
64-bit ELF Object
File Specification
Draft Version 2.5
MIPS Technologies /

Silicon Graphics Computer Systems

Caveat: This document represents work in progress. It is incomplete and
subject to change. In particular, lists of constants, sections, and attributes
are may be incomplete or inaccurate in detail. Reference to the header
files elf.h and sys/elf.h is recommended before reliance on the informa-
tion herein.

Section 1 Introduction

This document specifies the format of MIPS object files for 64-bit code.
We assume as a basis the documents [ABI32], [ABI32M], and [ABI64].
In addition, Silicon Graphics uses the DWARF debugging information
format as specified in [DWARF]. Information in those documents should
be considered valid unless contradicted here.

The remainder of this section summarizes our objectives, approach, and
open issues. Section 2 corresponds to ABI Section 4, describing ELF-64

Page 2 007-4658-001
object files, and Section 3 corresponds to ABI Section 5, describing pro-
gram loading and dynamic linking. Section 4 describes the 64-bit archive
file format (from MIPS ABI Section 7), though it is not technically part
of ELF.

1.1 Objectives
The objectives of this format definition fall in two categories. The first is
simply to extend the base 32-bit ELF format, by increasing field sizes
where appropriate, so that there will be no problems dealing with very
large 64-bit programs. The second is to extend the kinds of information
included in the object file to facilitate new features.

1. Remove 32-bit constraints on object file sizes.

2. Support checking and potential conversion of subprogram call in-
terfaces.

3. Support efficient and reliable application of performance monitor-
ing tools like pixie and object code optimization tools like cord.

4. Support efficient and reliable debugging facilities.

1.2 Approach
We start from the basis of the System V ABI and the MIPS symbol table
format, extending them in the obvious ways to support very large objects.
We will then add additional information (generally new sections) to sup-
port the extended objectives described above. We generally recognize
three levels of support:

1. Some information is required for all ABI-compliant object files.

2. Some information is optional, but its absence will prevent use of
system functionality, e.g. cache optimization reordering, etc.

3. Some information is entirely optional; its absence interferes only
with functionality unrelated to program construction, e.g. debug-
ging, performance measurement, etc.

To clarify the distinction between these levels, we have defined a new
section header flag, SHF_MIPS_NOSTRIP, which is applied to sections in
the first two levels. The intent is that a strip(1) tool or its equivalent
should never remove these sections by default, and should warn the user
if their removal is explicitly requested.

We have followed a number of principles and assumptions in this specifi-
cation:

007-4658-001 Introduction Page 3
1. Sections expected to be used by runtime facilities, e.g. stack trace-
back, have the SHF_ALLOC attribute. Such sections also have sym-
bols automatically generated by the linker which may be used to
reference them in code (see Section 3.1.2). This allows simple vir-
tual addressing in the process address space for any required ac-
cess.

2. Sections are NOT given the SHF_WRITE attribute simply because
rld may need to relocate their contents. We assume that rld can re-
quest write access and change it back if necessary, and prefer this
approach for a more robust runtime environment.

3. We require that the executable code for a single executable or DSO
will never be larger than 256MB, and that it will never be loaded
across a 256MB boundary. This requirement allows various benefi-
cial assumptions about valid addressing code within an execut-
able/DSO, and also allows the use of single-word addresses (to be
interpreted relative to the containing 4GB address range) for code
in an object file.

Finally, this is intended to be a permissive specification. Usage of the fea-
tures described should generally be viewed as permitted in any combina-
tion with a reasonably unambiguous interpretation unless it is forbidden.
It is likely, of course, that new usage will uncover (and break) implicit as-
sumptions in tools from time to time, and adding further restrictions may
be the most appropriate solution, but the bias should be towards fixing the
tools to allow reasonable practices.

1.3 Conventions
In all of the tables in this document, unshaded information is that derived
directly from external documents (i.e. the generic ABI and the DWARF
specification), lightly shaded information is derived directly from 32-bit
MIPS specifications (ELF, header files), and heavily shaded information
is new or substantially changed from these existing formats.

We use the usual wording to describe requirements, distinguishing be-
tween must (mandatory), should (recommended), and may (allowed).

1.4 Open Issues
Unresolved issues and missing information are marked in this document
by the symbol at the left. The most significant ones at this time are:

ISSUE !

Page 4 007-4658-001
1. Should there be a distinct EK_PBEGIN event in case a program
unit does not begin with an entrypoint (Section 2.10)?

2. Should memory events be segregated to a distinct events section so
that tools which use the default events and those which use the
memory events aren’t impacted by the other data (Section 2.10)?

1.5 Changes from Version 2.0
The following have been changed from version 2.0 of this specification:

1. Added a description of LEB128/ULEB128 formats.

2. Added EF_MIPS_OPTIONS_FIRST and EF_MIPS_ARCH_ASE ELF
flags.

3. Added Table 15 describing special reserved values of the st_shndx
field.

4. Added definitions of OHW_R8KPFETCH and OHW_R5KEOP masks
in the Hardware Patch Option Descriptor. Added new Hardware
AND/OR Patch Option Descriptors.

5. Added new ODK_GP_GROUP and ODK_IDENT option descriptors.

6. Note that R_MIPS_PJUMP requires that ld check that the symbol is
not preemptible before performing the relocation.

7. Added definitions of event kinds EK_LTR_FCALL and
EK_PCREL_GOT0. Fixed values of kinds EK_MEM_*.

8. Fixed definition of content kind CK_GP_GROUP.

9. Added section on Shared Object Dependencies describing default
search paths for DSOs and environment variables to override them.

10. Added sections defining the .msym and .conflict sections for the
quickstart discusion (Section 3.8).

11. Added DT_MIPS_INTERFACE_SIZE and
DT_MIPS_RLD_TEXT_RESOLVE_ADDR descriptions.

12. Added missing DT_MIPS_FLAGS flags.

13. Added documentation of the .liblist section (Section 3.8.2).

14. Added documentation of the .MIPS.symlib section (Section 3.8.4).

15. Corrected default library search paths in Section 3.4.

16. Added SHN_MIPS_LCOMMON (thread-local common) and
SHN_MIPS_LCOMMON (thread-local undefined) symbol documen-
tation in Section 2.5.

17. Added STO_OPTIONAL symbol documentation in Section 2.5.

007-4658-001 Introduction Page 5
18. Added split common symbol documentation in Section 2.5 (and
Section 2.5.1).

19. Fixed EK_PCREL_GOT0 definition in Section 2.10.

20. Clarified CK_GP_GROUP description in Section 2.12.

21. Add comment to ODK_PAD option descriptor, allowing implemen-
tations to require that ld do all padding rather than leaving some to
rld (Section 2.8).

22. Added ODK_PAGESIZE proposal (Section 2.8.10).

Page 6 007-4658-001
Section 2 ELF-64 Object File Format

The ELF-64 object file format is based on the document [ABI64]. The
relevant declarations are contained in the header file /usr/include/elf.h.
(Note that /usr/include/sys/elf.h is logically part of /usr/include/elf.h, and
is the actual location of most of these declarations.)

We call attention to the [ABI32] requirement that all data structures be
naturally aligned in the file (see p. 4-3). This implies that all headers, sec-
tions, and other major components must be 8-byte aligned, with padding
if necessary to accomplish this. Although 4-byte alignment is probably
adequate currently for ELF-32, 8-byte alignment should also be used
there to avoid future extension problems. (Note, however, that the
DWARF specification fundamentally assumes a byte-stream format.
Therefore, the data structures contained in some DWARF sections will
violate the alignment requirement. In addition, the .MIPS.events and .MI-
PS.content sections have packed byte-stream contents for compactness.)

When defining structure fields which are smaller than a convenient stor-
age unit (e.g. single-bit flags), we have used C’s bitfield notation (e.g.
Elf64_Word:1). The intent is to specify layout equivalent to big-endian
bitfields, but the actual structure declarations in header files should use
masks and shifts to access them. This avoids problems with byte swap-
ping between big- and little-endian hosts.

2.1 Infrastructure

ELF-64 is defined in terms of the types in Table 1:

Table 1 ELF-64 Data Types

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Half 2 2 Unsigned small integer

Elf64_Off 8 8 Unsigned file offset

Elf64_Sword 4 4 Signed medium integer

Elf64_Sxword 8 8 Signed large integer

ELF-32

007-4658-001 ELF-64 Object File Format Page 7
There are places in ELF-64 files where fundamental data types must be
encoded, for instance in subprogram interface descriptors. We generally
use the constants in Table 2 to identify them, based on DWARF version 1
(but not identical).

Elf64_Word 4 4 Unsigned medium integer

Elf64_Xword 8 8 Unsigned large integer

Elf64_Byte 1 1 Unsigned tiny integer

Elf64_Section 2 2 Section index (unsigned)

Table 2 Fundamental Data Types

Name(s) Value Comments

FT_unknown 0x0001 unknown type

FT_signed_char 0x0001 8-bit signed character

FT_unsigned_char 0x0002 8-bit unsigned character

FT_signed_short 0x0003 16-bit signed short integer

FT_unsigned_short 0x0004 16-bit unsigned short integer

FT_signed_int32 0x0005 32-bit signed integer

FT_unsigned_int32 0x0006 32-bit unsigned integer

FT_signed_int64 0x0007 64-bit signed integer

FT_unsigned_int64 0x0008 64-bit unsigned integer

FT_pointer32 0x0009 32-bit pointer

FT_pointer64 0x000a 64-bit pointer

FT_float32 0x000b 32-bit floating point (IEEE)

FT_float64 0x000c 64-bit floating point (IEEE)

FT_float128 0x000d 128-bit floating point

FT_complex64 0x000e 64-bit complex floating point

FT_complex128 0x000f 128-bit complex floating point

Table 1 ELF-64 Data Types

Name Size Alignment Purpose

Page 8 007-4658-001
The fundamental types in Table 2 may be modified by the qualifiers in
Table 3 below, also based on [DWARF-1]:

FT_complex256 0x0010 256-bit complex floating point

FT_void 0x0011 void

FT_bool32 0x0012 32-bit Boolean (TRUE or FALSE)

FT_bool64 0x0013 64-bit Boolean (TRUE or FALSE)

FT_label32 0x0014 32-bit label (address)

FT_label64 0x0015 64-bit label (address)

FT_struct 0x0020 structure (record)

FT_union 0x0021 union (variant)

FT_enum 0x0022 enumerated type

FT_typedef 0x0023 typedef

FT_set 0x0024 Pascal: set

FT_range 0x0025 Pascal: subrange of integer

FT_member_ptr 0x0026 C++: member pointer

FT_virtual_ptr 0x0027 C++: virtual pointer

FT_class 0x0028 C++: class

Table 3 Type Qualifiers

Name Value Comments

MOD_pointer_to 0x01 pointer to base type

MOD_reference_to 0x02 C++: reference to base type

MOD_const 0x03 const

MOD_volatile 0x04 volatile

MOD_lo_user 0x80 first MIPS-specific modifier

MOD_function 0x80 function returning base type

MOD_array_of 0x81 array of base type

Table 2 Fundamental Data Types

Name(s) Value Comments

007-4658-001 ELF-64 Object File Format Page 9
The data structures in the .MIPS.events and .MIPS.content sections use
compressed types from the [DWARF] specification, named LEB128 and
ULEB128, for (Unsigned) Little-Endian Base 128 numbers. These are
"little endian" only in the sense that they avoid using space to represent
the "big" end of an integer when the big end is all zeroes (unsigned) or
sign extension bits (signed).

ULEB128 numbers are encoded as follows: start at the low-order end of
an unsigned integer and chop it into 7-bit chunks. Place each chunk into
the low-order 7 bits of a byte. Typically, several of the high-order bytes
will be zero (unsigned) or copies of the sign bit (signed) — discard them.
Emit the remaining bytes in a stream, starting with the low-order byte; set
the high order bit on each byte except the last emitted byte. The high bit
of zero on the last byte indicates to the decoder that it has encountered
the last byte.

2.2 ELF-64 Header
The header format is as defined in [ABI64]; it is reproduced here for ref-
erence purposes.

MOD_hi_user 0xff last MIPS-specific modifier

Table 4 ELF-64 Header Structure

Field Name Type Comments

e_ident[EI_NIDENT] unsigned char See Table 5

e_type Elf64_Half See [ABI32]

e_machine Elf64_Half Machine (EM_MIPS = 8)

e_version Elf64_Word File format version

e_entry Elf64_Addr Process entry address

e_phoff Elf64_Off Program header table file offset

e_shoff Elf64_Off Section header table file offset

Table 3 Type Qualifiers

Name Value Comments

Page 10 007-4658-001
The structure of the e_ident field is given by Table 5.

Flags currently defined for the e_flags field are given by .

e_flags Elf64_Word Flags — see Table 6

e_ehsize Elf64_Half ELF header size (bytes)

e_phentsize Elf64_Half Program header entry size

e_phnum Elf64_Half Number of program headers

e_shentsize Elf64_Half Section header entry size

e_shnum Elf64_Half Number of section headers

e_shstrndx Elf64_Half Section name string table sec-
tion header index

Table 5 ELF-64 Header: e_ident[] Contents

Offset Name Index Value or Interpretation

EI_MAG0-3 0-3 Magic string: 0x7f, ’E’, ’L’, ’F’

EI_CLASS 4 Class of format: ELFCLASS64 = 2

EI_DATA 5 Endianness: ELFDATAMSB = 2

EI_VERSION 6 Version of format: EV_CURRENT = 1

EI_PAD 7-15 Reserved, must be zero

Table 6 ELF-64 Header: Processor-Specific Flags in e_flags

Flag Name Value Comments

EF_MIPS_NOREORDER 0x00000001 At least one .noreorder assembly directive ap-
peared in a source contributing to the object

EF_MIPS_PIC 0x00000002 This file contains position-independent code

Table 4 ELF-64 Header Structure

Field Name Type Comments

007-4658-001 ELF-64 Object File Format Page 11
NOTE: PIC code is inherently CPIC, and may or may not set
EF_MIPS_CPIC.

EF_MIPS_CPIC 0x00000004 This file’s code follows standard conventions for
calling position-independent code

EF_MIPS_UCODE 0x00000010 This file contains UCODE (obsolete)

EF_MIPS_ABI2 0x00000020 This file follows the MIPS III 32-bit ABI. (Its
EI_CLASS will be ELFCLASS32.)

EF_MIPS_OPTIONS_FIRST 0x00000080 This .MIPS.options section in this file contains
one or more descriptors, currently types
ODK_GP_GROUP and/or ODK_IDENT,
which should be processed first by ld.

EF_MIPS_ARCH_ASE 0x0f000000 Application-specific architectural extensions
used by this object file:

EF_MIPS_ARCH_ASE_MDMX 0x08000000 Uses MDMX multimedia extensions

EF_MIPS_ARCH_ASE_M16 0x04000000 Uses MIPS-16 ISA extensions

EF_MIPS_ARCH 0xf0000000 Architecture assumed by code in this file, given
by the value of the 4-bit field selected by the
mask: MIPS I (0), MIPS II (1), MIPS III (2),
MIPS IV (3)

Table 6 ELF-64 Header: Processor-Specific Flags in e_flags

Flag Name Value Comments

Page 12 007-4658-001
2.3 ELF-64 Section Header
The section header format is as defined in [ABI64]; it is reproduced here
for reference purposes.

