

Vulnerability Analysis:
Source Code Auditing

Part I

Brandon Edwards

drraid gmail com

Why Am I Here?

● I enjoy finding vulnerabilities in code
● I work at a security company where a big part

of my job is source code auditing
● I have read millions of lines of code. seriously.
● I have a jar on my desk full of developer souls

Goals

● My goal is to make you a ninja at code
auditing

– Know what vulnerabilities look like in code

– Find critical, devastating vulnerabilities

– Approach and grasp large code bases

Source Code Auditing

● Day 1:
– What is source code auditing

– Methodology

– Approaches to reading code

– Tools

– Introduction to bug classes

What is it?

● The process of reading source code in order
to find vulnerabilities

● Very effective at identifying implementation
security problems

– Memory corruption

– Resource influence

– Race conditions

– In-line data injection

● Compliments architectural review

Methodology

● Employ and strictly adhere to a methodology
● Example structure for methodology:

– Scope

– Understand architecture, application purpose

– Identify attack surface, target components

– Set objectives for concerns & coverage

– Allot reasonable time per component, per
objective

– Review, execute on strict schedule

Methodology - Scope

● Scope of the code review can be broken down
in to three major points

– Purpose of the review

– Amount of code to review

– Amount of time available

Methodology Scope: Purpose

● There can be different reasons to be auditing
code

– Client specifically requested code audit
● To find the most exploitable bugs
● To find the most potential bugs

– Penetration testing
● Client is running open source product
● Access to source is attained

– Source disclosure
– Stolen from dev servers
– Floating in the underground

Methodology Scope: Amount

● How much code is there to read
– What is the size of the code base

– How many 3rd party components are there

– How dense is the code

– What language is it?

– ...And how many languages interact?

Methodology Scope: Time

● There is never enough time
● The most difficult part of the audit is gaging

how long it will take
– To read and fully understand the code base

– To track a bug back & determine exploitability

● Time is why a solid methodology with key
targets is crucial

Methodology - Architecture

● Gain an architectural understanding
● Architectural + design documentation is very

useful
● Talk with developers when possible
● Results from threat modeling / architectural

review are even more useful
● Part of source review is ensuring the

application actually works as designed

Methodology – Targeting

● Reflect on Architecture to identify targets
– Sources of input

● Remote input
● Influence on the application

– Security mechanisms

– Complex data handling, parsing

– State management

Methodology - Objectives
● Set objectives based on identified targets
● Base objectives on desired coverage and

concerns:
– Verify proper implementation of security

mechanisms, proper use of crypto

– Determine what type of vulnerabilities each
target might be prone to

– Set goals on vulnerability types to look for, key
points to hit on while reviewing the code

Methodology - Objectives

● Objectives set based on concerns are
intended to give focus to guide the review; do
not let them rule out other possible attacks

● Prioritize the objectives based on severity
– Likelihood of vulnerability, or ease of being

reached

– Impact of exploitation

Methodology – Execution

● Allot and manage time for each established
objective

● Execute based on a schedule, engaging the
top of the objective priority list first, working
down

● Do not go over time for each component
– Sometimes bugs are hard to track back, leave

it alone & come back if time permits

– If all else fails tag the bug as “possibly
exploitable”, “problematic”

Reading Code

● Code base will probably be HUGE
● Understanding the code base can be difficult
● Read the code iteratively

– Initial reading can be frustrating

– Realize that components will not make sense
without context

– It may be necessary to return to a previously
skipped piece of code

Reading Code

● Various types of tools exist to help audit code
– Editors

– Parsers / pattern matching

– Static analyzers

– Pen and pad ;)

Reading Code: Tools

● Free syntax aware editors
– VI / VIM

– Emacs

– Gedit

– Source Navigator

– Eclipse

● Commercial Products
– Visual Studio

– Source Insight

Reading Code: Tools

● Commercial static analysis tools
– Klocwork

– Fortify

– Coverity

● Free tools
– RATS

– FindBugs (Java)

Reading Code: Tools

● Static analysis tools are OK
– Often miss vulnerabilities

– Have many false positives

● They can also help in just understanding a
code base

● Ultimately, nothing will replace a sharp
minded, living, breathing auditor

Reading Code: Tools

● Source Navigator Demo
● Quick hack tips:

– FIXME, XXX, WARNING

– Look for developer bad habits, patterns

– Date/Time stamp files if possible
● Really old, untouched code
● Code checked in late at night
● Last minute commits

– Novice developers

– Reimplementation in other products

Implementation Bugs

● A bug in how something is implemented!
(LOL SURPRISE!)

