
w w w. n o v e l l . c o m

G U I D E

Novell® eDirectory™ 8.7:
Performance Tuning for Linux* and UNIX*

A B O U T T H I S G U I D E

This guide describes how to tune Novell® eDirectory™ on Linux* and UNIX*

platforms to improve its performance, providing both eDirectory tuneables

and OS specific tuneables to optimize performance when deploying eDirectory.

This guide is intended for network administrators.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions

within a step and items within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk

(*) denotes a third-party trademark.

When a single pathname can be written with a backslash for some platforms

or a forward slash for other platforms, the pathname is presented with a

backslash. Users of platforms that require a forward slash, such as UNIX, should

use forward slashes as required by your software.

Table of Contents

2

2

7

8

9

9

10

10

I N T R O D U C T I O N

T U N I N G T H E C A C H E S U B S Y S T E M

D ATA B A S E I N D E X I N G

T U N E A B L E S F O R B U L K L O A D I N G
D ATA

T U N I N G A R E P L I C A R I N G F O R
M I N I M U M R E P L I C AT I O N

T U N I N G e D I R E C TO RY T H R E A D S

T U N I N G F I L E S Y S T E M

T U N I N G O P E R AT I N G S Y S T E M F O R
e D I R E C TO RY

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

2

Introduction
Novell® eDirectory™ 8.7 is a standards-compliant, cross-platform, highly scalable, fault-

tolerant and high-performance directory service.

Performance tuning of any software application is a complex job. It requires an

understanding of various components and subsystems of the software, knowledge of

operating system and other system resources like file system, memory, storage media

and bandwidth.

Prerequisites

• Ensure that you are running Novell eDirectory

8.7 with the latest patches and updates.

To check the version of eDirectory, enter the

following command:

ndsd --version

• Ensure that your OS is updated with the latest

patch levels.

Linux*:

— Red Hat* Linux 7.2 or 7.3

Ensure that the latest glibc patches

are applied from Red Hat Errata

(http://www.redhat.com/apps/support/

errata) on Red Hat systems.

Solaris*:

— Solaris 7 on Sun* SPARC (with patch

106327-13 or later for 32-bit systems)

— Solaris 7 on Sun SPARC (with patch

106300-07 or later for 64-bit systems)

— Solaris 8 on Sun SPARC (with patch

108827-20 or later)

AIX*:

— AIX 4.3.3 with Maintenance Level 10,

JVM* 1.3.1, and the latest AIX V5.0

Runtime Libraries (http://www-

1.ibm.com/support/docview.wss?uid=

swg24001173)

— AIX 5L with Maintenance Level 2,

JVM 1.3.1, and the latest AIX V6.0

Runtime Libraries (http://www-

1.ibm.com/support/docview.wss?uid=

swg24001467)

For more information about system require-

ments, refer to the eDirectory Administration

Guide at: http://www.novell.com/documentation/

lg/edir87/index.html.

T U N I N G T H E C A C H E S U B S Y S T E M

Novell eDirectory uses a state-of-the-art cache

subsystem to reduce disk access and deliver better

performance. Adequate amount of cache memory

is critical for the performance of eDirectory servers.

Hence, cache sizing is one of the most important

factors affecting the overall performance

of eDirectory.

This section describes how eDirectory uses the

cache internally. Understanding this is important

for tuning the cache for a specific deployment.

Novell eDirectory 8.5 and later versions provide

a block cache and an entry cache to boost certain

areas of eDirectory performance.

There is a certain amount of redundancy

between the two caches, but each cache is

designed to boost performance for different types

of operations.

• The block cache holds the physical disk blocks

to minimize frequent access to the disk;

whereas, the entry cache contains logical

entries from the directory.

• Generally, block cache is more useful for

update operations, and entry cache is more

useful for operations that tend to browse or

traverse the directory tree by reading through

entries like name-resolution operations.

• Both block cache and entry cache are useful

in boosting query performance—block cache

helps searching indexes, and entry cache helps

retrieving the entries that are referenced

from an index.

• With both an entry cache and a block cache,

the total memory available for caching is

effectively split between the two caches.

By default, eDirectory splits the cache equally

by giving 50% of available cache to each cache.

eDirectory normally creates logical entries in

memory by getting the data from the block cache.

The entry cache reduces the processing time

required to do this. This time saving can be

significant in some applications.