The valid section types for section header field sh_type are given in Table
7 below. Shaded types are MIPS-specific; heavily shaded types are new
in this specification.

Table 7 Section Header Structure (Elf64_Shdr)

Name Type Description

sh_name Elf64_Word Section name (index into section
header string table section)

sh_type Elf64_Word Section type: see Table 8

sh_flags Elf64_Xword Section flags: see Table 9

sh_addr Elf64_Addr Address of first byte, or zero

sh_offset Elf64_Off File offset of section

sh_size Elf64_Xword Section’s size in bytes

sh_link Elf64_Word Table index link: section-specific

sh_info Elf64_Word Extra information: section-specific

sh_addralign Elf64_Xword Address alignment constraint

sh_entsize Elf64_Xword Size of fixed-size entries in section,
or zero

Table 8 Section Types

Name Value Description

SHT_NULL 0 Inactive section.

SHT_PROGBITS 1 Information defined by the program

SHT_SYMTAB 2 Symbol table (one per object file)

SHT_STRTAB 3 String table (multiple sections OK)

SHT_RELA 4 Relocation with explicit addends

007-4658-001 ELF-64 Object File Format Page 13
SHT_HASH 5 Symbol hash table (one per object)

SHT_DYNAMIC 6 Dynamic linking information

SHT_NOTE 7 Vendor-specific file information

SHT_NOBITS 8 Section contains no bits in object file

SHT_REL 9 Relocation without explicit addends

SHT_SHLIB 10 Reserved — non-conforming

SHT_DYNSYM 11 Dynamic linking symbol table (one)

SHT_LOPROC 0x70000000 First processor-specific type

SHT_HIPROC 0x7fffffff Last processor-specific type

SHT_LOUSER 0x80000000 First application-specific type

SHT_HIUSER 0x8fffffff Last application-specific type

SHT_MIPS_LIBLIST 0x70000000 DSO library information used in link

SHT_MIPS_MSYM 0x70000001 MIPS symbol table extension

SHT_MIPS_CONFLICT 0x70000002
Symbols conflicting with DSO-de-
fined symbols

SHT_MIPS_GPTAB 0x70000003 Global pointer table

SHT_MIPS_UCODE 0x70000004 Reserved

SHT_MIPS_DEBUG 0x70000005
Reserved (obsolete debug informa-
tion)

SHT_MIPS_REGINFO 0x70000006 Register usage information

SHT_MIPS_PACKAGE 0x70000007 OSF reserved

SHT_MIPS_PACKSYM 0x70000008 OSF reserved

SHT_MIPS_RELD 0x70000009 Dynamic relocation?

unused 0x7000000a

SHT_MIPS_IFACE 0x7000000b Subprogram interface information

SHT_MIPS_CONTENT 0x7000000c Section content classification

SHT_MIPS_OPTIONS 0x7000000d General options

SHT_MIPS_DELTASYM 0x7000001b Delta C++: symbol table

SHT_MIPS_DELTAINST 0x7000001c Delta C++: instance table

SHT_MIPS_DELTACLASS 0x7000001d Delta C++: class table

SHT_MIPS_DWARF 0x7000001e DWARF debug information

Table 8 Section Types

Name Value Description

Page 14 007-4658-001
The section attribute flags defined for section header field sh_flags are
given in the table below. Again, light shading indicates MIPS-specific
flags, and heavier shading new flags.

SHT_MIPS_DELTADECL 0x7000001f Delta C++: declarations

SHT_MIPS_SYMBOL_LIB 0x70000020 Symbol-to-library mapping.

SHT_MIPS_EVENTS 0x70000021 Event locations

SHT_MIPS_TRANSLATE 0x70000022 ???

SHT_MIPS_PIXIE 0x70000023 Special pixie sections

SHT_MIPS_XLATE 0x70000024 Address translation tablea

SHT_MIPS_XLATE_DEBUG 0x70000025 SGI internal address translation tablea

SHT_MIPS_WHIRL 0x70000026 Intermediate code

SHT_MIPS_EH_REGION 0x70000027 C++ exception handling region info

SHT_MIPS_XLATE_OLD 0x70000028 Obsolete

SHT_MIPS_PDR_EXCEPTION 0x70000029
Runtime procedure descriptor table
exception information (ucode)

a SHT_MIPS_XLATE contains translation data table as created by the xlate library
from within cord/pixie, for use by debuggers and other tools which need to know how
to map addresses in the binary text to addresses in the debug information. See the sys-
tem header file /usr/lib/include/Xlate.h. SHT_MIPS_XLATE_DEBUG has the
same data format as SHT_MIPS_XLATE.

Table 9 Section Attribute Flags

Name Value Description

SHF_WRITE 0x1 Section writable during execution

SHF_ALLOC 0x2 Section occupies memory

SHF_EXECINSTR 0x4
Section contains executable instruc-
tions

SHF_MASKPROC 0xf0000000 Reserved for processor-specific flags

SHF_MIPS_GPREL 0x10000000
Section must be part of global data ar-
ea.c

Table 8 Section Types

Name Value Description

007-4658-001 ELF-64 Object File Format Page 15
A number of special sections are predefined, with standard names and at-
tributes. Note, however, that an ELF producer may create arbitrary sec-
tions with arbitrary names and attributes, and may generate the
predefined sections with additional attributes. For example, executable
code may be generated in multiple sections with arbitrary names, not just
in .text.

SHF_MIPS_MERGE a 0x20000000
Section data should be merged to
eliminate duplication

SHF_MIPS_ADDR 0x40000000
Section data is addresses by default
(see Section 2.12). Address size to be
inferred from section entry size.

SHF_MIPS_STRING 0x80000000
Section data is string data by default
(see Section 2.12).

SHF_MIPS_NOSTRIP 0x08000000 Section data may not be stripped

SHF_MIPS_LOCAL 0x04000000 Section data local to process b,c

SHF_MIPS_NAMES 0x02000000
Linker must generate implicit hidden
weak names — see Section 3.1.2

SHF_MIPS_NODUPE 0x01000000
Section contains text/data which may
be replicated in other sections. Linker
must retain only one copy.

a For a merged section, the SH_INFO value is the size (in bytes) of the objects to
be merged. Such sections should not be writable.

b Local (SHF_MIPS_LOCAL) sections are for multi-process programs sharing
an address space. They must be copied for each process which attempts to write
to them. This copying does not occur until after the second process is spawned, so
that the initial process can perform dynamic initialization common to all pro-
cesses’ copies of the section. This attribute replaces the predefined COFF lcldta
and .lbss sections.

c SHF_MIPS_LOCAL and SHF_MIPS_GPREL are mutually exclusive, i.e. a
local data section may not be placed in the short gp-relative data area.

Table 10 Special Sections

Name Type Default Attributes

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

Table 9 Section Attribute Flags

Name Value Description

Page 16 007-4658-001
.comment SHT_PROGBITS none (by default)

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS (gABI, not used by MIPS)

.debug SHT_PROGBITS (gABI, not used by MIPS)

.dynamic SHT_DYNAMIC SHF_ALLOC a

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE +
SHF_MIPS_GPREL

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.interp SHT_PROGBITS SHF_ALLOC

.line SHT_PROGBITS SHF_ALLOC

.note SHT_NOTE none (by default)

.plt SHT_PROGBITS (gABI, not used by MIPS)

.relname SHT_REL none (by default), see [ABI32]

.relaname SHT_RELA none (by default), see [ABI32]

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS (gABI, not used by MIPS)

.shstrtab SHT_STRTAB (gABI, not used by MIPS)

.strtab SHT_STRTAB none

.symtab SHT_SYMTAB none

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.MIPS.Addrs SHT_MIPS_PIXIE none

.MIPS.Binmap SHT_MIPS_PIXIE none

.MIPS.compact_rel SHT_MIPS_COMPACT none

.conflict c SHT_MIPS_CONFLICT SHF_ALLOC

.MIPS.contentname SHT_MIPS_CONTENT SHF_ALLOC+ SHF_MIPS_NOSTRIP

.debug_abbrev SHT_MIPS_DWARF none (generic DWARF section)

Table 10 Special Sections

Name Type Default Attributes

007-4658-001 ELF-64 Object File Format Page 17
.debug_aranges SHT_MIPS_DWARF none (generic DWARF section)

.debug_frame SHT_MIPS_DWARF SHF_MIPS_NOSTRIP
(generic DWARF section)

.debug_funcnames SHT_MIPS_DWARF none (generic DWARF section)

.debug_info SHT_MIPS_DWARF none (generic DWARF section)

.debug_line SHT_MIPS_DWARF none (generic DWARF section)

.debug_loc SHT_MIPS_DWARF none (generic DWARF section)

.debug_pubnames SHT_MIPS_DWARF none (generic DWARF section)

.debug_str SHT_MIPS_DWARF none (generic DWARF section)

.debug_typenames SHT_MIPS_DWARF none (MIPS DWARF section)

.debug_varnames SHT_MIPS_DWARF none (MIPS DWARF section)

.debug_weaknames SHT_MIPS_DWARF none (MIPS DWARF section)

.dynamic SHT_DYNAMIC SHF_ALLOC

.MIPS.eventsname SHT_MIPS_EVENTS SHF_ALLOC+SHF_MIPS_NOSTRIP

.gptabname b SHT_MIPS_GPTAB none

.MIPS.Graph SHT_MIPS_PIXIE none

.MIPS.interfaces SHT_MIPS_IFACE SHF_ALLOC+SHF_MIPS_NOSTRIP

.MIPS.lbss SHT_NOBITS SHF_ALLOC + SHF_WRITE +
SHF_MIPS_LOCAL d

.MIPS.ldata SHT_PROGBITS

.lib obsolete

.liblist c SHT_MIPS_LIBLIST SHF_ALLOC

.lit4 b SHT_PROGBITS SHF_ALLOC + SHF_MIPS_MERGE
+ SHF_MIPS_GPREL a

.lit8 b SHT_PROGBITS SHF_ALLOC + SHF_MIPS_MERGE
+ SHF_MIPS_GPREL a

.MIPS.lit16 b SHT_PROGBITS SHF_ALLOC + SHF_MIPS_MERGE
+ SHF_MIPS_GPREL a

.MIPS.Log SHT_MIPS_PIXIE none

.MIPS.Map SHT_MIPS_PIXIE none

.mdebug obsolete to be replaced by DWARF sections

.MIPS.options SHT_MIPS_OPTIONS SHF_ALLOC+SHF_MIPS_NOSTRIP

Table 10 Special Sections

Name Type Default Attributes

Page 18 007-4658-001
We expect more use of non-predefined sections in the future to achieve
greater control over process memory allocation. The linker is expected to
combine sections with matching name and attributes, then groupings
with matching attributes, and finally groupings with consistent attributes
(e.g. all SHT_MIPS_GPREL sections, or all read-only sections). The pre-
cise rules will be defined in Section 3.

.msym SHT_MIPS_MSYM SHF_ALLOC

.MIPS.Graph SHT_MIPS_PIXIE none

.MIPS.Perf_argtrace SHT_MIPS_PIXIE none

.MIPS.Perf_bb_offsets SHT_MIPS_PIXIE none

.MIPS.Perf_call_graph SHT_MIPS_PIXIE none

.MIPS.Perf_function SHT_MIPS_PIXIE none

.MIPS.Perf_table SHT_MIPS_PIXIE none

.MIPS.Perf_weak_names SHT_MIPS_PIXIE none

.rel.dyn SHT_REL SHF_ALLOC

.reldname SHT_RELA SHF_ALLOC

.sbss b SHT_NOBITS SHF_ALLOC + SHF_MIPS_GPREL +
SHF_WRITE

.sdata b SHT_PROGBITS SHF_ALLOC + SHF_MIPS_GPREL +
SHF_WRITE

.srdata b SHT_PROGBITS SHF_ALLOC + SHF_MIPS_GPREL

.MIPS.symlib SHT_MIPS_SYMBOL_LIB SHF_ALLOC

.MIPS.translate SHT_PROGBITS SHF_MIPS_NOSTRIP
+ SHF_ALLOC (non-shared only)

.ucode SHT_MIPS_UCODE none (obsolete)

a [ABI32M] specifies these sections with SHF_WRITE as well. Why?
b A MIPS ABI-64 compiliant system must support these sections.
c A MIPS ABI-64 compliant system must recognize, but may choose to ignore, these sections. Howev-

er, if either is supported, both must be.
d The .lbss and lcldata sections can be replaced with arbitrary sections having the

SHF_MIPS_LOCAL attribute; they will no longer be recognized by the system strictly based on
name.

Table 10 Special Sections

Name Type Default Attributes

Linker
Processing

007-4658-001 ELF-64 Object File Format Page 19
2.4 String Table
This section type is unchanged from [ABI32]. A String Table section has
the following attributes:

2.5 Symbol Table
A symbol table section is unchanged from [ABI32] except for the types
of some of its fields.

A symbol table section and its associated string table section must be
present for any executable file with DSO dependencies, or for any DSO.
It is permissible to remove from it symbols resolved within itself if they
are not preemptible (protected) and not visible outside this object. (All
defined symbols in an executable file are protected, but symbols must
have been explicitly declared protected in a DSO, and hidden in either a
DSO or an executable. See the discussion associated with Table 14 for
definitions of these terms.)

A Symbol Table section has the following attributes:

The structure of a symbol table item is given by Table 11 below.

name .strtab

sh_type SHT_STRTAB

sh_link SHN_UNDEF

sh_info 0

sh_flags SHF_ALLOC

requirements see .symtab

name .symtab

sh_type SHT_SYMTAB

sh_link Section header index of the associated string table

sh_info 0

sh_flags SHF_ALLOC

requirements see discussion above

Page 20 007-4658-001
The high-order nibble of the st_info field specifies the symbol’s binding
(see Table 12), and the low-order nibble specifies its type (see Table 13).

Table 11 ELF-64 Symbol Table Structure

Name Type Comments

st_name Elf64_Word Name’s index into string table

st_info Elf64_Byte Symbol type and binding: see
Table 12 and Table 13

st_other Elf64_Byte Other info: see Table 14

st_shndx Elf64_Section Index of section where defined

st_value Elf64_Addr Symbol value

st_size Elf64_Xword Symbol size

Table 12 Symbol Binding (ELF32_ST_BIND)

Constant Name Value Comments

STB_LOCAL 0 Not visible outside object file where defined

STB_GLOBAL 1 Visible to all object files. Multiple defini-
tions cause errors. Force extraction of defin-
ing object from archive file.

STB_WEAK 2 Visible to all object files. Ignored if
STB_GLOBAL with same name found. Do
not force extraction of defining object from
archive file. Value is 0 if undefined.

STB_LOPROC 13 First processor-specific binding

STB_SPLIT_COMMON 13 Split common symbol. See Section 2.5.1.

