
Penetration Testing & Vulnerability Analysis

Brandon Edwards
brandon@isis.poly.edu

Source Code Auditing: Day 1

2

Agenda

 Introduction

 Goals

 What is Source Code Auditing

 Methodology

 Bug Classes

 Tools

3

Introduction
 I read lots of code, I like finding bugs

 Bugs can be grown into exploits

 Exploits let you own stuff

 Developer souls go in the jar

4

Day 1

 Scoping, targeting a large code base

 Using navigation tools / auditing tools

 See what vulnerabilities look like in code

 Cover some basic bug classes

 Mostly C/C++

5

Source Code Auditing

 The process of reading source code to find
vulnerabilities

 Great for finding implementation bugs

 Memory Corruption

 In-line Injection (SQL, filenames)

 Race Conditions

 Compliments a design review

6

Source Code Auditing

 Tedious

 Hard to estimate time required

 Thorough understanding of the language is
absolutely necessary

Methodology
Finding and attacking valuable targets

8

Methodology Approaches

 There can be different reasons to audit code…

 To find the most bugs possible?

 To find the easiest, most reliable bug to exploit?

 For the sake of offense, we are looking for the latter

9

Methodology

 There is NEVER enough time

 Large code bases

 Timed engagement

 Lifetime of target data value

 To rephrase that, you can never have your 0day too
soon ;)

 Since time is critical, so is having an attack plan

 I use methodology to mean attack plan for
approaching the app

10

Methodology

 Understand the application

 Review documentation, understand purpose

 Examine the attack surface

 From the attack surface, identify target components

 If you’ve already done a design + operational review,
the above is much easier

11

Targeting Components

 Traditional

 Input sources to related code paths

 Security mechanisms

 Complex parsing, protocols, data management

 Meta Targeting

 Comments indicating complexity or difficulty

 FIXME

 XXX

 Swearing

 Typos

12

Meta Targeting

 Old Code (Copyright 1998, etc)

 Code checked in at inopportune times

 2 AM near date of shipping

 At the same time that other buggy code was checked
in

 Patterns from other buggy code

 Profile developers for bad code, watch where else
they check in

13

Grep Targeting

 Looking for bad APIs, then checking if they’re
vulnerable

 Can find lots of “potential” bugs

 May find bugs in useless components 

 Can be painful to trace back to input

 More useful if performed within a confined context

14

Grep In General

 Is great for finding keywords…

 These keywords can help you find things of value to
review

 Bad APIs

 Code related to keyword concepts

 Grep alone will not give you an understanding of the
code

 Without understanding, most awesome bugs are
missed

 It is not a golden unicorn

15

Reading Code

 Initial reading can be frustrating

 Understanding components requires context

 Read code iteratively to get a grasp on context

 The trick is learning to skim unimportant code

 You can always return to a previously skipped piece
of code if it becomes relevant

16

Reading Code Quickly

 Game of mental pattern matching; some intuition

 How to see the important?

 You’ll start to get an “eye” for things that actually do
important things, like

 Copy or move data around

 Perform Input/Output

 Funny smelling things

17

Reading Code Quickly

 How to know when to skim

 Getting an “eye” for things which are not important,
ignoring until they gain importance

 There is lots of filler code which will not relate to the
code you are interested in

18

Reading Code Quickly

 For example, most of these you can skip until they relate
to a target component

 Function prototypes

 #define macros

 Hard coded value assignment

 Initial value assignment

 Abstraction

 This does not mean these are all unimportant

 These just probably require less detailed attention until a
deeper understanding is gained of how the code uses
them

19

Reading Code Quickly
 Take the initial value assignment as an example..

 Failure to assign initial values can lead to vulnerabilities

int doAuth(char *name, char *pw)
{
 int auth;

 if (userIsBanned(name))
 {
 auth = 0;
 }

 if (authenticateUser(name, pw))
 {
 auth = 1;
 }

 return auth;
}

20

Reading Code Quickly
 In the previous example the lack of initialization

became important due to how the variable was used

 If you spot an uninitialized variable being used, jump
on it, there is probably a vulnerability!

 That being said, verifying every variable is initialized is
a waste of time

21

Reading Code Quickly

 Abstraction is another great example – lots of bug
potential!

 There will be misuses of it leading to vulnerabilities

 But developers who like abstraction, love abstraction;
so it is probably used in every possible place

 There is a lot of abstraction filler code you can skim

 Think more about their patterns in misusing it, look for
those patterns

22

Code Auditing Tools
 Various tools exist to aid in auditing

 Editors / reading tools

 Pattern matching tools

 Static analyzers

 Pen & pad ;)

23

Code Reading Tools
 Free syntax aware tools

 VI / VIM

 Emacs

 Notepad++

 Source Navigator

 Eclipse

 Commercial Products

 Visual Studio

 Understand

 Source Insight

24

Static Analysis Tools
 Commercial Tools

 Fortify

 Klocwork

 Coverity

 Free Products

 LLVM Clang Static Analyzer

 FindBugs (Java)

 RATS (more like fancy pattern matching)

25

Reading Code: Tools

 Static analyzers are cute

 Often miss vulnerabilities

 Will have many false positives

 They can aid in understanding a code base..