The rule of the thumb here is that the larger

the number of items (blocks and entries) you cache,

the better the overall performance. The ideal is

to cache the entire database in both the entry

cache and the block cache. This would not be

possible for extremely large databases.

The amount of memory required to cache the

entire database in the block cache is roughly the

size of the database on disk, which is a 1:1 ratio.

On the other hand, the amount of memory needed

to cache the entire database in the entry cache

is roughly two to four times the database size on

disk, that is, a 1:2 or 1:4 ratio.

NOTE: This is only a very broad and very general

rule of thumb and could vary significantly based

on your deployment. Set the cache between

100MB to 2.5GB. You would not need more

than three to four times the size of the DIB.

For large DIBs, limit the cache to 2GB.

In order to address the wide range of needs

and different deployments and configurations

possible, the mechanisms for regulating cache

memory consumption in eDirectory 8.7 have been

made to be intelligent, dynamic, and automated.

eDirectory provides the following two types of

methods to control cache memory consumption:

• “Dynamic Sizing of the Cache”

• “Hard Memory Limit”

Both of these methods are mutually exclusive.

You can use either one at any time, but the last

one used always replaces any earlier settings.

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

3

Dynamic Sizing of the Cache

This method dynamically adjusts the cache limit

to regulate memory consumption. A dynamically

adjusting limit causes eDirectory to periodically

adjust its memory consumption in response to the

flow of memory consumption by other processes.

You need to specify the limit as a percentage of the

available physical memory. Using this percentage,

eDirectory recalculates a new memory limit at

fixed intervals. While this works well in typical

user scenarios, because of large differences in

memory usage patterns and memory allocators on

UNIX platforms, this mechanism is not recommended

for optimal performance of eDirectory on

UNIX platforms.

UNIX gives the impression of having less

available memory than other operating systems

because of the following reasons:

• UNIX uses the free memory for internal

caching of file system blocks, frequently run

programs, libraries, etc.

• Libraries in UNIX normally do not return the

freed memory back to the OS.

NOTE: Physical memory excludes machine swap

space. This convention is followed throughout

this document.

Hard Memory Limit

This is the second method provided for regulating

memory consumption. The Hard Memory Limit

was present in earlier versions of eDirectory also.

Once this is set, a limit is not changed until you

either set a different hard limit or dynamically

adjust the limit.

You are allowed to specify a hard memory

limit in one of three ways:

• Method 1: As a fixed number of bytes

• Method 2: As a percentage of physical

memory

• Method 3: As a percentage of available

physical memory

A hard limit specification using the second

and third methods is always translated to a fixed

number of bytes. Thus, for method two, the number

of bytes will be the percentage of physical memory

that is detected when eDirectory is started.

For method three, the number of bytes will be

the percentage of available physical memory

that is detected when eDirectory queries the

OS at regular intervals of time.

The default mechanism for regulating

memory consumption is as follows: if the server

contains a replica, eDirectory uses a dynamically

adjusting limit of 51% of available memory,

with a minimum of 8 megabytes, leaving a

minimum of 24 megabytes for other applications.

Otherwise, eDirectory uses a hard limit setting

of 16 megabytes, with 8 megabytes for block

cache and 8 megabytes for entry cache.

Interaction of File System Buffer Cache

On UNIX platforms, the OS tries to cache file system

blocks in its internal buffer cache. You must

normally tune the OS to flush this internal buffer

cache as fast as possible; even bypass it completely,

if it is feasible. If this is not possible, do not

specify more than 50-75% of the total physical

memory for the eDirectory cache.

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

4

that can be created or modified with any text

editor. The syntax for controlling cache memory

consumption is given in the sections below.

NOTE: Although you may alter the _ndsdb.ini

file at any time, the changes do not take effect

in eDirectory until the server is restarted.

Set the Hard Memory Limit

Add the following line to the _ndsdb.ini file to set

the maximum amount of cache that eDirectory

will consume (including both the entry cache and

the block cache):

cache=<cache bytes>

Set a Dynamically Adjusting Limit

Add the following line to the _ndsdb.ini file.

cache=<cache options>

Dirty Cache

Novell eDirectory 8.7 introduced a new method

for specifying the maximum dirty cache and

the low dirty cache for the eDirectory cache.

The purpose is to keep the amount of dirty cache

at any given instant below a particular value.