STB_HIPROC 15 Last processor-specific binding

007-4658-001 ELF-64 Object File Format Page 21
The binding type of a symbol is used to control its visibility, as well as
resolution in the case of multiple definitions, between the relocatable ob-
jects comprising a program. This semantics is extended to interfaces be-
tween an executable and/or DSOs unchanged — it is simply interpreted
by the dynamic linker instead of the static linker. In order to allow inde-
pendent control of interfaces between executable and DSOs without af-
fecting the binding type semantics within them, information in the
st_other field, as given in Table 14 below, is used to specify visibility and
accessibility of symbols outside the containing executable/DSO, which
we term the symbol export class.

● By default, global, weak, or common symbols are preemptible, i.e.
they may be preempted by definitions of the same name elsewhere.

● Symbols defined in the current component are protected if they are
visible outside but not preemptible, meaning that any reference to
such a symbol from within the defining executable or DSO must
resolve to the local definition even if there are definitions in other
executables or DSOs which would normally preempt it.

● Symbols defined in the current component are hidden if their
names are not visible outside — such symbols are necessarily pro-
tected, and this attribute may be used to control the external inter-
face of a DSO, but such objects may still be referenced from
outside if an address is passed outside as a pointer.

Table 13 Symbol Type (ELF32_ST_TYPE)

Constant Name Value Comments

STT_NOTYPE 0 Not specified

STT_OBJECT 1 Data object: variable, array, etc.

STT_FUNC 2 Function or other executable code

STT_SECTION 3 Section. Exists primarily for relocation

STT_FILE 4 Name (pathname?) of the source file associated
with object. Binding is STT_LOCAL, section
index is SHN_ABS, and it precedes other
STB_LOCAL symbols if present

STT_LOPROC 13 First processor-specific type

STT_HIPROC 15 Last processor-specific type

Page 22 007-4658-001
● Symbols are internal if their addresses are not passed outside, e.g.
static C functions whose address is never taken.

The visibility semantics of these attributes also allow various optimiza-
tions. Whereas care must be taken to maintain position-independence and
proper GOT usage for references to and definitions of symbols which
might be preempted by or referenced from other DSOs, these restrictions
all allow references from the same executable/DSO to make stricter as-
sumptions about the definitions. References to protected symbols (and
hence to hidden or internal symbols) may be optimized by using absolute
addresses in executables or by assuming addresses to be relatively near-
by. Internal functions do not normally require gp establishment code be-
cause they will always be entered from the same executable/DSO with
the correct gp already set up.

None of these attributes affects resolution of symbols within an execut-
able or DSO during static linking — such resolution is controlled by the
binding type. (However, if the static linker references symbol definitions
in other DSOs during link time, it is constrained by their export classes.)
Once the static linker has chosen its resolution, these attributes impose
two requirements, both based on the fact that various references in the
code being linked may have been optimized to take advantage of the at-
tributes. First, all of these attributes imply that a symbol must be defined
in the current DSO/executable. If a symbol with one of these attributes
has no definition within the executable/DSO being linked, then it must be
resolved to allocated space if common, resolved to zero if weak, or an er-
ror reported otherwise. Second, if any reference to, or definition of, a
name is a symbol with one of these attributes, the attribute must be prop-
agated to the resolving symbol in the linked object.

Table 14 st_other Field Masks

Constant Name Value Comments

STO_EXPORT 3 DSO export class — one of:

STO_DEFAULT 0 Default: STB_GLOBAL or
STB_WEAK are preemptible,
STB_LOCAL are hidden.

STO_INTERNAL 1 Not referenced outside executable/DSO

STO_HIDDEN 2 Not visible outside executable/DSO

STO_PROTECTED 3 Not preemptible

Linker
Processing

007-4658-001 ELF-64 Object File Format Page 23
Normally in relocatable files, a symbol’s value refers to its offset within
the section specified by the st_shndx field. Its value will therefore be ad-
justed as the section moves during relocation. Certain special section in-
dex values imply other semantics, as described in Table 15:

Resolution rules for optional symbols (STO_OPTIONAL) are as follows.
The static linker (ld) should convert a reference to an optional definition
(i.e. in another DSO) to an optional reference. The merge of an optional
and a non-optional reference becomes optional. The optional type is ig-
nored for SHN_COMMON and SHN_ACOMMON symbols, and does not af-
fect stub generation and resolution. In the runtime linker (rld), unresolved
optional symbols are silently resolved to the reserved symbol
_RLD_MISSING, defined in libc.so.1. Optional references do not trigger
the loading of delay-loaded libraries. Therefore, optional references may
go unresolved until some other event triggers the loading of the de-
lay-loaded library, and one may not check the availability of an optional
feature found in a delay-loaded library until some other event has forced
the library to be loaded.

STO_OPTIONAL 4 Symbol is optional. If no definition is
available at runtime, it is resolved to the
symbol _RLD_MISSING.

Table 15 st_shndx Field Special Values

Name Value Semantics

SHN_UNDEF 0
The symbol is undefined. Its value will be determined by its appearance
as a defined symbol in another object file.

SHN_LORESERVE 0xff00
Section indices between SHN_LORESERVE and
SHN_HIRESERVE are reserved for special values — they do not re-
fer to the section header table.

SHN_LOPROC 0xff00
Section indices between SHN_LOPROC and SHN_HIPROC are re-
served for processor-specific values.

SHN_MIPS_ACOMMON 0xff00 Allocated common symbols in a DSOa,e.

SHN_MIPS_TEXT 0xff01 Reserved (obsolete).

Table 14 st_other Field Masks

Constant Name Value Comments

Linker
Processing

Page 24 007-4658-001
In executable and shared object files, the symbol’s value is a virtual ad-
dress (if defined), and the section header index is irrelevant. If the section

SHN_MIPS_DATA 0xff02 Reserved (obsolete).

SHN_MIPS_SCOMMON 0xff03 gp-addressable common symbolsb (relocatable objects only).

SHN_MIPS_SUNDEFINED 0xff04 gp-addressable undefined symbolsc (relocatable objects only).

SHN_MIPS_LCOMMON 0xff05

Local common, equivalent to SHN_COMMON, except that the com-
mon block will be allocated in a local section, i.e. one replicated for
each process in a multi-process program sharing memory (see
SHF_MIPS_LOCAL in Section 2.3).d,e

SHN_MIPS_LUNDEFINED 0xff06

Local undefined symbol, equivalent to SHN_UNDEFINED, except
that the symbol must resolve to a local section, i.e. one replicated for
each process in a multi-process program sharing memory (see
SHF_MIPS_LOCAL in Section 2.3).d

SHN_HIPROC 0xff1f
Section indices between SHN_LOPROC and SHN_HIPROC are re-
served for processor-specific values.

SHN_ABS 0xfff1 The symbol’s value is absolute and does not change due to relocation.

SHN_COMMON 0xfff2
The symbol labels a common block which has not yet been allocateda.
Its st_value specifies alignment, similar to a section header’s
sh_addralign field. Its size is the number of bytes required.

SHN_HIRESERVE 0xffff
Section indices between SHN_LORESERVE and
SHN_HIRESERVE are reserved for special values — they do not re-
fer to the section header table.

a Normal SHN_COMMON symbols are not allocated in DSOs, which means that if they are not allocated else-
where (in the main executable or another DSO), rld must allocate them at runtime. SHN_MIPS_ACOMMON
symbols are used in DSOs to mark common that has been allocated in advance to avoid runtime allocation, but still
have common semantics, i.e. are not initialized and may be preempted by non-common definitions from any DSO.
The st_value of such a symbol is its virtual address. It may be relocated, but the alignment of its address must be
preserved up to modulo 65,536.

b SHN_MIPS_SCOMMON symbols are common symbols which must be allocated within 32,768 bytes of gp.
c SHN_MIPS_SUNDEFINED symbols are undefined symbols which must be resolved to addresses within 32,768

bytes of gp.

d SHN_MIPS_LCOMMON and SHN_MIPS_LUNDEFINED symbols must be consistently defined in a program,
i.e. every appearance of the symbol must be either an undefined SHN_MIPS_LCOMMON reference, a
SHN_MIPS_LUNDEFINED reference, or a definition in a SHF_MIPS_LOCAL section. These symbols may
not be gp-relative.

e SHN_MIPS_ACOMMON symbols with values (virtual addresses) in SHF_MIPS_LOCAL sections are equiva-
lent to SHN_MIPS_LCOMMON symbols, except that they are pre-allocated by the static linker.

Table 15 st_shndx Field Special Values

Name Value Semantics

007-4658-001 ELF-64 Object File Format Page 25
header index of a function symbol is SHN_UNDEF and the st_value is
non-zero, it is the virtual address of a stub for lazy evaluation of a symbol
defined in one of the associated DSOs.

ELF-32: The extension of using st_other for specifying DSO-related
scope attributes is used in ELF-32 beginning with the IRIX 5.1 release
for linker-generated symbols which must be protected. As this field is
currently unused, there should be no compatibility issues unless there are
tools which attempt to enforce non-use. Tools which ignore this field will
be unable to cope with the implied symbol resolution.

2.5.1 Split Common Symbols

It is sometimes desirable for the compiler to split a Fortran COMMON
block into multiple pieces for separate allocation (e.g. to control relative
position in the processor cache). The MIPSpro compilers do so under ap-
propriate options, and represent the resulting decomposition as described
below. The static linker (ld) then determines whether the decomposition
is safe, and reassembles the COMMON if not.

A split common symbol is represented in a relocatable object by a normal
symbol for the original COMMON block, plus a split common symbol
for each element of the decomposition. The split common symbol inher-
its alignment, binding type, export class, and section index field informa-
tion from the parent common, allowing its symbol table entry to be
redefined as given by the modified version of Table 11 in Table 16 below:

Table 16 ELF-64 Split Common Component Symbol Table Element

Name Type Comments

st_name Elf64_Word Component name’s index into string table

st_info Elf64_Byte STB_SPLIT_COMMON

st_other Elf64_Byte STO_SC_ALIGN_UNUSED

st_shndx Elf64_Section Symbol index of parent common symbol

st_value Elf64_Addr Offset of component from base of parent
common symbol

st_size Elf64_Xword Component size

ELF-32

Page 26 007-4658-001
A split common symbol is identified by the STB_SPLIT_COMMON value
of the st_info field, requiring the alternate interpretation of its other fields
given above.

Compiler Requirements:

● The component symbols produced by the compiler must be a parti-
tion of the parent COMMON. That is, the first should start at off-
set zero, the second at offset size(first), etc., and length(parent) =
offset(last)+size(last) = sum(sizes).

● Subject to the above requirement, the compiler is allowed to split
common blocks arbitrarily, and the linker is responsible for identi-
fying problems and reassembling the original common block.

Linker Requirements:

● The linker must produce a final partition which is consistent with
each of the individual objects' partitions in the sense that each
component from an input relocatable object falls entirely within
one of the output components.

● If the linker partitions the common, it must replace the component
symbols by normal (e.g. common, bss, or data) symbols, produc-
ing an object which contains no split common component symbols
(and therefore looks like an ABI-compliant object). It may do so
either by producing a distinct regular symbol for each component,
or by replacing the component symbols by appropriate offsets
from a single symbol for the common. Similarly, if it reassembles
the common, it must remove the component symbols.

● If the linker partitions the common, the resulting symbols must not
be exported, to avoid inadvertent incorrect references if one of the
referenced DSOs is replaced later with a version which references
the name.

● The following situations require that the linker reassemble the
original common:

a. There is an explicit linker request to export the common block
symbol (implying that some DSO may contain a reference to
it with unknown assumptions).

b. The linker finds a relocation against the common block sym-
bol (implying code generated to reference the original com-
mon block with unknown assumptions).

Compiler
Processing

Linker
Processing
Linker
Processing

007-4658-001 ELF-64 Object File Format Page 27
c. The linker finds a reference to the common block symbol
from any DSO (implying that the DSO contains a reference to
it with unknown assumptions).

d. The common block symbol is initialized with a single
BLOCK DATA (i.e. it is defined at a specific location in a data
section).

e. The linker finds a PU or object file in which the common has
not been split (a variant of (a) and (c)).

A linker implementation may choose to reassemble split common
blocks in other circumstances.

2.6 Hash Table
A hash table section is unchanged from [ABI32]. It has the following at-
tributes:

See [ABI32] for a description of the hash table structure and hash func-
tion, which are unchanged.

2.7 Register Information Section
This section is strictly a 32-bit ABI section, which specifies the register
usage of the code in an object file. In 64-bit ELF, this section is obsolete,
and is superceded by the Options Section described in Section 2.8 below.
Its section attributes are:

name .hash

sh_type SHT_HASH

sh_link Section header index of the associated symbol table

sh_info 0

sh_flags SHF_ALLOC

requirements may not be stripped

name .reginfo

sh_type SHT_MIPS_REGINFO

sh_link SHN_UNDEF

sh_info 0

sh_flags none

Page 28 007-4658-001
The structure of a Register Information descriptor is given by Table 19 in
Section 2.8 below.

ELF-32: MIPS tools will ignore this section in 32-bit ELF if a .MIPS.op-
tions section is present.

2.8 Options Section
This section specifies miscellaneous options to be applied to an object
file. An options section is required, and must contain at least an
ODK_REGINFO descriptor (below). In a shared executable or DSO, the
options section should immediately follow the program header table for
best startup performance, and the .dynamic section must contain a
DT_MIPS_OPTIONS tag pointing to it. In a non-shared program (which is
not ABI-conformant), the options section must immediately follow the
program header table.

Its section attributes are:

An options record consists of a sequence of variable length (and variable
format) descriptors, which may apply either to the entire object file or to
a specific section. Each such descriptor begins with the following header:

requirements obsolete — not strippable if present in ELF-32 file

name .MIPS.options

sh_type SHT_MIPS_OPTIONS

sh_link SHN_UNDEF

sh_info 0

sh_flags SHF_ALLOC + SHF_MIPS_NOSTRIP

requirements mandatory, may not be stripped

Table 17 Options Descriptor Header (Elf_Options)

Field Name Type Comments

kind Elf64_Byte Determines interpretation of variable part of
descriptor — see Table 18 below

ELF-32

007-4658-001 ELF-64 Object File Format Page 29
The Options Descriptor kinds are given in Table 18 below. The various
descriptors associated with them follow. For each descriptor kind, the as-
sociated table gives the value of the size field, the usage of the info field,
and any additional fields required.

The .MIPS.options section replaced .reginfo in ELF-32 with the MIPSpro
6.0 compilers, although it remains in use in the 5.x (ucode) compilers.

size Elf64_Byte Byte size of descriptor, including this header a

section Elf64_Section Section header index of section affected, or 0
for global options

info Elf64_Word Kind-specific information

a Descriptors may have arbitrary size (up to 255 bytes). However, they must be
8-byte aligned, and must be null padded if the given size is not 0 mod 8.

