

Software
Architecture

Security

Brandon Edwards
drraid at gmail

 Arch Vulnerability

What is an architectural vulnerability?

An architectural vulnerability is a
vulnerability which is intrinsic to the
design of the technology

Arch Vulnerability

Not just the misuse of an API or
misunderstanding an operation, but a
failure in the application's foundational
logic

These vulnerabilities can be much more
subtle and abstract than implementation
flaws

Arch Vulnerability

What causes architectural vulnerabilities?

In a short, vague answer:

The failure to consider, or fix, the security
ramifications of a piece of functionality
offered by the system

Arch Vulnerability

Commonly affected:

Cryptography

Authentication schemes

Authorization enforcement

Combination of above

Arch Vulnerability Causes

1. The failure to consider all possible
states:

A state or scenario where security is not built
in or offered (lack of security)

A state where the offered security is
invalidated

A state resulting from the interoperability with
external components

Arch Vulnerability Causes
2. A failure in the logic or design of a
security mechanisms or restraint

(such as authentication, authorization)

Designers misunderstood the concept
behind the security technology used

Designers assumed users will “play nicely”,
or underestimated users technical
competency

Arch Vulnerabilities
Arguably the most important

Difficult to fix

Have devastating impact

Often reliably exploited

Can aid other (implementation) attacks

Arch Vulnerabilities
Difficult to fix; often because:

Deeply rooted in the application

Once in place, cannot be changed due to
backwards compatibility requirements

The byproduct of a relationship between
multiple components; no one claims
responsibility

Arch Vulnerabilities

Devastating Impact:

Being foundational flaws, these typically
represent a failure in the built-in security

The impact often extends to yield control or
access at the highest possible privilege level

Arch Vulnerabilities
Often reliably exploited, because:

They are unaffected by the volatility of
external influences

OS dependence

Version dependence

State of memory

Unshielded by out-of-band protection
mechanisms

Require less technically sophisticated
exploits

Arch Vulnerabilities

Work well in symphony

Several small architectural problems can
quickly add up to one large pwnage

Small architectural bugs also aid in
exploitation of implementation bugs

Examples:
Architectural information disclosure, such as
pointer inference aids in memory corruption bugs

Architectural load order + file write bug

Architectural Security

Architectural security should be
addressed during initial design

Potential attacks should be identified and
resolved as early as possible

Proper architecture leaves room for only
implementation bugs

Arch Vuln Example
DLL hijacking

Vulnerability happens as follows:

User opens SMB \\share containing fileX

User clicks fileX,

Application associated with fileX is opened

Application begins loading file

Application determines it requires additional
functionality to handle fileX

Example continued..
The specified DLL is not found locally on disk
in the program or System folder..

Application proceeds to check the current
working directory for the DLL

PROBLEM! Current working directory is now
the attacker's SMB share

Application loads attacker-controlled DLL

Game Over

Arch Fail Example
This example is difficult to fix

It may involve restructuring how the program
loads files, or chooses to load dynamic
functionality

Although it may be possible that it is
relatively easy to fix per instance, being a
Windows behavior, it affects many
applications

Will likely continue to appear in more and
more applications

Arch Fail Example

Devastating: code execution

Reliable to exploit: requires no shellcode
or fancy memory manipulation; affects all
modern versions of Windows

Not-highly technical: can be exploited
with a Windows share

Auditing Architecture

Truly embodies the “think like an attacker”

Initial thoughts..

Consider the scope of the application
What was the intent?

What should the application not allow

How can you make it deviate?

Think beyond the scope of the application
What was never considered?

Auditing Methodology

To find vulnerabilities in an architecture, a
complete understanding is required

Ideally access to design/architecture
documentation is available

Even more ideally, the ability to converse
with the designers

The output generated from this exercise
is also priceless for implementation
review

1. Resources

Resources that are used by the
application

System resources, memory, disk access, etc

Content or user data, files, database

Code modules loaded by the application

Access or credentials, auth tokens used by
or granted to the program

1. Resources continued
All of resources combined represent
every piece of access to data or
functionality offered by a system

Resources are always targets of the
attacker

They may be the ultimate prized goal

Or a tool to leverage to obtain other
resources

Consider how resources can be attacked

2. Input
Examine the input into the system

What type of data does the program get?

Where does the data come from?

What is the purpose?
Which components are influenced by this?

How trusted is this data?

Who provided it?

Is there a difference between who is expected to
supply it vs. who is capable of supplying it?

2. Input

Something to think about:

ANY external influence you can provide
which affects the program is INPUT

Input

Reviewing input can be one of the fastest
ways to identify an architectural
vulnerability

Example: consider a web application
which performs authentication and
content validation on the client-side in
Javascript.

3. Output

What type of output is generated?

Where does it go?

Who is allowed to access it?

What is the influence it has?

Who/what can influence it?

What does the output offer an attacker?

How can it be leveraged?

3. Output

Something to think about:

ANY observation of a program response
which can measured is OUTPUT

3. Output

Reviewing output can quickly shed light
on architectural failures

Example: it may be noticed that a
program sends an encrypted message
bundled with the key

Likely indicative of an architectural failure;
a lack of architecture to support proper
cryptography

4. User Roles
What type of users can exist?

This defines 'authentication'

Who are they, how do they relate

How do they identify themselves?

What are the varying privilege levels?

Places where this is unclear or undefined
may indicate authentication issues, or
other vulnerabilities

5. Trust Boundaries

Given user roles, and resources, where
should boundaries lie?

This is what defines 'authorization'

How much trust is each resource granted?

How are users trusted?

Are there any unclear areas of trust?

Are the trust boundaries enforced uniformly?

Combine

After reviewing each of the areas,
combine observations

Where was security not considered?

Where does the security offered no
longer apply?

How do external components relate?

Questions?

	Marketing Plan
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