This value is configurable. This evens out the

disk writing, instead of burdening the checkpoint

thread in the forced mode, which will essentially

write the whole cache to the disk, thereby creating

an I/O bottleneck.

Refer to section “Setting the Maximum and

Low Dirty Cache” on page 6 for more details.

Database Tuneable Parameter Settings

At startup, eDirectory looks for the database

options file, _ndsdb.ini, in the directory the DIB

files are stored in. This file is a simple text file

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

5

The cache options are described below. Multiple options may be specified, in any order, separated

by commas:

CACHE OPTIONS DESCRIPTION

DYN or HARD Dynamically adjust the limit or hard limit. (For optimal performance use only hard on UNIX

platforms).

NOTE: We recommend you to use HARD limits.

%:<percentage> Percentage of available or physical memory to use.

AVAIL or TOTAL Percentage is for the available physical memory or total physical memory. This option is ignored for

a dynamically adjusting limit, because a dynamically adjusting limit is always calculated based on

the available physical memory.

MIN:<bytes> Minimum number of bytes.

MAX:<bytes> Maximum number of bytes.

LEAVE:<bytes> Minimum number of bytes to leave for the OS and other applications.

Examples:

• Set cache to 75% of total memory, minimum

of 16 megabytes as follows:

cache=HARD,%:75,MIN:16000000

• Set cache to 65% of total memory, leaving at

least 32 megabytes for the OS, minimum of

32 megabytes

cache=HARD,%:65,MIN:32000000,LEAVE:32000000

Setting the Cache Adjust Interval and Cache
Cleanup Interval

In addition to the cache setting for regulating

memory consumption, eDirectory also provides

settings to control the dynamic adjust interval,

and the interval for cleaning up older versions of

entries and blocks.

These settings are as follows:

cacheadjustinterval=<seconds>

cachecleanupinterval=<seconds>

Default is 15 seconds, if it is not set in the

.ini file.

Setting the Cache Ratios

The following setting allows you to control the

percentage split between the entry and block cache:

blockcachepercent=<percent>

Default is 50 percent, if it is not set in the

.ini file.

Where, <percent> should be a value between

0 and 100 (inclusive).

A value of 70 means that 70 percent of cache

memory would be used for block cache and

30 percent for entry cache.

We do not recommend you to set this

percentage to 0.

Set blockcachepercentbetween 70% and 90%

depending on the proportion of updates in the

total operations.

Set it to 90% for operations like bulk create

or delete.

Set to 50% if you do not expect too many

update bursts.

Setting the Database Block Size

Novell eDirectory uses a default database block

size of 4096 bytes. In FLAIM, block is a buffer used

to aggregate disk images of an entry. It is used to

model a portion of a single file on disk. Larger the

block, more the number of entries in a block and

longer is the time taken to search within a block

and extract an entry. But a short block means

more I/O calls to the OS.

You can configure the database block size

as follows:

blocksize=<4096 or 8192>

Note that this parameter is effective only

during the installation of eDirectory and has no

effect once a database has been created. It is

also important to understand that increasing the

blocksize from 4096 may adversely impact the

performance of other eDirectory operations

(like search) even though update performance

will improve. A block size of 4K gives better

performance in all cases.

Setting the Maximum and Low Dirty Cache

The two parameters we recommend to set while

bulkloading the database are maxdirtycache and

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

6

lowdirtycache. You need to set them in the

_ndsdb.ini file.

eDirectory 8.7, by default sets the value of

maxdirtycache to the unlimited value and the

lowdirtycache value is set to zero.

You can specify the maxdirtycache and

lowdirtycache as follows:

maxdirtycache=<value>

lowdirtycache=<value>

Modifying Database Cache Settings
at Runtime

You can set the amount of cache to be used

while eDirectory is running by using the ndstrace

utility. In the ndstrace window, enter the

following command:

set dstrace=!mb<amount of RAM to use in bytes>

To set a simple hard limit, enter the following

command:

set dstrace=!mb<cache options>

To set a dynamically adjusting limit, see “Set a

Dynamically Adjusting Limit” on page 5. The settings

are effective only as long as the current instance

of eDirectory is running.

D ATA B A S E I N D E X I N G

To improve the performance of LDAP searches,

index the attributes on which a search is done.

There are three types of indexes:

• Presence

• Value

• Substring

You can add an index using ConsoleOne®.