Table 18 Options Descriptor Kinds

Constant Name Value Comments

ODK_NULL 0 Undefined

ODK_REGINFO 1 Register usage information

ODK_EXCEPTIONS 2 Exception processing options

ODK_PAD 3 Section padding options

ODK_HWPATCH 4 Hardware patches applied

ODK_FILL 5 Linker fill value

ODK_TAGS 6 Space for tool identification

ODK_HWAND 7 Hardware AND patches applied

ODK_HWOR 8 Hardware OR patches applied

ODK_GP_GROUP 9 GP group to use for text/data sections

ODK_IDENT 10 ID information

ODK_PAGESIZE 11 Page size information

Table 17 Options Descriptor Header (Elf_Options)

Field Name Type Comments

Page 30 007-4658-001
2.8.1 Register Information Option Descriptor

The ODK_REGINFO descriptor supercedes what used to be in the special
.reginfo section. The structure of a Register Information descriptor is giv-
en by Table 19 below.

ELF-32: ELF-32 does not have the ri_pad field. We use this section in-
stead of .reginfo beginning with IRIX 6.0, since we require the additional
descriptors described below. However, .reginfo may still be generated for
the benefit of foreign (and back-rev) tools.

2.8.2 Exception Information Option Descriptor

The ODK_EXCEPTIONS descriptor contains information only in the info
field of the basic options descriptor header, as given by the masks in Ta-
ble 20 below. Its size is 8 bytes.

Table 19 Register Information Structure

Field Name Type Comments

kind Elf64_Byte value is ODK_REGINFO

size Elf64_Byte value is 40

section Elf64_Section 0

info Elf64_Word unused

ri_gprmask Elf64_Word Mask of general registers used

ri_pad Elf64_Word Unused padding field (for align-
ment of following fields -- ELF64
only)

ri_cprmask[4] Elf64_Word[4] Mask of coprocessor registers used

ri_gp_value Elf64_Addr Initial value of gp a

a If there is no register information descriptor, the initial value of gp is assumed to
be 0. The significance of this value is that, for any SHT_MIPS_GPREL sec-
tion, if its start address (as given by the section’s sh_addr) is specified as x
(which will usually be zero), then gp is assumed to be initialized to its relocated
start address plus (ri_gp_value-x). The initial addends of any
R_MIPS_GPREL-relocated values will be correct offsets if the section is not
moved relative to gp.

ELF-32

007-4658-001 ELF-64 Object File Format Page 31
Linkage and Execution: The static linker (ld) must combine the
descriptors from all object files linked as follows. The OEX_FPU_MIN
fields are OR’ed together, so that any exception enable required by any of
the objects will be set for the process. Similarly, the OEX_FPU_MAX
fields are AND’ed together, so that any exception required to be
suppressed by any of the objects will be suppressed for the process. The
OEX_PAGE0, OEX_SMM, OEX_PRECISEFP, and OEX_DISMISS flags are
OR’ed together. The linker should always produce an ODK_EXCEPTIONS
descriptor even if none of the linked objects contained one, so that simple
tools can be used to manipulate these options. In such a case, the info field
should contain the value OEX_FPU_MAX, i.e. any FP exceptions allowed,
and no other options set.

At execution time, the dynamic linker (rld) must perform a similar task to
combine the descriptors from the main executable and any DSOs, and it
must perform the appropriate actions to achieve the implied state

Table 20 Exception Information info Field Masks

Mask Name Value Comments

OEX_FPU_MIN 0x0000001f Min FPU exception enable a

OEX_FPU_MAX 0x00001f00 Max FPU exception enable a

OEX_PAGE0 0x00010000 Page zero of the virtual address space
must be mapped b

OEX_SMM 0x00020000 Run in sequential memory mode c

OEX_PRECISEFP 0x00040000 Run in precise FP exception mode d

OEX_DISMISS 0x00080000 Dismiss invalid address traps e

a These masks bound the setting of the FPU exception enable masks at runtime.
The runtime mask may enable only bits in the maximum mask, and must enable
bits in the minimum mask. See discussion below.

b If set, loads from page zero of the virtual address space must not cause invalid
address faults. However, page zero may be write-protected. "Page zero" here
implies the minimum, given by ELF_MIPS_MINPGSZ in elf.h.

c If set, and the process is running on an R8000 or other processor with a sequen-
tial memory mode, execute in that mode.

d If set, and the process is running on an R8000 or other processor with a distinct
mode for precise floating point exceptions, execute in that mode.

e If set, any invalid address traps encountered should be dismissed without abort-
ing or otherwise notifying the running process.

Linker
Processing

Page 32 007-4658-001
(typically making calls to the kernel). In addition, it must retain the
implied state for reference — in the event that a dlopen call is made to
open a new DSO, its state must be checked for compatibility with the
current state, and that state adjusted as required. The runtime linker is not
required to back out the requirements of a DSO which is subsequently
removed from the process image via dlclose.

For a non-shared program, the kernel or the runtime system (e.g. crt0)
must perform the same task, setting the implied initial state in the running
process.

Both the static and dynamic linkers should report incompatible
requirements of their components, i.e. an exception enable bit which is
set in the minimum mask and unset in the maximum mask, as errors. The
runtime system is not required to enforce retention of the specified modes
in the face of explicit attempts to set them by the running process, but it
may do so.

ELF-32: MIPS generates and uses this descriptor beginning with IRIX
6.0. It may be necessary to suppress it for pure-ABI objects.

2.8.3 Section Padding Option Descriptor

The ODK_PAD descriptor specifies padding required for the referenced
data section. The linker must provide for at least the indicated number of
bytes preceding or following the data section to be valid parts of the
virtual address space, guaranteed not to cause invalid address faults. This
facility is intended to allow the code generator to produce memory
references which may be beyond the referenced data object (e.g. for
software pipelining), with the assurance that they will not cause memory
faults at runtime.

If the writable flags are not set, the linker may provide padding simply by
arranging for other data sections to be contiguous to the section specified,
those other data sections need not be writable. If the writable flags are
set, writable empty space must be provided. If padding must be applied to
a symbol (e.g. because it is undefined or COMMON, and its ultimate sec-
tion is unknown), the 16-bit section is a symbol table section, and the
pad_symindex field specifies a 32-bit symbol index. In this case, since the
symbol may be allocated by another object file in the midst of a larger
section, the writable flags may not be set.

The format of this descriptor is given in Table 21 below:

ELF-32

007-4658-001 ELF-64 Object File Format Page 33
ELF-32: We generate and use this descriptor beginning with IRIX 6.0. It
may be necessary to suppress it for pure-ABI objects.

Linkage: It is technically possible for the static linker (ld) to postpone
processing of padding information (e.g. for symbols and/or sections
allocated at the beginning or end of a segment, or for unallocated
COMMON symbols), leaving the dynamic linker (rld) to process residual
padding descriptors. However, the MIPSpro static linker currently
processes padding completely, dealing with unallocated COMMON
symbols by turning them into ACOMMON symbols with proper
padding, and the MIPSpro dynamic linker does not deal with padding.

2.8.4 Hardware Patch Option Descriptor

The ODK_HWPATCH descriptor contains flags indicating whether various
patches required for specific hardware platforms have been applied to the
executable or DSO. It contains information only in the info field of the ba-

Table 21 Section Padding Descriptor

Field Name Type Comments

kind Elf64_Byte value is ODK_PAD

size Elf64_Byte value is 16

section Elf64_Section Section to be padded a

info & 0x0001 mask Prefix writable (OPAD_PREFIX)

info & 0x0002 mask Postfix writable (OPAD_POSTFIX)

info & 0x0004 mask Pad symbol b (OPAD_SYMBOL)

pad_prefix_size Elf64_Half Size (bytes) of prefix required

pad_postfix_size Elf64_Half Size (bytes) of postfix required

pad_symindex Elf64_Word Symbol index if OPAD_SYMBOL is set

a The section field normally references a data section to be padded or, if
OPAD_SYMBOL is set, a symbol table section in which to find a symbol to be
padded. If it is zero, the descriptor applies to all data sections, and the writable
flags may not be set in this case.

b If this flag is set, the section field is a symbol table section, and the
pad_symindex field specifies a 32-bit symbol index instead of a section for
padding (generally undefined or COMMON). The writable flags may not be set
in this case.

ELF-32

Linker
Processing

Page 34 007-4658-001
sic options descriptor header, as given by the masks in Table 22 below. Its
size is 8 bytes. This descriptor is required in all object files, to allow sim-
ple post-generation patching.

The static linker must merge (inclusive OR) the OHW_R8KPFETCH flags
from each of the objects it links. The OHW_R4KEOPR5000 cvt.[ds].l bug.
clean=1 and OHW_R5KEOP flags are added by tools after linking.

2.8.5 Hardware AND/OR Patch Option Descriptors

The ODK_HWAND / ODK_HWOR descriptors, like ODK_HWPATCH, con-
tain flags indicating whether various patches required for specific hard-
ware platforms have been applied to the object file. They contain
information in the info field of the basic options descriptor header, plus
the following 8 bytes. Their size is 16 bytes. These descriptors are re-
quired in all object files, to allow simple post-generation patching. The
descriptor layout is given in Table 23 below.

Table 22 Hardware Patch Options Descriptor

Mask Name Value Comments

OHW_R4KEOP 0x00000001 Patch for R4000 branch at end-of-page bug

OHW_R8KPFETCH 0x00000002 Object contains prefetch instructions which
may cause R8000 prefetch bug to occur

OHW_R5KEOP 0x00000004 Patch for R5000 branch at end-of-page bug

OHW_R5KCVTL 0x00000008 R5000 cvt.[ds].l bug: clean=1

OHW_R10KLDL 0x00000010 Requires patch for R10000 misaligned load.

Table 23 Hardware AND/OR Patch Option Descriptor Structure

Field Name Type Comments

kind Elf64_Byte value ODK_HWAND or ODK_HWOR

size Elf64_Byte value is 16

section Elf64_Section 0

info Elf64_Word 32 flags: see Table 24

Linker
Processing

007-4658-001 ELF-64 Object File Format Page 35
The static linker must merge the ODK_HWAND (bitwise AND) and
ODK_HWOR (bitwise inclusive OR) flags from each of the objects it links.
Generating tools should initialize the flags to zero for fields they do not
understand, and the linker should assume that missing descriptors contain
zeroes.

2.8.6 Fill Value Option Descriptor

The ODK_FILL descriptor contains information only in the info field of the
basic options descriptor header, specifically the value used by the linker
to fill uninitialized space. Its size is 8 bytes.

hwp_flags1 Elf64_Word 32 flags: see Table 24

hwp_flags2 Elf64_Word 32 flags: see Table 24

Table 24 Hardware Patch AND/OR Options Descriptor Flags

Mask Name Value Comments

ODK_HWAND info masks:

OHWA0_R4KEOP_CHECKED 0x00000001 Object checked for R4K end-of-page bug.

OHWA0_R4KEOP_CLEAN 0x00000002 Object verified clean of R4K end-of-page bug.

ODK_HWAND hwp_flags1 masks:

OHWA1_... 0x???????? None yet defined.

ODK_HWAND hwp_flags2 masks:

OHWA2_... 0x???????? None yet defined.

ODK_HWOR info masks:

OHWO0_FIXADE 0x00000001 Object requires call to fixade

ODK_HWOR hwp_flags1 masks:

OHWO1_... 0x???????? None yet defined.

ODK_HWAND hwp_flags2 masks:

OHWO2_... 0x???????? None yet defined.

Table 23 Hardware AND/OR Patch Option Descriptor Structure

Field Name Type Comments

Linker
Processing

Page 36 007-4658-001
2.8.7 Tags Option Descriptor

The ODK_TAGS descriptor initially contains only zero-filled space (40
bytes). It is reserved for tools to identify processing that has occurred. Its
size is 48 bytes.

The purpose of this descriptor is to allow tools to mark the object (exe-
cutable or DSO) without substantially rewriting the file, as would be re-
quired to add a new descriptor or section. Space in this descriptor should
be allocated very carefully, preferably a byte at a time. The .note section
is more appropriate if more space is required. The intent is that this allo-
cation last essentially forever. Although expansion is theoretically possi-
ble, doing so would eliminate its benefit for files created before the
expansion.

The last 8 bytes of the tags field are reserved for vendor-specific use by
non-MIPS/SGI vendors. Note, however, that such usage may conflict
with other vendors’ usage, and should therefore be limited to files which
is not expected to be handled by other vendors’ software.

Table 25 Tags Option Descriptor

Field Name Type Comments

kind Elf64_Byte value is ODK_TAGS

size Elf64_Byte value is 48

section Elf64_Section 0 (unused)

info mask 0 (unused)

tags Elf64_Byte[40] initially 0. Bytes currently reserved:

0..4 (Desktop)

32..39 (other vendors)

007-4658-001 ELF-64 Object File Format Page 37
2.8.8 GP Group Option Descriptor

The ODK_GP_GROUP descriptor is used to specify to which GP group
text and data sections are to be assigned, when this is determined prior to
linking (e.g. by interprocedural analysis). Its format is:

The number of sections allocated by a single such descriptor is limited by
the descriptor size limit of 255 bytes to 123. Multiple descriptors may be
used if more sections need to be included. In such a case, the OGP_SELF
flag must match for all occurrences of the same group number.

If this descriptor is present, it must be preceded by an ODK_IDENT de-
scriptor (below) unless all the GP groups are self-contained, and the
EF_MIPS_OPTIONS_FIRST flag must be set in the ELF header.

Each section identified by ID in the section_ids list must be allocated by
the linker to the same GP group as all other sections with the same GP
group number (but the linker may merge multiple groups if they fit). A
section without such an entry may be allocated arbitrarily. If the
OGP_SELF flag is set for the group, this requirement is restricted to sec-
tions in the file containing this ODK_GP_GROUP descriptor. Otherwise,
this requirement applies to sections with this OGP_GROUP number in all
files containing ODK_IDENT descriptors with the same identifier field val-
ue. (See the description of the ODK_IDENT descriptor below for further
information.)

Table 26 GP Group Option Descriptor

Field Name Type Comments

kind Elf64_Byte value is ODK_GP_GROUP

size Elf64_Byte value is total size (8 + 2*section count)

section Elf64_Section 0 (unused)

info & 0x0000ffff mask OGP_GROUP: GP group number

info & 0x00010000 mask OGP_SELF: GP group is self-contained

section_ids Elf64_Section
[size/2-4]

Section IDs for those sections with the
given GP group number

Linker
Processing

Page 38 007-4658-001
2.8.9 Ident Option Descriptor

The ODK_IDENT descriptor is used to provide identification information
in support of cross-file features. Its format is:

If this descriptor is present, the EF_MIPS_OPTIONS_FIRST flag must be
set in the ELF header.

The OGP_GROUP field provides a GP group number for all sections
which do not appear in an ODK_GP_GROUP descriptor. The OGP_SELF
flag applies to that group, as described with the ODK_GP_GROUP de-
scriptor above.

All object files using GP groups in ODK_IDENT or ODK_GP_GROUP de-
scriptors with the OGP_SELF flag not set must have the same non-zero
identifier field value. Any object file which specifies GP groups for some
of its sections using the ODK_GP_GROUP descriptor (above) must con-
tain one of these descriptors (preceding the ODK_GP_GROUP descriptor)
unless its GP groups are all self-contained (i.e. have their OGP_SELF
flags set, and need not be combined with identically number GP groups
in another object).