● From a security standpoint, these really matter
if they are:

– In implementation of a security mechanism

– Have effects in application state or memory

Implementation Bugs

● Implementation bugs are logical faults
● They can result from many conditions, some

are:
– Trusting or assuming user/remote input

– Misuse or misunderstanding of APIs

– Miscalculation of an operation

– Failure to verify the result of an operation

– Failure to ensure & keep track of state

Implementation Bugs

● Notorious for occurring in complex code
● Parsing and state management

– File format

– Network protocol

– Relational data management

Memory Corruption

Memory Corruption

“Memory corruption happens when the
contents of a memory location are
unintentionally modified due to programming
errors. When the corrupted memory contents
are used later in the computer program, it
leads either to program crash or to strange
and bizarre program behavior.”

– Wikipedia

Memory Corruption

● “program crash” and “...strange and bizarre
program behavoir”

is just fancy developer speak for:
“Busticated, exploitable and pwned”

● There is no such thing a crash or DoS, there
are only vulnerabilities that you cannot exploit

– Ryan Permeh

Memory Corruption

● Basic implications, consider stack-based
buffer overflow:

int vuln_function(char *userstring)
{
 char buf[128];
 /* first make local copy of data to manipulate */
 strcpy(buf, userstring);

 /* ... */
 return;
}

Memory Corruption

● The strcpy() function performs unbounded
copy of data

● In this example, this is onto the function's local
stack

● This means if an attacker could reach this,
they could control contents on the stack

Memory Corruption

Memory Corruption

● Unbounded byte-by-byte copies
● Copy data a byte at a time from a source to a

destination, until a delimiter in the source is hit
● Provides no direct means of restricting or

knowing how much data will be copied
● Lots of these APIs
● Responsible for many many vulnerabilities

historically

Memory Corruption
● Unbounded byte-by-byte copy/read API

examples
– strcpy()

– strcat()

– sprint()

– gets()

– sscanf()

– etc..

● These APIs do not take a maximum length
parameter

Memory Corruption

● Also often seen in pointer arithmetic:
int vuln_function(char *userstring)
{
 char buf[128];
 char *src, *dst;

 src = userstring;
 dst = buf;

 while(*src != 0x0)
 {
 *dst++ = *src++;
 }

 /* ... */
 return;
}

Memory Corruption

● Functions which perform unbounded data
manipulation are obviously bad

● Equivalent bounded API functions exist...

Memory Corruption

● Bounded byte copy APIs
– strncpy()

– snprintf()

– MultiByteToWideChar(), mbstowcs()

– strncat()

● These are even more fun to own, and lead to
other dangerous scenarios as developers
misuse them...

Memory Corruption

● Bounded string copy example:

....Now there's a parameter to enforce length...

 char *strncpy(char *dest, const char *src, size_t n);

Memory Corruption

...The problem here is that the size parameter
is very often abused..

int vuln_function(char *userstring)
{
 char buf[128];

 strncpy(buf, userstring, strlen(userstring));

 /* ... */
 return;
}

Memory Corruption
● Copy Pasta Abuse!

int vuln_function(char *string)
{
 char buf1[256];
 char buf2[256];
 char buf3[128];

 strncpy(buf1, string, sizeof(buf1));
 strncpy(buf2, string, sizeof(buf1));

 /* ... */
 strncpy(buf3, string, sizeof(buf1));

 return;
}

Memory Corruption
● Also, these what this size actually means is

not always clear...
int vuln_function(char *name, char *password)
{
 char buf1[128];
 char buf2[128];
 char buf3[128];

 strncpy(buf2, name, sizeof(buf2));
 strncpy(buf3, password, sizeof(buf3));

 /* Welp, we already know the length, this is safe! */
 strcpy(buf1, buf3);

 return; }

Memory Corruption

● Okay.. so now it's clear, right?

strncpy(buf, string, sizeof(buf)-1);

...Fine.. that's safe.. what about other
functions?

Memory Corruption

● strncat() - string concatenation

● Max length of the copy can be specified..
● But, this is still commonly misused

char *strncat(char *dest, const char *src, size_t n);

Memory Corruption

● Consider this scenario..

int vuln_function(char *string1, char *string2)
{
 char buf1[256];

 strncpy(buf1, string1, 50);
 strncat(buf1, string2, sizeof(buf1)-1);

 return;
}

Memory Corruption

● Properly done:

strncat(buf, string, sizeof(buf) - strlen(buf) -1);

● NOTICE, strncat() can write up to the
length specified +1 NULL byte:

strncat(buf, string, sizeof(buf) – strlen(buf));
● The above will result in a out of bounds

write of 1 NULL byte beyond the end of buf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