Indexes can dramatically speed up the performance

of applications based on the search expressions

being used. Indexes need to be created judiciously,

because, while indexes increase the search

performance, each additional index adds to the

update time for a new object; this is especially

true for substring. The Novell eDirectory database

is set up to select one optimal index per complex

search, and then apply the other filter criteria

to the results pulled from the index.

NOTE: For massive bulkloading (millions of objects),

we do not recommend you to disable the eDirectory

server indexes while bulkloading the directory.

Suspending the Indexes

When you are bulkloading a large amount of

objects, you can suspend the substring indexes

to speed up the bulk loading operation. You can

enable them later after the loading is complete;

eDirectory will automatically complete the

indexing in the background. However, please

note that the indexes will not be used for

search operations until the background indexing is

complete and the indexes are brought online.

Bulkloading users with passwords

Bulkloading users with passwords is much slower

than adding users without passwords because

eDirectory has to create a “RSA* Key Pair”

for each password. This is a CPU-intensive

cryptographic operation and cannot be bypassed

because of the security needs of eDirectory. It is

recommended that you first start a bulkload of

the users without password and add the passwords

in parallel.

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

7

T U N E A B L E S F O R B U L K L O A D I N G D ATA

Novell Import Convert and Export (ICE) utility

uses an optimized bulk update protocol called

LBURP to upload data into the directory eDirectory.

This protocol is significantly faster than uploading

using a simple ldapmodify command.

NOTE: For faster bulkloading, use the -C -n options

with ICE.

n4u.ldap.lburp.transize

ICE loads multiple objects in a single transaction

to improve update performance. You can increase

the performance of ICE bulkload even further by

increasing the transaction size from the default

of 25. The recommended range of this transaction

size is 25 to 350 depending on the size of the

whole transaction and system resources. However,

note that an increase in the transaction size will

increase the memory usage in eDirectory because

all the records must be buffered in memory. If the

system is running low on memory, this can cause a

slowdown due to swapping. The transaction size

can be modified by specifying the required value

for the n4u.ldap.lburp.transize parameter in the

/etc/nds.conf file.

The LBURP transaction size determines the

number of records that will be sent from the ICE

utility to the LDAP server in a single LBURP packet.

However, even if a single error exists in the

transaction, (including cases where the object to

be added already exists in the directory), the LBURP

optimization will be disabled and objects will be

added to eDirectory individually for that transaction.

In addition, the LBURP optimization currently

works only for leaf objects; so the optimization is

lost if the transaction contains both a container and

it’s subordinate objects. Therefore, we recommend

you to add the containers first, using a separate

LDIF file.

blockcachepercent

When you are bulkloading a large number of

objects (e.g. greater than one million), you can

set the blockcachepercent parameter to 90% or

higher in the _ndsdb.ini file. Remember to change

the parameter back to the original value after

you complete the bulkload.

maxdirtycache and lowdirtycache

While loading a large number of objects, a burst

in Disk I/O is observed, which slows down the

bulkloading rate. To smoothen the disk I/O

pattern we need to set the maxdirtycache and

lowdirtycache to appropriate values.

NOTE: Setting of maxdirtycache and

lowdirtycache is useful only for bulkloading for

less than 1.5 million objects. For higher values,

there might be a performance degradation.

Guidelines to Set the Value of
maxdirtycache and lowdirtycache

Measure the random I/O write speed to the disk

and set the maxdirtycache such that all modified

buffers in a 3-minute interval can be flushed to

the DIB volume in ten seconds (10000ms) or less

and set lowdirtycache to about half this value.

For example, if the random write speed is

10ms per block (4KB), then set maxdirtycache to

(10000ms*4K/10) or 4000KB. On most systems,

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

8

the maxdirtycache will be between 1 and 10MB.

Fibre Channel SANs offer higher rates, so you can

go up to 20MB.

If you are not sure, set it to 5MB and observe

the max update response time during a burst of

updates. Adjust this value upwards until the

response time is acceptable.

T U N I N G A R E P L I C A R I N G F O R

M I N I M U M R E P L I C AT I O N L AT E N C Y

Novell eDirectory uses a slow, but sure convergence

algorithm to replicate changes on a single replica

server to its peers in a replication ring. A replica

server can manage only a single DIB, but a DIB

may contain replicas of multiple partitions.

eDirectory uses a batch update mechanism

for replication. The period for which changes are

accumulated in a replica server is adjustable

from one second to a few hours, but defaults

to 30 minutes.