A typical scenario would have IPA specify the same non-zero identifier
field for each of the files it processes together, and an ld -r command set
the OGP_SELF flag after verifying that all the identifiers match and com-
bining the various contributions to the same GP group. Another scenario
would involve the compiler itself deciding to assign multiple GP groups
to an object, in which case it would set OGP_SELF and optionally assign
a non-zero identifier. It is a link-time error to encounter multiple object
files with ODK_GP_GROUP descriptors, and different identifier fields with
OGP_SELF not set in their ODK_IDENT descriptors.

Table 27 Ident Option Descriptor

Field Name Type Comments

kind Elf64_Byte value is ODK_IDENT

size Elf64_Byte value is 16

section Elf64_Section 0 (unused)

info & 0x0000ffff mask OGP_GROUP: default GP group number

info & 0x00010000 mask OGP_SELF: default GP group self-contained

identifier Elf64_XWord Timestamp or similar identifier

Linker
Processing

007-4658-001 ELF-64 Object File Format Page 39
2.8.10 Page Size Option Descriptor

The ODK_PAGESIZE descriptor is used to specify page sizes to be used in
running a program. This is currently an unimplemented proposal. Its for-
mat is:

This descriptor specifies system page sizes to be used in running the con-
taining object as part of a process. Each of the three one-byte values is in-
terpreted as a power-of-two exponent giving the desired page size, with
the value zero meaning that the default is to be used, and the value one
meaning that the runtime environment variables PAGESIZE_DATA,
PAGESIZE_STACK, PAGESIZE_TEXT, or PAGESIZE_ALL are to be queried.
The data page size applies to both static data segments and the heap.

This descriptor is optional, and may be ignored by a system which does
not support per-process variable page sizes. A system may or may not
recognize it in relocatable object files. The rules for combining conflict-
ing values in relocatable object files (if recognized), or in multiple DSOs
comprising a program, are implementation defined.

2.9 Relocation
Any section may have an associated SHT_REL and/or SHT_RELA section,
containing relocation operations for objects in the section. Its section at-
tributes are:

Table 28 Page Size Option Descriptor

Field Name Type Comments

kind Elf64_Byte value is ODK_PAGESIZE

size Elf64_Byte value is 8

section Elf64_Section 0 (unused)

info & 0x000000ff mask OPS_DATA: data page size to use

info & 0x0000ff00 mask OPS_STACK: stack page size to use

info & 0x00ff0000 mask OPS_TEXT: text page size to use

name .relname or .relaname (where name is the relocated section)

sh_type SHT_REL or SHT_RELA

sh_link Section header index of the associated symbol table

sh_info Section header index of the section to be relocated

Page 40 007-4658-001
The content of each section is an array of relocation records, as described
by Table 29 below:

2.9.1 Rules for Interpreting Relocation Records

The relocation operation consists of applying the operation(s) implied by
the type subfield(s) to operands which may include the address or offset
of the storage unit being relocated (r_offset), the current content of the
storage unit being relocated, the value of the symbol indexed by
r_symndx, a special symbol value (r_ssym) and/or the addend (r_addend).
If the symbol index is STN_UNDEF (0), it is treated as having value 0.

A number of relocation operations may be applied to a single address. If
they are consecutive in the relocation section, they are interpreted accord-
ing to the following rules:

a1. The first operation takes its addend from either the r_addend field
of the relocation operation record (if it is of type Elf64_Rela), or

sh_flags None by default

requirements object file relocation sections which are processed by ld need not
be transferred to executable/DSO, or may be strippable if placed
there.

Table 29 Relocation Operation (Elf64_Rel, Elf64_Rela)

Field Name Type Comments

r_offset Elf64_Addr Where to apply relocation:

relocatable: byte offset in section

executable: virtual address

r_sym Elf64_Word Symbol index

r_ssym Elf64_Byte Special symbol — see Table 30

r_type3 Elf64_Byte Relocation type — see Table 32

r_type2 Elf64_Byte Relocation type — see Table 32

r_type Elf64_Byte Relocation type — see Table 32

r_addend Elf64_Sxword Explicit addend for relocation opera-
tion (Elf64_Rela only)

007-4658-001 ELF-64 Object File Format Page 41
from the location to be relocated, as implied by the operation (if
the relocation record is of type Elf64_Rel).

a2. Each subsequent operation takes as its addend the result of the pre-
vious operation. All such intermediate results, and all relocation
arithmetic, are in the natural pointer length of the object, i.e. 64
bits for ELF-64, and 32 bits for ELF-32.

a3. Only the final operation actually modifies the location relocated.

o1. Up to three operations may be specified per record, by the fields
r_type, r_type2, and r_type3. They are applied in that order, and a
zero field implies no further operations from this record. (The fol-
lowing record may continue the sequence if it references the same
offset.)

s1. The first operation in a record which references a symbol uses the
symbol implied by r_sym.

s2. The next operation in a record which references a symbol uses the
special symbol value given by the r_ssym field, as described in Ta-
ble 30.

s3. A third operation in a record which references a symbol will as-
sume a NULL symbol, i.e. value zero. This is useful for operations
which do nothing but insert the relocated value into the proper in-
struction field.

The implication of the rules (a1)-(a3) is that a relocation type consists of
two components. The first component is the operation to be performed,
which is always relevant (although many of the relocation types will have
no effect given a NULL symbol). The second component is a specifica-
tion of the field to be relocated, which is relevant only for the first opera-
tion in the sequence (where it may specify the addend for an Elf64_Rel
relocation) and for the last operation in a sequence (where it specifies the
field rewritten by the relocation). This is compatible with old-style MIPS
relocations if one assumes that every relocation sequence has exactly one
element (which was probably true, except perhaps in cases where the new
definition won’t affect the result).

The purpose of this more complex definition is to allow us to specify
more complex relocations by composing simple relocations instead of re-
quiring that we always define additional relocation types. This will gen-
eralize our relocation capabilities significantly without many new
operations. The new composition rules are observed for 32-bit object filesELF-32

Page 42 007-4658-001
as well in the IRIX 6.0 linker and beyond (except for those related to hav-
ing multiple relocation types in a record).

2.9.2 Semantics of the Relocation Types

Relocation may be applied to the following fields of an instruction or data
word. Note that regardless of the position of a relocated field within an
instruction, the offset/address specified in r_offset is that of the full in-
struction, not of the field. Also note that the instruction or datum being
relocated need not be aligned.

Table 30 Special Relocation Symbols

Name Value Description

RSS_UNDEF 0 None — value is zero.

RSS_GP 1 Value of gp

RSS_GP0 2 Value of gp used to create object being relocated

RSS_LOC 3 Address of location being relocated

007-4658-001 ELF-64 Object File Format Page 43
Figure 1 Relocatable Fields

In the lists of relocation operations, the operation is described using oper-
ands from Table 31 below.

Table 31 Relocation Operands

Operand Description

A Represents an addend obtained as the value of the field being relocat-
ed prior to relocation (.rel), from a .rela addend field, or as the pre-
ceding result for a composed relocation (either).

31 15 0

31 15 0

31 15 0

31 15 0

31 15 0

31 15 0

31 25 0

hi16

lo16

rel16

lit16

pc16

half16

targ26

63 0

31 0word32

word64

31 10 0sh56

31 10 0sh66 2

(bits 10..6)

(bits 2,10..6)

15 0hw16

Page 44 007-4658-001
The actual relocation operations supported are described below in Table
32. The name and value columns are the relocation type, which is one of
the r_type* fields. The field column specifies the affected field of the stor-
age unit being relocated (only for the last operation in a composed reloca-
tion sequence). The "T_" prefix indicates that excess high-order bits are
to be truncated; the "V_" prefix indicates that the value is verified to fit in
the field, with an error generated if it does not. The symbol column spec-
ifies the kind of symbol to which the description applies.

Any of the relocation types may appear in either a SHT_REL or a
SHT_RELA relocation section, except that relocation types involving

AHL An address addend formed as follows. In .rela sections, it is identical
to an A addend. In a .rel section, a pair of adjacent relocations, one a
hi16 and the other a lo16, each provide a 16-bit partial addend. The
hi16 halfword is shifted left 16 bits, the lo16 halfword is sign ex-
tended, and the two resulting values are added. (The two relocations
need not actually be adjacent in a .rel section -- a single hi16 addend
may be used with multiple lo16 addends -- but processing this com-
bination requires fallable heuristics, so these relocations should not
be used in .rel sections.)

P The place (section offset or address) of the storage unit being relocat-
ed (computed using r_offset).

S The value of the symbol whose index resides in the relocation entry,
unless the symbol is STB_LOCAL of type STT_SECTION, in which
case S represents the final sh_addr minus the original sh_addr.

G The offset into the global offset table at which the address of the relo-
cation entry symbol, adjusted by the addend, resides during execu-
tion.

GP The final gp value to be used for the relocatable, executable, or DSO
being produced.

GP0 The gp value used to create the relocatable object. See Table 19.

EA The effective address of the symbol prior to relocation.

L The mapping table offset of a merged section, e.g. .lit4. Prior to relo-
cation, the addend field (in the instruction) contains an offset into the
object’s global data area. During relocation, the sections are merged,
removing duplicate entries, and a mapping table is constructed to
map the original offsets to the new offsets.

Table 31 Relocation Operands

Operand Description

007-4658-001 ELF-64 Object File Format Page 45
AHL operands are forbidden in a 64-bit SHT_REL section and
discouraged in a 32-bit SHT_REL section. In the latter case, they WILL
NOT BE SUPPORTED unless the ordering constraints imposed by table
footnote (b) are observed. Also note that some relocations (e.g.
R_MIPS_HIGHER, R_MIPS_HIGHEST) will normally be impossible to
specify in a SHT_REL section unless the required addend is small. An
SHT_RELA section must also be used for such relocations if the required
addend could become too large for its field in an ld -r partial link, even if
the value is small as generated by the original object file producer.

Several of the original MIPS relocation types may be used only for the
operation implied, and not for the field specified, in a multi-operation
sequence as described above. The name fields for those types are shaded,
and some are given alternate names in the table below to emphasize the
alternate interpretation.

Table 32 Relocation Types

Name Val-
ue

Field Symbol Calculation

R_MIPS_NONE 0 none n/a none

R_MIPS_16 1 V-half16 any S + sign_extend(A)

R_MIPS_32
R_MIPS_ADD

2 T-word32 any S + A

R_MIPS_REL32
R_MIPS_REL

3 T-word32 any S + A - EA

R_MIPS_26 4 T-targ26
local a (((A << 2) | (P&0xf0000000))

+ S) >> 2

external a (sign_extend(A<<2) + S) >> 2

R_MIPS_HI16 b, c 5 T-hi16 any %high (AHL + S) d

R_MIPS_LO16 b, c 6 T-lo16 any AHL + S

R_MIPS_GPREL16
R_MIPS_GPREL

7 V-rel16
external sign_extend(A) + S - GP

local sign_extend(A) + S + GP0 - GP

R_MIPS_LITERAL 8 V-lit16 local sign_extend(A) + L

Page 46 007-4658-001
R_MIPS_GOT16 e

R_MIPS_GOT
9 V-rel16

external G

local f

R_MIPS_PC16 10 V-pc16 external sign_extend(A) + S - P

R_MIPS_CALL16 e,m

R_MIPS_CALLm 11 V-rel16 external G

R_MIPS_GPREL32 12 T-word32 local A + S + GP0 - GP

R_MIPS_SHIFT5 16 V-sh5 any S

R_MIPS_SHIFT6 17 V-sh6 any S

R_MIPS_64 g 18 T-word64 any S + A

R_MIPS_GOT_DISP 19 V-rel16 any G

R_MIPS_GOT_PAGE 20 V-rel16 any h

R_MIPS_GOT_OFST 21 V-rel16 any h

R_MIPS_GOT_HI16 22 T-hi16 any %high(G)d

R_MIPS_GOT_LO16 23 T-lo16 any G

R_MIPS_SUB 24 T-word64 any S - A

R_MIPS_INSERT_A 25 T-word32 any Insert addend as instruction im-
mediately prior to addressed lo-
cation. iR_MIPS_INSERT_B 26 T-word32 any

R_MIPS_DELETE 27 T-word32 any Remove the addressed 32-bit ob-
ject (normally an instruction). j

R_MIPS_HIGHER 28 T-hi16 any %higher(A+S)k

R_MIPS_HIGHEST 29 T-hi16 any %highest(A+S)l

R_MIPS_CALL_HI16m 30 T-hi16 any %high(G)d

R_MIPS_CALL_LO16m 31 T-lo16 any G

R_MIPS_SCN_DISP 32 T-word32 any n S+A-scn_addr
(Section displacement)

R_MIPS_REL16 33 V-hw16 any S + A

Table 32 Relocation Types

Name Val-
ue

Field Symbol Calculation

007-4658-001 ELF-64 Object File Format Page 47
R_MIPS_ADD_IMMEDIATE 34 V-half16 any oS + sign_extend(A)

R_MIPS_PJUMP 35 T-word32 any Deprecated (protected jump)

R_MIPS_RELGOT 36 T-word32 any qS + A - EA

R_MIPS_JALR 37 T-word32 any pProtected jump conversion

Notes:
a A local symbol is one with binding STB_LOCAL and type STT_SECTION. Otherwise, a symbol is external.
b An R_MIPS_HI16 must be followed immediately by an R_MIPS_LO16 relocation record in a SHT_REL sec-

tion. The contents of the two fields to be relocated are combined to form a full 32-bit addend AHL. An
R_MIPS_LO16 entry which does not immediately follow a R_MIPS_HI16 is combined with the most recent
one encountered, i.e. multiple R_MIPS_LO16 entries may be associated with a single R_MIPS_HI16. Use of
these relocation types in a SHT_REL section is discouraged and may be forbidden to avoid this complication.

c The special symbol name _gp_disp, used for relocating the calculation of gp on entry to a DSO in 32-bit files, is
not supported in ELF-64 or in the new 32-bit ABI. Instead, these relocations should be composed with
R_MIPS_GPREL applied to an explicit symbol for the entry point of the subprogram. See the examples below.

d The %high(x) function is (x - (short)x) >> 16.
e The first instance of an R_MIPS_GOT* or an R_MIPS_CALL* relocation causes the linker to build a global off-

set table if it has not already done so.
f An R_MIPS_GOT16 for a local symbol must be followed immediately by an R_MIPS_LO16. Their combined

AHL addend is used with the symbol value to calculate a relocated address. A GOT entry is constructed for the
high-order 16 bits (using an existing one if possible), and its GOT offset becomes the value of the
R_MIPS_GOT16 relocation operator. The low-order 16 bits of the address becomes the value of the
R_MIPS_LO16 relocation operator.

g These operators relocate a 64-bit doubleword; all others relocate a 32-bit word.
h For these relocations, ld generates a page pointer in the GOT, i.e. an address within 32KB of (S+A). They are

placed at small offsets from gp (i.e. within 32KB). R_MIPS_GOT_PAGE produces the GOT offset of the page
pointer, and R_MIPS_GOT_OFST produces the offset of (S+A) from the page pointer.

i References to that location elsewhere are unchanged (i.e. they reference the new instruction) for the A form, or
refer to the moved instruction for the B form. Relocations which follow an insertion relocation in the same record,
or in consecutive records with a zero offset, reference the inserted instruction. Relocation records which follow
with the same non-zero offset refer to the original operation at that address. This requires careful ordering or
dummy intervening relocations if multiple relocations including insertions are to be applied to the first location in
a section.

j References to the deleted address elsewhere are unchanged (i.e. they become references to the following object,
which moves to the deleted address).

k The %higher(x) function is [(((long long) x + 0x80008000LL) >> 32) & 0xffff]. See the first example in the next
section for the rationale for this definition and the %highest definition.

l The %highest(x) function is [(((long long) x + 0x800080008000LL) >> 48) & 0xffff].