 They can not replace the mind

26

Reading Code: Tools

 Highlighted editors & navigators are useful

 Basic useful functionality in auditing tools:

 Tracking where variables defined

 Tracking where functions are implemented

 Function call-graphing

 Generic search/regex codebase

 As a free tool, I like Source Navigator

Implementation Bugs
Where the bling happens

28

Implementation Bugs

 A bug in how the code was implemented, which can
allow an attacker to cause the application to deviate
from its design

 These are commonly caused by:

 Failure to validate input

 Misuse or misunderstanding of an API

 Miscalculation of an operation

 Failure to verify the result of an operation

 Application state failures

29

Implementation Bugs

 Notoriously affect complex code or parsing

 Complex file formats & protocols can be difficult to
properly implement

 Trusting, or assuming the structure or validity of input

 Failure to track relationships, such as object references

Memory Corruption

31

Memory Corruption

“Memory corruption happens when the contents of a
memory location are unintentionally modified due to
programming errors. When the corrupted memory
contents are used later in the computer program, it leads
either to program crash or to strange and bizarre
program behavior.” – Wikipedia

32

Memory Corruption

 “program crash” and “...strange program behavior” is
fancy developer speak for “busticated and exploitable”

 Has been infamously responsible for vulnerabilities

 “There is no such thing as a crash or DoS, there are
only vulnerabilities which you can not exploit”

 – Ryan Permeh

33

Memory Corruption

 The classic implementation bug

 Has been infamously responsible for vulnerabilities

 Can result in the complete compromise of the
application, and in turn the machine

 Been public since the 1980’s, still happen today

34

Memory Corruption

 Basic example..

int vuln_function(char *userstring)

{

 char buf[128];

 /* make copy of data to manipulate */

 strcpy(buf, userstring);

 /* ... */

 return;

}

35

Memory Corruption

 The strcpy() function performs a copy from a source
string to a destination string

 The string is determined by a sequence of bytes
terminated by a NULL byte

36

Memory Corruption

 In this example, it copies from an argument onto the
function's local stack

 Because the copy is unbounded, if there is more data
in the source than there is space available, it will
overwrite data on the stack

 This means if an attacker could reach this, they could
overwrite contents on the stack

37

Memory Corruption

38

Memory Corruption

39

Memory Corruption

40

Memory Corruption

 Trivial example

 While this example shows overwriting the stack,
corruption of other memory regions such as heap or
BSS are often exploitable

 More is taught on these concepts later in the course by
Dino Dai Zovi

41

Memory Corruption

 Lots of memory corruption can happen from byte-by-
byte copies

 Lots of APIs do this, not just strcpy()

 strcpy()

 strcat()

 sprintf()

 gets()

 …list goes on

42

Memory Corruption

 Homegrown byte-by-byte copies

int vuln_function(char *userstring)

{

 char buf[128];

 char *src, *dst;

 src = userstring;

 dst = buf;

 while(*src != 0x0)

 {

 *dst++ = *src++;

 }

 /* ... */

 return;

}

43

Memory Corruption

 So.. Unbounded data copying is bad..

 Newer, safer APIs do exist to allow developers to
specify the amount of data to be copied

 strcpy() probably unlikely to be seen in modern code,
but easy to grep for and find in your audits

 Memory corruption from pointer loops copying data
can still be found, so examine any place this is seen

44

Memory Corruption

 Just because a better API exists, does not mean it is
used properly

 Consider strncpy() instead..

 Bounded string copy:

 Now there's a parameter to limit length of data copied

char *strncpy(char *dest, const char *src, size_t n);

45

Memory Corruption

 The length variable can be completely misunderstood
or misused

int vuln_function(char *userstring)

{

 char buf[128];

 strncpy(buf, userstring,strlen(userstring));

 /* ... */

 return;

}

46

Memory Corruption

 The length does not account for NULL termination

 If amount of data to copy is greater than or equal to
size of buf, no NULL byte will be placed by strncpy()

int vuln_function(char *userstring)

{

 char buf[128];

 strncpy(buf, userstring, sizeof(buf));

 /* ... */

 return;

}

47

Memory Corruption

 Remember, C string functions need there to be a NULL
byte to know where a string ends…

 Later on, code may be assuming the string is only as
long as the sizeof(buf), when in reality the string is as
long as wherever the next NULL is in memory

 This could be an adjacent piece of memory the
attacker controls, such as another buffer declared on
the stack

48

Memory Corruption

 Bugs from copy & pasting

int vuln_function(char *string)

{

 char buf1[256];

 char buf2[256];

 char buf3[128];

 /* … */

 strncpy(buf1, string, sizeof(buf1)-1);

 strncpy(buf2, string, sizeof(buf1)-1);

 /* ... */

 strncpy(buf3, string, sizeof(buf1)-1);

 return;

}

49

Memory Corruption

 Lots of developers have learned to consider the size
and NULL byte

 Some still confuse or forget which functions do what

 You can find this in string concatenation functions like
strcat()