Important changes like passwords will schedule

a sync immediately. However, sync operations are

handled by a background thread which would yield

or postpone its operation if a request for a create,

modify or delete operation is received.

Replication latencies can be minimized by

partitioning a tree such that update operations

are spread across multiple partitions and placing

these volatile partitions on DIBs such that the

peak update load on each DIB is minimized.

For example, if a tree has three containers

that are volatile, then isolate each container

into a partition and place them in separate DIBs.

Larger the peak update rate, smaller the ring,

but a ring should be designed with at least two

DIBs. If the entire server farm is front-ended by

a load balancing switch, configure the switch to

direct all requests to the primary servers and

failover to the secondary.

T U N I N G e D I R E C TO RY T H R E A D S

Novell eDirectory uses an internal pool of threads

to service client requests and internal operations.

This thread pool avoids the overhead of starting or

stopping a new thread for every request. Maximum

performance is achieved by using the minimum

number of threads required to service the requests.

eDirectory 8.7 automatically tries to use a lesser

number of threads and starts or stops threads

as needed. This delivers optimum performance in

most cases. This may need some tuning under

heavy client loads.

n4u.server.active-interval

The parameter n4u.server.active-interval controls

when a new thread is started. A thread should be

considered busy on another job if it does not return

back to the thread pool within the time interval

(in milliseconds) specified by the parameter.

This parameter is scaled based on the number of

processors available on the machine and can be

increased to its maximum value (25000) to get

the maximum performance.

n4u.server.idle-threads

This may be specified depending upon the average

client load. The idea is to minimize the time

required to produce new threads during normal

client activity. The parameter specifies the minimum

number of threads regardless of any activity.

Novell eDirectory 8.7:
Performance Tuning
for Linux and

9

n4u.server.start-threads

This specifies the number of threads that start

when eDirectory starts. This also depends upon

the average client load, in order to minimize the

time required to produce new threads during

normal client activity.

n4u.server.max-threads

The number of threads in eDirectory also influences

the memory used by the process (in addition to the

database cache). Each thread uses approximately

200 KB of memory during intensive search operations.

As a general rule, assume that eDirectory will

internally need about 16 threads for its internal

operations. Add an additional thread for every 255

clients that need to be serviced simultaneously.

Finally, add approximately 8 threads for each

processor configured on the machine to service

client search requests (the actual number will

depend on the time taken for each request).

Number of eDirectory server threads = 16

(needed internally by eDirectory)

+ (Number of simultaneous clients service

requests) / 255

+ (8 * number of processors)

Use this value to set the parameter

n4u.server.max-threads. A value of 128 works well

in most cases and will not require more tuning

except when servicing a very large number of

clients. The default value for this parameter is 64.

T U N I N G F I L E S Y S T E M

The choice of the file system can influence the bulk

update performance significantly, though search

performance is less affected because of aggressive

caching in Novell eDirectory. Using Veritas*

File System with a block size of 4KB (eDirectory

default database block size) can give significantly

improved performance. If you are installing over

UFS, you may also set the blocksize parameter to

8192 in _ndsdb.ini.

As mentioned earlier, dynamic resizing of the

eDirectory database cache does not inter-operate

well with Solaris internal caching and the user

level memory allocation algorithms. Therefore,

we recommend that you always use a hard limit

for the cache to get optimal performance.

T U N I N G O P E R AT I N G S Y S T E M

F O R e D I R E C TO RY

The operating system on which Novell eDirectory

is installed plays a crucial part in its performance.

This section gives general guidelines on tuning

your OS and then gives specific tuneables based

on your target platform.

Operating System Version

The version of the OS that you are running

on may affect the performance of eDirectory

significantly. In general, you must update your OS

to the latest patch level and in some instances

upgrade to a newer version of your OS to get

optimal performance.

For more information, see “Prerequisites”

on page 2.

Disk Performance

Update operations in eDirectory can be disk

intensive. Spread out the I/O bandwidth over

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

10

multiple disks with RAID striping. You can have

a stripe width of 16KB, 32KB, 64KB (based on

your disk/controller) for maximum performance.

The choice of the file system and the file system

block size also affects performance.

Tuning Solaris for eDirectory

Note that some of these parameters may be

superseded or modified for newer versions of

Solaris. This information applies for Solaris 7

and Solaris 8.