Table 32 Relocation Types

Name Val-
ue

Field Symbol Calculation

Page 48 007-4658-001
An ABI-compliant object file must observe the ordering constraints from
the footnotes to Table 32 in SHT_REL sections. Except as noted there,
there are no constraints on the order of relocation operations in a section;
using SHT_RELA sections eliminates even those constraints. However,
producers should note that maintaining virtual address order (i.e. of the
data objects to be relocated) will generally result in the best performance.

The new R_MIPS_SHIFTn operators are intended to support generation of
shift instructions for the extraction of bitfields in C++ when the location
of the bitfield in the object is unknown at compile time and determined
only when an external class definition is linked in.

As currently defined, we implicitly assume that all GOT entries con-
structed in a 64-bit ELF object file are 64-bits, since we provide no relo-
cation types to produce 32-bit GOT entries. It may prove desirable to
provide both capabilities to allow smaller GOTs for programs residing
entirely in the low 2GB of memory.

ELF-32: [To be supplied]

m The difference between the R_MIPS_CALL* operators and the corresponding R_MIPS_GOT* operators is that
the former allow initial resolution by rld to a lazy evaluation stub, whereas the latter must be resolved to the ulti-
mate address at initialization.

n An R_MIPS_SCN_DISP relocation is intended for address reset records in an Event Location section (see Sec-
tion 2.10). Prior to relocation in the linker, the low-order 31 bits contains an offset from the beginning of the sec-
tion referenced by the Event Location section’s sh_link field. As the referenced sections and their associated
Event Location sections are concatenated, these offsets must be updated to be relative to the merged section start
address. Thus, "scn_addr" in the expression is the starting address of the section where the symbol is defined.

o R_MIPS_ADD_IMMEDIATE was used in Delta C++ to add a constant to a Delta symbol in an ADDI instruction.
It is obsolete — R_MIPS_16 should be used instead.

p An R_MIPS_JALR relocation is intended for optimization of jumps to protected symbols, i.e. symbols which
may not be preempted. The word to be relocated is a jump (typically a JALR) to the indicated symbol. If it is not a
preemptible symbol (and therefore defined in the current executable/DSO) the relocation is a request to the linker
to convert it to a direct branch (typically a JAL in the main executable, or a BGEZAL in DSOs if the target symbol
is close enough). The linker must check that the symbol is not preemptible before performing the relocation, but
no action is required for correctness -- this is strictly an optimization hint.

q An R_MIPS_RELGOT relocation is the same as an R_MIPS_REL relocation, but relocates an entry in a GOT
section and must be used for multigot GOTs (and only there).

Table 32 Relocation Types

Name Val-
ue

Field Symbol Calculation

ELF-32

007-4658-001 ELF-64 Object File Format Page 49
2.9.3 Examples

Following are a number of examples of relocation situations, with the re-
locations required in the 32-bit and 64-bit implementations.

Loading a 64-bit address: We have a symbol value (i.e. an address)
which we wish to load into a register without going to memory. There are
at least two possible sequences which may be desirable:

A: lui rx,%highest(sym) # load highest "halfword"
daddiu rx,rx,%higher(sym) # merge next "halfword"
dsll rx,rx,16 # shift by one halfword
daddiu rx,rx,%hi(sym) # merge next "halfword"
dsll rx,rx,16 # shift into final position
daddiu rx,rx,%lo(sym) # merge lowest "halfword"

B: lui rx,%highest(sym) # load highest "halfword"
daddiu rx,rx,%higher(sym) # merge next "halfword"
dsll rx,rx,32 # shift into high word
lui ry,%hi(sym) # load high "halfword"
daddiu ry,ry,%lo(sym) # merge low "halfword"
dadd rx,rx,ry # merge high + low words

These two sequences are equivalent. The first uses only one register, but
is completely sequential (6 cycles minimum). The second uses a second
register, but allows for a parallel schedule with a 4 cycle critical path on a
superscalar processor.

Note that the somewhat odd definition of the %hi, %higher, and %highest
relocation operations is necessary to make these sequences work, given
that immediate add operations always use sign-extended immediates and
that the lui operation sign-extends its result.

got_disp: We have a symbol (i.e. an address) which ld is to insert (as a
pointer datum) into the GOT. We want to use the offset of that pointer
from gp, e.g. as the offset (normally 16-bit) in a load instruction:

A: ld rx, %got_disp(sym) (gp) # load address of sym
B: ld ry, 0(rx) # load object at sym

The relocation used in the 32-bit ABI, valid only for external symbols, is:

ext sym: A: R_MIPS_GOT16(sym)

Page 50 007-4658-001
We support new relocations in either 32-bit or 64-bit objects for arbitrary
symbols:

any sym: A: R_MIPS_GOT_DISP(sym)

The 32-bit ABI provides no way of doing this for a local sym. See
got_page and got_ofst below. Observe that although R_MIPS_GOT_DISP
normally produces a validated 16-bit field, composing it with other oper-
ators allows its use to produce an arbitrarily sized GOT displacement.

got_hi (got_lo): As for got_disp, we want to reference the GOT displace-
ment of a symbol address placed in the GOT by ld. However, the dis-
placement may be larger than 16 bits, and this operator references the
high-order (low-order) 16 bits:

A: lui rx, %got_hi(sym) # load high part of disp
B: dadd rx, rx, gp # add gp
C: ld rx, %got_lo(sym), rx # load GOT entry

The relocations used in either 32-bit or 64-bit objects are:

any sym: A: R_MIPS_GOT_HI16(sym)

C: R_MIPS_GOT_LO16(sym)

Observe that this relocation is not defined in the 32-bit ABI, which in
general does not cope with GOTs larger than 64KB.

If the symbol involved is a subprogram name being used in a call, which
may therefore be resolved by ld for lazy evaluation, then the plain HI/LO
relocations should be composed with R_MIPS_CALL, i.e.:

any sym: A: R_MIPS_CALL(sym)

R_MIPS_HI16(null)

C: R_MIPS_CALL(sym)

R_MIPS_LO16(null)

got_page (got_ofst): In some cases, we use the GOT entry (i.e. the sym-
bol address) in a context where a 16-bit displacement can be added at the
time of use, e.g. data loads. In such cases, far fewer GOT entries may be
required if we store one address per 64KB page instead of one per ad-
dress referenced, and use an offset from the page pointer in the final ref-
erence. We assume that the page entries can always be referenced within
a 16-bit offset from gp, yielding sequences such as:

007-4658-001 ELF-64 Object File Format Page 51
A: lui rx, %got_page(sym), gp# load page pointer
B: ld rx, %got_ofst(sym), rx # load datum

The 32-bit ABI supports such sequences only for local symbols, using
the following relocations:

local sym: A: R_MIPS_GOT16(sym+addend)

B: R_MIPS_LO16(sym+addend)

We support new relocations in either 32-bit or 64-bit objects for arbitrary
symbols:

any sym: A: R_MIPS_GOT_PAGE(sym+addend)

B: R_MIPS_GOT_OFST(sym+addend)

Using new relocation types allows use for external symbols, potentially
expanding the GOT size savings. If the referenced external turns out to be
preemptible, ld should resolve its page pointer (i.e. the GOT entry) to its
actual address and its offset to zero, effectively treating it like a normal
GOT entry for an external symbol.

Observe that R_MIPS_GOT_DISP, R_MIPS_GOT_PAGE, and
R_MIPS_GOT_OFST between them cover the local and external symbol
cases handled in the 32-bit ABI by R_MIPS_GOT16. Separating them al-
lows extension of each case to arbitrary symbols, without attempting to
redefine R_MIPS_GOT16. The latter should fall into disuse except where it
is required for 32-bit ABI conformance.

gp_rel: In some contexts, we need the (runtime) difference between a
symbol address and the gp. The first is PIC branch tables, which are
stored as the desired branch target addresses minus gp — by adding gp at
runtime, we avoid having rld relocate the addresses. Thus, we have:

A: %gp_rel(label1)
%gp_rel(label2)
...

The relocation used for this purpose in the 32-bit ABI is:

local sym: A: R_MIPS_GPREL32(sym)

Page 52 007-4658-001
We also use R_MIPS_GPREL32 in 64-bit objects. It will still yield a 32-bit
displacement from gp by itself. Either it or R_MIPS_GPREL yields a
64-bit offset when composed with R_MIPS_64:

any sym: A: R_MIPS_GPREL(sym)

A: R_MIPS_64(null)

The second common case involves loading the difference between the en-
try address of a subprogram s and the runtime gp for establishing gp:

A: lui rx, %hi(%neg(%gp_rel(s)))# load high part of diff
B: daddiu rx, rx, %lo(%neg(%gp_rel(s)))# add low part
C: dadd gp, t9, rx # add to entry address

The 32-bit ABI handles this with a special case based on a reserved sym-
bol __gp_disp, and requires that A and B be adjacent instructions:

__gp_disp: A: R_MIPS_HI16(__gp_disp, addend)

B: R_MIPS_LO16(__gp_disp, addend)

In 64-bit objects, we prefer composition:

any s: A: R_MIPS_GPREL(s)
A: R_MIPS_SUB(null)

A: R_MIPS_HI16(null)
B: R_MIPS_GPREL(s)

B: R_MIPS_SUB(null)
B: R_MIPS_LO16(null)

2.9.4 Discarded Relocations

The initial elf.h file defined several relocations for dealing with GOTs
larger than 64KB which we do not include, favoring other approaches as
described above:

R_MIPS_REL64

This can be produced by composing R_MIPS_REL with
R_MIPS_64.

R_MIPS_LIT_HI16, R_MIPS_LIT_LO16

These can be produced by composing R_MIPS_LITERAL
with R_MIPS_HI16 or R_MIPS_LO16.

R_MIPS_GPOFF_HI16, R_MIPS_GPOFF_LO16

007-4658-001 ELF-64 Object File Format Page 53
As described above, these can be produced by composing
R_MIPS_GPREL with R_MIPS_HI16 or R_MIPS_LO16.

2.10 Event Location Section
Stack traceback, as well as various transformations of object files, includ-
ing PIC transformations, performance monitoring (pixie), processor bug
workarounds (r4kpp), etc., require knowledge of where specific transi-
tions occur in the program text. This section is intended to be a compact
summary of this information (in conjunction with the DWARF frame in-
formation section, .debug_frame, which encodes the transitions of the
stack pointer, frame pointer, and other registers). There will normally be
one event location section per text section. Its entries must be in increas-
ing address order.

Its section attributes are:

The structure of an event location section is a sequence of variable-length
records, each consisting of a kind byte followed by zero or more oper-
ands. The section alignment is 1 byte, and its size is the size of the actual
data. The possible event kinds, along with their operands, are given by
Table 33 below; the meanings are discussed in more detail below the ta-
ble. The column giving operand types lists them in order of appearance
when there is more than one operand for a particular kind. Note that the
event kinds may not overlap with the content kinds given in Section 2.12
below, except for EK_NULL.

name .MIPS.eventsname

sh_type SHT_MIPS_EVENTS

sh_link Section header index of the (text) section described.

sh_info Section header index of associated interface section.

sh_flags SHF_ALLOC + SHF_MIPS_NOSTRIP

requirements must not be stripped

Table 33 Event Kind Constants

Event Kind Name Value Operand Type Comments

EK_NULL * 0x00 none
No valid information — may be used as
a filler

Page 54 007-4658-001
EK_ADDR_RESET * 0x01
Elf64_Word
Elf64_Half

Reset current location to the given off-
set from the section (segment) start

EK_INCR_LOC_EXT * 0x02 ULEB128
Increment current location by operand
times 4.

EK_ENTRY * 0x03 none Subprogram entrypoint

EK_IF_ENTRY * 0x04 Elf64_Word
Subprogram entrypoint with given
interface descriptor offset.

EK_EXIT * 0x05 none Subprogram exit

EK_PEND * 0x06 none Subprogram end (last instruction)

EK_SWITCH_32 * 0x07 Elf64_Byte
Elf64_Word
ULEB128

Switch jr with 32- / 64-bit table entries.
Operands indicate whether GP-relative,
table start address, and table size.EK_SWITCH_64 * 0x08

EK_DUMMY * 0x09 none unused

EK_BB_START * 0x0a none Start of basic block

EK_INCR_LOC_UNALIGNED * 0x0b ULEB128
Increment current location by operand
(not multiplied by four)

EK_GP_PROLOG_HI * 0x0c Elf64_Half Establish high/low 16 bits of GP; opnd
is %lo(_gp_disp) / %hi(_gp_disp)EK_GP_PROLOG_LO * 0x0d Elf64_Half

EK_GOT_PAGE * 0x0e Elf64_Half Reference GOT page / offset; opnd is
corresponding offset / page.EK_GOT_OFST * 0x0f Elf64_Half

EK_HI * 0x10 Elf64_Half Reference high/low 16 bits of 32-bit
absolute address; opnd is corresponding
%lo(address) / %hi(address)EK_LO * 0x11 Elf64_Half

EK_64_HIGHEST * 0x12 Elf64_Xword
Reference 16 bit pieces of 64-bit
absolute address. The operand is the full
address.