 This function appends a string from the source buffer
to the destination buffer, adding to the end of an
existing C string in dest

char *strncat(char *dest, const char *src, size_t n);

50

Memory Corruption

 Note that strncat() size parameter n does not account
for data already in the destination buffer

 If there is already data in buf1, it can overwrite beyond
the buffer!

int vuln_function(char *string)

{

 char buf1[256];

 strncat(buf1, “static data”, sizeof(buf1)-1);

 /* … */

 strncat(buf1, string, sizeof(buf1)-1);

 return;

}

51

Memory Corruption

 Other common misunderstandings of size can happen
with wide-characters, like wchar_t

“Under Win32, wchar_t is 16 bits wide and represents a
UTF-16 code unit. On Unix-like systems wchar_t is
commonly 32 bits wide and represents a UTF-32 code
unit.”

 –Wikipedia

52

Memory Corruption

 Size miscalculation can happen by not considering that
sizeof() returns count of 8bit chars, and wchar_t is
larger than that:

int vuln_function(char *string1)

{

 wchar_t buf1[256];

 mbstowcs(buf1, string1, sizeof(buf1)-1);

 return;

}

size_t mbstowcs(wchar_t *dest, const char *src, size_t n);

53

Memory Corruption

 The size length is given as sizeof()...

 The problem is, the size argument for mbstowcs() is
the count of wide characters to write

 Wide characters are bigger than bytes:

 On Windows, where wchar_t is 16bits, sizeof(buf) is
really 512

 Example code results in a copy of 511 wide-characters
into the destination buffer, when it was intended to be
255

wchar_t buf1[256];

mbstowcs(buf1, string1, sizeof(buf1)-1);

54

Auditing Tips

 Be aware of the types of strings being used by the
application, and review how the string functions are
used

 Never assume that just because an intent was made to
be secure (using safer APIs, mindfulness of memory
size) that the code does not have bugs

 Grepping around for string manipulation APIs can be a
quick way to find pieces of code may be of interest

 Always review the arithmetic used for string size
calculation and copying

Data Types

56

Data Type Bugs

 Data types are fundamental to programming

 Data types use a specific binary format to represent a
finite amount of data

 Data types are often misunderstood or mishandled

 This misunderstanding can introduce vulnerabilities

For this section x86 is assumed

57

Data Type Refresher

 Primitive data types (32bit):

 signed char / unsigned char

 signed short / unsigned short

 signed int / unsigned int

 Redefinitions used for sizes, other things

 size_t (unsigned)

 ssize_t (signed)

 etc

58

Data Type Refresher

 8bit unsigned char

59

Data Type Refresher

 Signed & Unsigned

 Unsigned are used only to represent positive values

 Signed can represent negative values

 Signed data types use the highest bit as a “sign” bit,
reflecting how the value should be treated

60

Data Type Refresher

 When set, the sign bit reflects that the value is
negative via Two’s Compliment

 By default all primitive types are signed unless
specifically declared unsigned

61

Data Type Bugs

 Code becomes vulnerable when data types are used
without consideration for the type boundaries

 For example, integers can contain a finite amount of
data based on their bit-width (32bits)

 Exceeding this amount of data will result in the integer
“wrapping”

 This phenomena is also called an “integer overflow”.

 While not unique to integers, all data-type wrapping is
often grouped into “integer overflows”

62

Data Type Bugs

 Consider the 8bit example, what is the maximum value
an 8bit unsigned data type can represent?

63

Data Type Bugs

 What happens when you exceed this amount of data?

unsigned char x;

x = 255; /* maximum value */

x += 1; /* what happens? */

 /* x is now 0! */

64

Data Type Bugs

65

Data Type Bugs

 Okay, so an integer can wrap. Now what?

 Consider the following simple code sample:

int getData(int sock)

{

 unsigned int len;

 char *buf = NULL;

 len = getDataLen(sock);

 buf = malloc(len + 1);

 read(sock, buf, len);

 buf[len+1] = 0x0;

 }

66

Data Type Bugs

 The code intends to have enough space +1, potentially
to store a NULL byte for a string

 If the network data supplied is 0xFFFFFFFF (max
32bit value), when 1 is added, it will wrap to 0

 This means the length passed to malloc() is zer0 bytes

 malloc() will thus return an under-sized buffer

 This allows for memory corruption during read()

67

Data Type Bugs

 Pointers can wrap too…

 (Hint: pointers are secretly unsigned integers)

int StrStuff(int sock, char *buf, size_t buflen)

{

 size_t dataSize;

 char *maxpoint = buf + buflen;

 dataSize = readDataSize(sock);

 if (buf + dataSize < maxpoint)

 {

 read(sock, buf, dataSize);

 return 0;

 }

 return 1;

}

68

Auditing Tips

 Review arithmetic used for size calculation

 Pay extra special attention

 Dynamic memory size arithmetic

 Pointer arithmetic used for size boundaries

 Quick and dirty: grep for malloc() and other memory
allocation functions – check to see if sizes use
arithmetic you can influence

69

Questions?