Set the following system tuneables in the

/etc/system file:

set priority_paging=1 (Not needed on Solaris 8

onwards)

set maxphys=1048576

set ufs:ufs_LW=<1/128 of available memory>

set ufs:ufs_HW=<1/64 of available memory>

set tcp:tcp_conn_hash_size=8192

Ensure to backup your original file before

making these changes and to reboot your system

to get the parameters in effect.

• priority_paging. The priority paging algorithm

allows the system to place a boundary around

the file cache, so that file system I/O does

not cause paging of applications. Setting

priority_ paging value to 1 enables priority

paging. You should not set the system variable

priority_paging in the Solaris 8 operating

environment, and you should remove the

variable from the /etc/system file when

systems are upgraded to the Solaris 8

operating environment.

• maxphys. Maximum size of physical I/O

requests. It is specified when doing I/O to and

from a UFS file system where large amounts

of data (greater than 64 Kbytes) are being

read or written at any one time.

• ufs_HW. The number of bytes outstanding on

a single files barrier value. If the number of

bytes outstanding is greater than this value

and ufs_WRITES is set, then the write is

deferred. The write is deferred by putting

the thread issuing the write to sleep on a

condition variable.

• ufs_LW. The barrier for the number of bytes

outstanding on a single file below which the

condition variable on which other sleeping

processes is toggled. When a write completes

and the number of bytes is less than ufs_LW,

then the condition variable is toggled, which

causes all threads waiting on the variable to

awaken and try to issue their writes.

ufs_LW and ufs_HW have meaning only

if ufs_WRITES(set in /etc/system) is not

equal to zero. ufs_HW and ufs_LW should be

changed together to avoid needless churning

when processes awake and find that they

either cannot issue a write (when ufs_LWand

ufs_HWare too close) or when they might have

waited longer than necessary (when ufs_LWand

ufs_HW are too far apart).

• tcp_conn_hash_size. Controls the hash

table size in the TCP module for all TCP

connections. If the system consistently has tens

of thousands of TCP connections, increase the

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

11

value accordingly. With the default value,

TCP performs well up to a few thousand active

connections. Note that increasing the hash

table size means more memory consumption

so set an appropriate value to avoid wasting

memory unnecessarily. The parameter can

only be changed at boot time.

The number of connections to an eDirectory

replica also influences the search performance.

Many improvements were made to make

eDirectory performance scalable with growing

number of connections. However, many TCP

parameters, like transmission and reception

queue size and transmission and reception

window size, influence the behavior of the

networking subsystem in the operating system.

These may affect eDirectory performance.

For optimizing search performance, set the

following networking tuneables using ndd:

ndd -set /dev/tcp tcp_conn_req_max_q 1024

ndd -set /dev/tcp tcp_close_wait_interval 60000

(obsolete in Solaris 8 onwards, instead use

tcp_time_wait_interval)

ndd -set /dev/tcp tcp_xmit_hiwat 32768

ndd -set /dev/tcp tcp_xmit_lowat 32768

ndd -set /dev/tcp tcp_slow_start_initial 2

NOTE: Please note that these ndd settings

will not survive a reboot. Please add them in a

script that will be run at boot time. You may

also need to set these parameters on your

LDAP client machine to get the best results.

— tcp_conn_req_max_q. The default

maximum number of pending TCP

connections for a TCP listener waiting to

be accepted by accept. For applications

such as Web servers that might receive

several connection requests, the default

value might be increased to match the

incoming rate.

— tcp_xmit_hiwat. This is the default send

window size in bytes.

— tcp_close_wait_interval. The time in

milliseconds a TCP connection stays in

TIME-WAIT state (tcp_close_wait_interval

is obsolete in Solaris 8 onward; use

tcp_time_wait_interval in Solaris 8). On a

busy Web server, there can be too many

TCP connections in TIME-WAIT state,

consuming too much memory. In this

situation, you can decrease the value for

performance reasons. Do not set the

value lower than 60 seconds.

— tcp_slow_start_initial. The maximum

initial congestion window (cwnd) size in

MSS of a TCP connection. If the initial

cwnd size causes network congestion

under special circumstances, decrease

the value.

Tuning Linux for eDirectory

We strongly recommend that you upgrade to Linux

kernel versions 2.4.9 or above for eDirectory.

eDirectory performance is significantly better

with 2.4.9 or above kernel versions, especially in

large memory configurations.