EK_64_HIGHER * 0x13 Elf64_Xword

EK_64_HIGH * 0x14 Elf64_Xword

EK_64_LOW * 0x15 Elf64_Xword

EK_GPREL * 0x16 none GP-relative reference

EK_DEF * 0x17 below Define a new event kind operand profile

Table 33 Event Kind Constants

Event Kind Name Value Operand Type Comments

007-4658-001 ELF-64 Object File Format Page 55
EK_FCALL_LOCAL * 0x18 Elf64_Word
Call to local routine with given offset in
current section

EK_FCALL_EXTERN * 0x19 Elf64_Half Call external routine at given GP index

EK_FCALL_EXTERN_BIG * 0x1a
Elf64_Half
Elf64_Half

Call external routine at given GP index,
given by %hi/%lo pair

EK_FCALL_MULT * 0x1b ULEB128
Call to any of several routines, none or
all known

EK_FCALL_MULT_PARTIAL * 0x1c ULEB128
Call to any of several routines, some
known

EK_LTR_FCALL 0x1d Elf64_Word
Instruction is call to lazy_text_resolve;
argument is .dynsym index of callee

EK_PCREL_GOT0 0x1e Elf64_Half

Instruction is loading high half of
PC-relative displacement to GOT 0,
entry 0; argument is instruction count to
instruction providing low half

EK_MEM_COPY_LOAD 0x1f none Load for purposes of copying data

EK_MEM_COPY_STORE 0x20 LEB128
Store for purposes of copying data —
operand is distance to paired load

EK_MEM_PARTIAL_LOAD 0x21 Elf64_Byte
Reference to subset of bytes loaded —
8 bits of operand give bytes used

EK_MEM_EAGER_LOAD 0x22 none Load is speculative

EK_MEM_VALID_LOAD 0x23 none Load of data known to be valid

EK_CK_UNUSED_NONE_0 * 0x50 none Reserved for future use

EK_CK_UNUSED_NONE_1 * 0x51 none Reserved for future use

EK_CK_UNUSED_NONE_2 * 0x52 none Reserved for future use

EK_CK_UNUSED_NONE_3 * 0x53 none Reserved for future use

EK_CK_UNUSED_NONE_4 * 0x54 none Reserved for future use

EK_CK_UNUSED_16BIT_0 * 0x55 Elf64_Half Reserved for future use

EK_CK_UNUSED_16BIT_1 * 0x56 Elf64_Half Reserved for future use

EK_CK_UNUSED_16BIT_2 * 0x57 Elf64_Half Reserved for future use

Table 33 Event Kind Constants

Event Kind Name Value Operand Type Comments

Page 56 007-4658-001
Events generally describe the behavior of instructions at a current loca-
tion. The current location is modified by one of four event kinds. An
EK_ADDR_RESET event specifies a full address relative to the beginning

EK_CK_UNUSED_16BIT_3 * 0x58 Elf64_Half Reserved for future use

EK_CK_UNUSED_16BIT_4 * 0x59 Elf64_Half Reserved for future use

EK_CK_UNUSED_32BIT_0 * 0x5a Elf64_Word Reserved for future use

EK_CK_UNUSED_32BIT_1 * 0x5b Elf64_Word Reserved for future use

EK_CK_UNUSED_32BIT_2 * 0x5c Elf64_Word Reserved for future use

EK_CK_UNUSED_64BIT_0 * 0x5d Elf64_Xword Reserved for future use

EK_CK_UNUSED_64BIT_1 * 0x5e Elf64_Xword Reserved for future use

EK_CK_UNUSED_64BIT_2 * 0x5f Elf64_Xword Reserved for future use

EK_CK_UNUSED_64BIT_3 * 0x60 Elf64_Xword Reserved for future use

EK_CK_UNUSED_64BIT_4 * 0x61 Elf64_Xword Reserved for future use

EK_CK_UNUSED_ULEB128_0 * 0x62 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_1 * 0x63 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_2 * 0x64 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_3 * 0x65 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_4 * 0x66 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_5 * 0x67 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_6 * 0x68 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_7 * 0x69 ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_8 * 0x6a ULEB128 Reserved for future use

EK_CK_UNUSED_ULEB128_9 * 0x6b ULEB128 Reserved for future use

EK_VENDOR_LOW 0x70
undefined

Kinds in this range are reserved for
vendor-specific useEK_VENDOR_HIGH 0x7f

EK_INCR_LOC * 0x80 none *
Increment current location by low 7 bits
of kind value times 4.

Table 33 Event Kind Constants

Event Kind Name Value Operand Type Comments

007-4658-001 ELF-64 Object File Format Page 57
of the section (segment), and must be the first event (which allows the
linker to always append a new section without insertions). The second
operand of an EK_ADDR_RESET event is the distance in bytes until the
next EK_ADDR_RESET event (or the remaining size of the section for the
last one), allowing faster scanning of merged events sections. An
EK_INCR_LOC event increments the current location, with the increment
embedded in the event kind field; EK_INCR_LOC_EXT does the same with
an explicit operand — each multiplies its operand by four. An
EK_INCR_LOC_UNALIGNED event is like an EK_INCR_LOC_EXT, except
that the operand is not multiplied by four, so it can be used for non-full-
word-aligned increments.

A program unit normally contains one or more entrypoints, given by
EK_ENTRY or EK_IF_ENTRY events, and exits (i.e. returns) given by
EK_EXIT events pointing to their return branch instructions. Its last
instruction is marked by an EK_PEND event. Issue: should there be an
EK_PBEGIN event kind to mark the first instruction of a program unit in
the case that it is not also an entrypoint?

Switch statements are noted by EK_SWITCH_32 or EK_SWITCH_64 events
pointing to the associated jr instruction. The operands indicate (in order)
whether the table contents are GP-relative (single-byte Boolean), the ta-
ble address (a fullword, relative to the start address of the section contain-
ing the jr instruction), and the number of entries in the table (ULEB128).

New basic blocks are noted by EK_BB_START events. These should only
be present for cases that tools like pixie cannot identify reliably.

GP establishment in the prolog is indicated by the EK_GP_PROLOG_HI
and EK_GP_PROLOG_LO events, pointing to the instructions which actu-
ally reference those pieces of the GP. Similarly, all of the event kinds
through EK_GPREL reflect relocations in the original relocatable object
which might need to be redone for code transformations. We call these
collectively relocation events. Note that most of them come in hi/lo pairs;
the operands in these cases provide the parts of the target address which
cannot be obtained from the event instruction.

Calls are labelled by several call event kinds: A call to the current section
is marked by an EK_FCALL_LOCAL event. An external call is marked by
an EK_FCALL_EXTERN event (16-bit GOT displacement) or an
EK_FCALL_EXTERN_BIG event. These events encode the GOT
addressing of the callee in their operands; note that the instructions which
load the addresses normally also require relocation events. If the callee is

ISSUE !

Page 58 007-4658-001
not known, there are three possibilities. EK_FCALL_MULT followed by
two or more of the specific events above indicates that the callee is one of
the given possibilities. EK_FCALL_MULT_PARTIAL followed by zero or
more of the specific events above indicates that the callee is either one of
the given possibilities or some other unknown function. In both cases, the
operand is the number of specific call events following.

Several memory events mark special cases of memory reference
instructions for the use of memory debugging tools like Purify. Copies
are indicated by an EK_MEM_COPY_LOAD at the load instruction and an
EK_MEM_COPY_STORE at the store instruction, with the latter having an
operand giving the offset (divided by four) for the associated load. (There
may be multiple stores generated for one load. This allows the tool to
copy the valid bits rather than checking the load for validity.

Bitfield use (either explicitly using C bitfields, or implicitly with variants
of var&mask) leads to loads which do not really involve use of all of the
bytes loaded. EK_MEM_PARTIAL_LOAD marks such a load with a mask of
the bytes actually required to be valid. For loads intended only to allow
insertion of a bitfield to be stored, the mask will be zero. For loads
intended for bitfield extraction, the mask should indicate which bytes are
occupied by the bitfield to be extracted.

When the compiler generates eager loads which are not actually used on
all paths, they should be marked by EK_MEM_EAGER_LOAD events.
When the compiler generates loads which are known to be of valid data
(because it is known to have been stored earlier, or it is known to be
initialized global data, e.g. the GOT), they may be marked by
EK_MEM_VALID_LOAD to save checking. None of these memory events
are predefined, so they must be preceded by EK_DEF events (see below).

Issue: Should the memory events be segregated to a distinct events
section so that tools which use the default events and those which use the
memory events aren’t impacted by the other data?

Event section processors (consuming tools) must be able to parse the
events section even in the presence of new event kinds added in the future
(ignoring the new events). Therefore, before using any events besides
those with values marked by ’*’ in the table above (the predefined kinds),
the new event kind(s) must be defined by an EK_DEF event. Its operands
are, in order, the new event kind value, the number of operands it
requires, and the type of each operand, each represented by a single
unsigned byte (as given by Table 34 below). The kinds named

ISSUE !

007-4658-001 ELF-64 Object File Format Page 59
EK_CK_UNUSED_... are considered predefined kinds for this purpose, so
that EK_DEF events will not be required to use them in the future. They
may ultimately be used as either event or content kinds.

In order to keep consumer semantics simple, all definitions of a new
event kind must have consistent profiles, and if it is not the predefined
profile of an EK_CK_UNUSED_... event, the relevant EK_DEF event must
precede it in each object file where it is used. This allows old consumers
to simply use the most recent encountered definition, and new consumers
with an understanding of the event kind to ignore the EK_DEF events for
it. It requires prospective producers to coordinate their new event kind
proposals with the MIPS compiler group.

The valid operand type specifiers for an EK_DEF event are given by Table
34 below.

Table 34 Event Operand Type Specifiers in EK_DEF Events

Operand Type Value Comments

EK_DEF_UCHAR 1 Unsigned character (byte)

EK_DEF_USHORT 2 Unsigned short (2 bytes)

EK_DEF_UINT 3 Unsigned int (4 bytes)

EK_DEF_ULONG 4 Unsigned long (8 bytes)

EK_DEF_ULEB128 5 Unsigned LEB128 (variable byte
length)

EK_DEF_CHAR 6 Signed character (byte)

EK_DEF_SHORT 7 Signed short (2 bytes)

EK_DEF_INT 8 Signed int (4 bytes)

EK_DEF_LONG 9 Signed long (8 bytes)

EK_DEF_LEB128 10 Signed LEB128 (variable byte length)

EK_DEF_STRING 11 Null-terminated character string

EK_DEF_VAR 12 Variable -length operand, consisting of
a two-byte length including the length,
followed by the remaining bytes.

Page 60 007-4658-001
Every effort is made to minimize the space used by the event section, in-
cluding the use of LEB128 encoding where possible. However, an impor-
tant constraint is that the linker must be able to construct the combined
event section by simply relocating and concatenating the individual
events sections from the component objects, without changing their sizes
(and therefore without needing to parse them). This leads to the use of
fixed-size operands in several contexts where smaller operands would
usually be adequate in relocatable object files.

Issue: 16 event kinds EK_VENDOR_... have been reserved for use by indi-
vidual vendors. However, their use would make the resulting objects un-
usable by any other vendor which used the same kinds. Would it be better
to assume that such usage would use a distinct section, and define a
mechanism for associating this section with a specific vendor?

2.11 Interface Section

Anticipated checking for correctness by the linkers (ld/rld), as well as ob-
ject file transformations, require information about subprogram interfac-
es, especially parameter profiles. This section is intended to provide this
information. There should be one such section per object file (including
executables and DSOs).

These descriptors shall be used to describe both actual subprograms and
the parameter profiles of calls. In the latter case, various information will
be missing, and once the call is verified to match the profile of a callee,
references to its descriptor (e.g. from the events section) may usually be
converted to references to the callee’s descriptor and the call descriptor
may be removed.

The information to be provided has variable length. Thus, the section’s
contents are organized as a sequence of variable-length descriptors, each
with a fixed-length header possibly followed by variable-length data. The
descriptors must be sorted by the symbol table index in field symbol. Each
descriptor must be a multiple of 8 bytes in size, with null padding be-
tween descriptors as required.

The Interface Section’s attributes are:

name .MIPS.interfaces

sh_type SHT_MIPS_IFACE

sh_link The section header index of the associated symbol table

Linker
Processing

ISSUE !

007-4658-001 ELF-64 Object File Format Page 61
The structure of an interface descriptor fixed-length header is given by
Table 35 below.

The attributes of a subprogram are encoded in the attrs field as the follow-
ing bits.

sh_info 0

sh_flags SHF_ALLOC + SHF_MIPS_NOSTRIP

requirements may not be stripped — may be required for future interface check-
ing and transformation.

Table 35 Interface Descriptor Header

Field name Type Comments

symbol Elf64_Word Symbol table index of subprogram
name, or 0 for an indirect call

attrs Elf64_Half Attributes: see Table 36

pcnt Elf64_Byte Parameter count a b

fpmask Elf64_Byte Mask of FP parameter registers c

Notes:
a The parameter count and parameter profile below describe the parameter profile

as transformed (not as declared). They include implicit parameters inserted by
the compiler, including function results converted to implicit result pointers
passed as parameters.

b The parameter count includes the result if the SA_FUNCTION attribute is set,
and the first descriptor is for the result. If the parameter count is 255, then the
parameter list is preceded by a two-byte parameter count. See Figure 2.)

c This mask indicates which of the eight FP parameter registers are used to pass
parameters instead of the corresponding integer registers. The function result is
not considered if SA_FUNCTION is set. The lowest-order bits of the mask rep-
resent the first parameters, i.e. 0x01 is parameter #1 in $f12, 0x02 parameter #2
in $f13, etc.

Page 62 007-4658-001
Table 36 Subprogram Attributes

Attribute mask Value Comments

SA_PROTOTYPED 0x8000 Does def or ref have prototype?

SA_VARARGS 0x4000 Is this a varargs subprogram?

SA_PIC 0x2000 Are memory references PIC?

SA_DSO_ENTRY 0x1000 Is subprogram valid DSO entry?

SA_ADDRESSED 0x0800 Is subprogram address taken?

SA_FUNCTION 0x0400 Does subprogram return a result? a

SA_NESTED 0x0200 Is subprogram nested?b

SA_IGNORE_ERROR 0x0100 Don’t enforce consistency.c

SA_DEFINITION 0x0080 Is this a definition (not just call)?

SA_AT_FREE 0x0040 Register at is free at all branches.d

SA_FREE_REGS 0x0020 Free register mask follows.e

SA_PARAMETERS 0x0010 Parameter profile follows.f

SA_ALTINTERFACE 0x0008 Next descriptor is an alternate inter-
face for this subprogram.g

Notes:
a This is specified as transformed by the compiler, not necessarily as declared, e.g.

a subprogram treating a structure result by placing it in a buffer addressed as an
implicit first parameter would not be encoded as a function.

b Because nested subprograms require a static link in addition to the usual declared
parameters, if a definition has this attribute all calls should too, but the opposite
condition is not necessary.

c Some subprograms may be known to be called inconsistently. This attribute indi-
cates that any tools checking for inconsistencies should not reject the objects due
to inconstencies for this subprogram.

d Register at is never live at a branch instruction in this subprogram. It may there-
fore be used by transformation programs like pixie if required to transform the
branch or the shadow operation. The flag must be reset by such a tool if at is
used.

007-4658-001 ELF-64 Object File Format Page 63
The variable-length part of an interface descriptor consists of a list of pa-
rameter descriptors following the fixed-length header, possibly preceded
by a free register mask. It contains one descriptor for each parameter
(formal for declarations, actual for calls), plus a leading descriptor for the
result of functions. Ellipsis parameters are not present for varargs subpro-
grams; the SA_VARARGS attribute indicates this case. After resolving a
reference in a call, the compiler or linker should replace the caller’s actu-
al interface reference by a reference to the callee’s formal interface if
they match. (Observe that a varargs call will never match unless no vari-
able parameters are passed. Therefore, the call descriptor should not be
removed unless the callee is defined and non-preemptible, though it may
be merged with others that have the same profile.)

