, sizeof(buf1)-1);

 return;

}

size_t mbstowcs(wchar_t *dest, const char *src, size_t n);

53

Memory Corruption

 The size length is given as sizeof()...

 The problem is, the size argument for mbstowcs() is
the count of wide characters to write

 Wide characters are bigger than bytes:

 On Windows, where wchar_t is 16bits, sizeof(buf) is
really 512

 Example code results in a copy of 511 wide-characters
into the destination buffer, when it was intended to be
255

wchar_t buf1[256];

mbstowcs(buf1, string1, sizeof(buf1)-1);

54

Auditing Tips

 Be aware of the types of strings being used by the
application, and review how the string functions are
used

 Never assume that just because an intent was made to
be secure (using safer APIs, mindfulness of memory
size) that the code does not have bugs

 Grepping around for string manipulation APIs can be a
quick way to find pieces of code may be of interest

 Always review the arithmetic used for string size
calculation and copying

Data Types

56

Data Type Bugs

 Data types are fundamental to programming

 Data types use a specific binary format to represent a
finite amount of data

 Data types are often misunderstood or mishandled

 This misunderstanding can introduce vulnerabilities

For this section x86 is assumed

57

Data Type Refresher

 Primitive data types (32bit):

 signed char / unsigned char

 signed short / unsigned short

 signed int / unsigned int

 Redefinitions used for sizes, other things

 size_t (unsigned)

 ssize_t (signed)

 etc

58

Data Type Refresher

 8bit unsigned char

59

Data Type Refresher

 Signed & Unsigned

 Unsigned are used only to represent positive values

 Signed can represent negative values

 Signed data types use the highest bit as a “sign” bit,
reflecting how the value should be treated

60

Data Type Refresher

 When set, the sign bit reflects that the value is
negative via Two’s Compliment

 By default all primitive types are signed unless
specifically declared unsigned

61

Data Type Bugs

 Code becomes vulnerable when data types are used
without consideration for the type boundaries

 For example, integers can contain a finite amount of
data based on their bit-width (32bits)

 Exceeding this amount of data will result in the integer
“wrapping”

 This phenomena is also called an “integer overflow”.

 While not unique to integers, all data-type wrapping is
often grouped into “integer overflows”

62

Data Type Bugs

 Consider the 8bit example, what is the maximum value
an 8bit unsigned data type can represent?

63

Data Type Bugs

 What happens when you exceed this amount of data?

unsigned char x;

x = 255; /* maximum value */

x += 1; /* what happens? */

 /* x is now 0! */

64

Data Type Bugs

65

Data Type Bugs

 Okay, so an integer can wrap. Now what?

 Consider the following simple code sample:

int getData(int sock)

{

 unsigned int len;

 char *buf = NULL;

 len = getDataLen(sock);

 buf = malloc(len + 1);

 read(sock, buf, len);

 buf[len+1] = 0x0;

 }

66

Data Type Bugs

 The code intends to have enough space +1, potentially
to store a NULL byte for a string

 If the network data supplied is 0xFFFFFFFF (max
32bit value), when 1 is added, it will wrap to 0

 This means the length passed to malloc() is zer0 bytes

 malloc() will thus return an under-sized buffer

 This allows for memory corruption during read()

67

Data Type Bugs

 Pointers can wrap too…

 (Hint: pointers are secretly unsigned integers)

int StrStuff(int sock, char *buf, size_t buflen)

{

 size_t dataSize;

 char *maxpoint = buf + buflen;

 dataSize = readDataSize(sock);

 if (buf + dataSize < maxpoint)

 {

 read(sock, buf, dataSize);

 return 0;

 }

 return 1;

}

68

Auditing Tips

 Review arithmetic used for size calculation

 Pay extra special attention

 Dynamic memory size arithmetic

 Pointer arithmetic used for size boundaries

 Quick and dirty: grep for malloc() and other memory
allocation functions – check to see if sizes use
arithmetic you can influence

69

Questions?