There are no Virtual Memory tuneables for

eDirectory on Linux. The page cache in Linux

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

12

kernel 2.4 gives excellent performance for database

applications in comparison with 2.2 kernels.

The default TCP/IP settings on Linux give

satisfactory LDAP search performance and do not

require further tuning.

If you use the ext2 file system storing the

DIB files for eDirectory, the file system should be

created with a block size of 4096 for optimum

performance. You can do this by the following

command before installing eDirectory:

mke2fs -b 4096 <device>

You can also disable updating access times by

running the following command for all the DIB files:

chattr -A <filename>

The new reiserfs file system coming with the

2.4.1 and above kernels has not been extensively

tested with eDirectory yet, so we cannot make

any recommendation at this point in time.

As mentioned earlier, dynamic resizing

of the eDirectory database cache does not inter-

operate well with Linux internal caching and the

glibc memory allocation algorithms. Therefore,

we recommend that you always use a hard limit

for the cache to get optimal performance.

Tuning AIX for eDirectory

Novell eDirectory 8.7 supports the AIX operating

environments of AIX 4.3 and AIX 5.1. The AIX

platform provides significant tools for optimizing

performance on the AIX platforms from Virtual

Memory and Network I/O to Disk I/O. Note that

major changes occurred in the AIX environment

between the AIX 4.3 and AIX 5 releases and tuning

options in AIX 4.3 and AIX 5.1 are changing in

AIX 5.2.

Tuning information for the various releases of

the AIX operating environments are available at

the following Web sites:

• AIX 4.3.

http://publib.boulder.ibm.com/doc_link/

en_US/a_doc_lib/aixbman/prftungd/toc.htm

• AIX 5.1:

http://publibn.boulder.ibm.com/doc_link/

en_US/a_doc_lib/aixbman/prftungd/

prftungdtfrm.htm

• AIX 5.2:

http://publib16.boulder.ibm.com/doc_link/

en_US/a_doc_lib/aixbman/prftungd/

prftungdtfrm.htm

As mentioned earlier, we recommend using

a minimum file system block size of 4096 bytes

(or multiple thereof) which matches the default

database block size. Dynamic resizing of the

eDirectory database cache does not interoperate

well with UNIX internal caching, therefore,

we recommend you to always use a hard limit

for the cache to get optimal performance.

Novell eDirectory 8.7:
Performance Tuning
for Linux and UNIX

13

462-001358-003

© 2002, 2003 Novell, Inc. All rights
reserved. Novell, the Novell logo and
ConsoleOne are registered trademarks,
and eDirectory and the N logo are
trademarks of Novell, Inc. in the
United States and other countries.

*UNIX is a registered trademark of
X/Open, Ltd. Linux is a registered
trademark of Linus Torvalds. Red Hat
is a registered trademark of Red Hat,
Inc. Solaris and Sun are registered
trademarks and JVM is a trademark
of Sun Microsystems, Inc. AIX is a
registered trademark of International
Business Machines Corporation. RSA
is a trademark of RSA Data Security,
Inc. Veritas is a registered trademark
of Veritas Software Corporation. All
other third-party trademarks are the
property of their respective owners.

This product includes software
developed by the OpenSSL Project
for use in the OpenSSL Toolkit
(http://www.openssl.org).

Novell Product Training
and Support Services

For more information about

Novell’s worldwide product

training, certification programs,

consulting and technical support

services, please visit:

www.novell.com/ngage

For More Information

To access the online documentation

for this and other Novell products,

and to get updates, see:

www.novell.com/documentation

You may also call Novell at:

1 888 321 4272 US/Canada

1 801 861 4272 Worldwide

1 801 861 8473 Facsimile

Novell, Inc.
1800 South Novell Place

Provo, Utah 84606 USA

www.novell.com

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or
implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to make
changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software, at any
time, without any obligation to notify any person or entity of such changes.

You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations or the
laws of the country in which you reside.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

U.S. Patent No. 5,608,903; 5,671,414; 5,677,851; 5,758,344; 5,784,560; 5,794,232; 5,818,936; 5,832,275; 5,832,483; 5,832,487; 5,870,739; 5,873,079;
5,878,415; 5,884,304; 5,913,025; 5,919,257; 5,933,826. U.S and Foreign Patents Pending.