The structure of the variable-length part of an interface descriptor has the
form given in Figure 2 below.

e A 32-bit free register mask precedes the parameter profile, specifying integer reg-
isters which are never used in this routine. A program transformation tool like
pixie may use these registers, subject to the ABI assumptions about caller-saved
registers. The mask must be updated by such a tool if registers are used. See Fig-
ure 2)

f Minimal checking may be achieved by including only the fixed-length part of the
interface descriptor, and omitting the detailed parameter profile. Doing so
changes the meaning of the pcnt field in the fixed-length header. See the descrip-
tion of required linker checking below.

g In some cases the compiler (or another tool) may choose to create an alternate
interface to a subprogram with different attributes. This flag indicates that the
next descriptor is for such an alternate interface (not yet used).

Table 36 Subprogram Attributes

Attribute mask Value Comments

Page 64 007-4658-001
Figure 2 Subprogram Parameter Profile

Various parts of the parameter profile, as well as the whole profile, are
optional. The following rules should clarify which parts may be omitted:

● The entire profile is omitted if SA_PARAMETERS and
SA_FREE_REGS are not set, and pcnt is not 255. See the linker pro-
cessing description of minimal checking below for the treatment in
this case.

● If any profile component is present, the size field must be present.

● If pcnt is 255, the parameter count field must be present, equal to
the number of parameters, including the result for functions. (Note
that this is the number of parameter register equivalents if
SA_PARAMETERS is not set -- see the linker processing description
of minimal checking below.) If pcnt is smaller, but
SA_FREE_REGS is set, the parameter count field is present (con-
taining zero) for alignment.

Free register mask if SA_FREE_REGS is set (4 bytes)

Result type descriptor if SA_FUNCTION is set (2+ bytes)

Parameter #1 type descriptor (2+ bytes)

Parameter #2 type descriptor (2+ bytes)

...

Parameter #pcnt type descriptor (2+ bytes)

Each type descriptor has the following form:

0 3 4 7 8 15

flags
qual.
count fundamental type first qualifier ...

16 23

Parameter count if pcnt == 255, else 0 (2 bytes)

Size in bytes of profile if any other fields are present (2 bytes)

007-4658-001 ELF-64 Object File Format Page 65
● If SA_FREE_REGS is set, the free register mask must be present (as
well as the parameter count field).

● If SA_PARAMETERS is set, the number of parameter type descrip-
tors implied by pcnt or the parameter count field is present. The
first one is the function result type if SA_FUNCTION is set. These
descriptors are described in more detail below.

● Finally, if the full profile is not a multiple of eight bytes long, it is
padded to a multiple of eight bytes with zeros (which are not in-
cluded in the size).

Each parameter type descriptor begins with a halfword, the contents of
which are given by Table 37 below. It contains one of the fundamental
types from Table 2 above in the low-order byte plus several flags and a
qualifier count in the high-order byte as described in Table 37. If the
qualifier count is non-zero, it will be followed by that number of sin-
gle-byte type qualifiers from Table 3 above. Those types with indetermi-
nate length (e.g. FT_struct, FT_union) are always followed by the actual
length (in bytes) preceding the qualifier list. If PDM_SIZE is not set, the
length is an unsigned byte, where the maximum value (255) implies at
least that length; if PDM_SIZE is set it is a 32-bit unsigned word (not nec-
essarily aligned), where the maximum value (0xffffffff) implies at least
that length.

2.11.1 Linker Processing

The interface descriptor section requires significant processing by the
linker — its purpose is to provide link-time checking. This processing in-
volves checking and compression. This facility has been designed to be
used either for minimal checking with minimal space requirements, or
for full checking.

Table 37 Parameter Descriptor Masks

Mask Name Value Comments

PDM_TYPE 0x00ff Fundamental type of parameter

PDM_REFERENCE 0x4000 Reference parameter?

PDM_SIZE 0x2000 Type followed by explicit 32-bit byte size?

PDM_Qualifiers 0x0f00 Count of type qualifiers <<8

Linker
Processing

Page 66 007-4658-001
Full checking: The compiler may generate a descriptor for every subpro-
gram definition and potentially for every call. (Only one descriptor is re-
quired for multiple calls to the same subprogram, and if the callee is in
the same compilation, the compiler can check parameters and omit the
call descriptors entirely.) When the linker resolves a call to the callee’s
definition, it should check the call descriptor against the definition de-
scriptor. The rules for compatibility are as follows:

1. If this is not a varargs routine (not SA_VARARGS), then the number
of parameters should match. For each parameter the sizes should
match, and whether it is integer or floating point should match.

2. For a 32-bit (old ABI) varargs routine (SA_VARARGS), the fixed
parameters should match (except perhaps for the last one, which
may be a varargs.h va_alist dummy parameter).

3. For a 64-bit varargs routine (SA_VARARGS), the fixed parameters
should match (except perhaps for the last one, which may be a
varargs.h va_alist dummy parameter), and there must be no float-
ing point parameters in the variable part unless the call site had a
prototype visible (SA_PROTOTYPED).

Compatibility failures should result in warnings rather than hard errors.

Once checking has been done, the linker may (and should) discard most
of the descriptors. In general, call descriptors should be discarded if a
definition descriptor is available. If there is no definition available, then
the linker may verify that the calls are consistent and discard all but one.

Minimal checking: At a minimum, checking should identify cases
where floating point parameters have been passed to the variable part of a
varargs routine’s parameter list; this will not work unless a prototype for
the callee was available at the call site. This minimum check requires
only the fixed-length part of the descriptors. It requires that the compiler
emit descriptors for any varargs routine definitions, and that it emit de-
scriptors for any calls to varargs routines or to routines without proto-
types, where floating point actual parameters are passed in registers.
These descriptors will not have the SA_PARAMETERS flag set, and their
pcnt field should reflect the number of register equivalents (i.e. 64-bit
pieces for aggregate parameters) used to pass parameters rather than the
number of source-level parameters (plus 1 if SA_FUNCTION is set).

The linker then checks for floating point parameters passed to the vari-
able part of a varargs parameter list using the fpmask information in the
fixed-length header and the pcnt field. The first (high-order) pcnt bits of

007-4658-001 ELF-64 Object File Format Page 67
the fpmask field must match. The remaining bits of the caller’s fpmask
field must be clear. This check is limited to the parameters which may be
passed in registers, since those passed in memory do not present varargs
matching problems.

Note that, if the callee’s descriptor has the SA_PARAMETERS flag set but
a minimal test is being done, the actual parameter descriptors must be ex-
amined to determine the actual number of parameter registers, rather than
the source-level parameter count which pcnt will give.

2.12 Section Content Classification

Various tools need to identify the location of code, addresses, and other
data in a program for transformation purposes. This section kind provides
such information about the contents of sections.

The Content Section’s attributes are:

A content section is required for each section used by the executing pro-
gram which contains data of other than its default class, as determined by
the section’s attribute flags:

SHF_EXECINSTR executable code

SHF_MIPS_ADDR address data of size implied by section ele-
ment size

other non-address data

Note that address data refers to storage initialized to relocatable address-
es, not to user pointer data which is uninitialized or initialized to NULL.
Note that none of the DWARF sections have associated content sections.

name .MIPS.contentname

sh_type SHT_MIPS_CONTENT

sh_link The section header index of the section classified

sh_info 0

sh_flags SHF_MIPS_NOSTRIP

requirements may not be stripped — doing so would render some functionality
unusable, such as pixie and cordX

Page 68 007-4658-001
A content section is organized like the events section described in Section
2.10, as a sequence of variable-length records, each consisting of a sin-
gle-byte content kind followed by zero or more bytes of operand values.
Each record applies to a current location, where the current location is
controlled by event kinds as described in Section 2.10. Most content
records refer to a range starting at the current location, with the length of
the range (in bytes) given by a ULEB128 operand.

The content kind is one of the choices from Table 38. They are described
further below the table. Content kind values may not conflict with event
kinds described in Section 2.10, except for CK_NULL. Note, however, that
the event kinds for setting the current location and for defining new kinds
are also used in a content section for the same purposes. In addition, the
reserved predefined kinds EK_CK_UNUSED_... listed in Table 33 may ul-
timately be used as either event or content kinds.

Table 38 Content Kind Constants

Content Kind Name Value Operand Type Comments

CK_NULL * 0x00 none No valid information — may be used as a filler

CK_DEFAULT * 0x30 Elf64_Byte Operand is default data type for section.

CK_ALIGN * 0x31
ULEB128

Elf64_Byte
First operand is length of range; second is
required alignment (exponent 0..63 of 2)

CK_INSTR * 0x32 ULEB128 Range contains instructions

CK_DATA * 0x33 ULEB128 Range contains non-address data

CK_SADDR_32 * 0x34 ULEB128 Range contains simple 32-bit addresses

CK_GADDR_32 * 0x35 ULEB128 Range contains GP-relative 32-bit addresses

CK_CADDR_32 * 0x36 ULEB128 Range contains complex 32-bit addresses

CK_SADDR_64 * 0x37 ULEB128 Range contains simple 64-bit addresses

CK_GADDR_64 * 0x38 ULEB128 Range contains GP-relative 64-bit addresses

CK_CADDR_64 * 0x39 ULEB128 Range contains complex 64-bit addresses

CK_NO_XFORM * 0x3a ULEB128 No transformation allowed in range

CK_NO_REORDER * 0x3b ULEB128 No reordering allowed in range

CK_GP_GROUP 0x3c ULEB128, UINT
Text in range with length given by first
operand references GP group given by second

007-4658-001 ELF-64 Object File Format Page 69
If the normal default kind for a section is not appropriate or optimal, a
different default may be specified by a CK_DEFAULT record. Its operand
is the default kind to be used, which is one of the content kind values
from the table.

Most of the content kind descriptors describe the content of a range of lo-
cations. In all such cases, they apply to a range starting at the current lo-
cation and including the range given by a ULEB128 operand which
specifies the length of the range in bytes.

If a range of data has specific alignment requirements which must be
preserved by transforming tools like pixie, this can be specified by a
CK_ALIGN record, which provides the length of the affected range and
the required alignment. This is intended for cases like embedding
double-precision floating point data in text sections, where alignment
must be preserved even if a transformer adds an odd number of
instructions.

Data content type different than the default for the section can be speci-
fied by records of type CK_INSTR .. CK_CADDR_64. For each, the single
operand is the length (in bytes) of the range containing the specified kind
of data. The distinction between simple, GP-relative, and complex ad-
dress data concerns how fixups may be performed if the addressed virtual
memory is moved. Once all relocation has been done, simple address
data should contain virtual addresses; if the content of the memory ad-
dressed is moved elsewhere in the virtual address space, the virtual ad-
dresses may simply be changed to reflect that shift. GP-relative address
data should contain virtual addresses relative to the global pointer. Com-
plex address data is a function of addresses (e.g. the difference between
two addresses). Modifying complex address data if the address space is
rearranged will require reevaluating its relocation expression, and there-
fore requires that the relevant relocation information be retained and con-
sulted.

Some code is sensitive to precise ordering (e.g. code which does LL/SC
sequences for synchronization), and tolerates little or no transformation.

CK_STUBS 0x3d ULEB128 Text in range is delayed resolution stub code

Table 38 Content Kind Constants

Content Kind Name Value Operand Type Comments

Page 70 007-4658-001
The CK_NO_XFORM record indicates a range which may not be trans-
formed except to modify branch targets and other addresses — instruc-
tion sequences and registers may not be changed. The CK_NO_REORDER
record indicates a range where reordering of instructions is not allowed,
but register remapping is allowed and instructions may be inserted. Both
kinds have an operand specifying the length of the affected range in
bytes.

The CK_GP_GROUP record is used in object files with multiple GOTs to
indicate which parts of the object are associated with which GOT. For a
text section (i.e. when sh_link points to a text section), it indicates a range
of text addresses within which references to the global pointer (GP) refer
to a particular GP group. The first operand is a ULEB128 length of the
range (in bytes), and the second is a 32-bit unsigned index of the GP
group to which it refers. For a data section (i.e. when sh_link points to a
data section like .rodata), it indicates the range of data covered by the in-
dicated GP. For a GOT section (i.e. when sh_link points to a .got section),
the range length indicates the length of the GOT itself.

Content section processors (consuming tools) must be able to parse the
content section even in the presence of new content kinds added in the fu-
ture (ignoring the new content specifiers). Therefore, before using any
content kinds besides those with values marked by ’*’ in the table above
(the predefined kinds), the new content kind(s) must be defined by an
EK_DEF entry. See Section 2.10 for a description of this event kind.

2.13 Comment Section

The comment section is reserved for revision control information (see
[ABI32]). Its attributes are:

The contents of a .comment section will be a sequence of NULL-termi-
nated strings with the format of each string being:

toolname:vendor:revision:object

name .comment

sh_type SHT_PROGBITS

sh_link SHN_UNDEF

sh_info 0

sh_flags none

requirements may be stripped

007-4658-001 ELF-64 Object File Format Page 71
where:

toolname is the name of a tool which was used during contruction of
this object file. If it is empty, then the revision refers to the
object name (normally a source file).

vendor is the vendor of the tool (or object) identified. SGI/MIPS
will normally leave this field empty for components of the
compiler toolset, e.g. the compilers, ar, ld, pixie, etc., or
will use MIPS otherwise.

revision is a revision number for the tool (or object) identified. Its
format is unspecified, but for SGI/MIPS tools it will nor-
mally have the form nnn.mmm. In some cases, a timestamp
might be appropriate.

object is a source file or object file name identifying the object to
which the tool was applied. If empty, the containing object
is implied.

If toolname, vendor, and revision are all empty, the last triple with a
non-empty revision are implied for the given object. Observe that the for-
mat of these strings implies that toolname, vendor, and revision may not
contain colons.

Issue: The rules for linker treatment of the comment section must be de-
fined. Some compression is likely to be desirable.

2.14 Note Section

The note section is provided for use by tools which need to mark an ob-
ject file with information not forseen by this specification (see [ABI32]).
Its attributes are:

name .note

sh_type SHT_NOTE

sh_link SHN_UNDEF

sh_info 0

sh_flags none (by default)

requirements may normally be stripped, but doing so may render functionality
unusable — producers may set SHT_MIPS_NOSTRIP attribute

ISSUE !

Page 72 007-4658-001
The note section consists of a sequence of name/descriptor pairs, of vari-
able length, with the format described in [ABI32], modified for 8-byte
alignment, as described in Table 39 below. Whereas [ABI32] requires
that the desc field be 4-byte aligned and padded to a multiple of 4 bytes,
ELF-64 requires that it be 8-byte aligned and padded.

Producers and consumers of .note section information should take care to
avoid conflicts as follows:

● The name field contents should be chosen to minimize the likeli-
hood of conflict with other users. SGI/MIPS producers will use
names of the form "MIPS:producer".

● Producers must preserve existing descriptors from other (un-
known) producers in the note section, in the order found. They
may place their own descriptors wherever they wish in the output
sequence, however. Therefore, descriptor contents must be de-
signed to be independent of their position in the section.

● Consumers must be prepared to ignore descriptors from unknown
producers.

2.15 Compact Relocation Section

This section, generated automatically by the linker (ld) in the ucode sys-
tem, contains various relocation information required by tools like pixie
for program transformation, in a compact form. Prior to Sherwood, this
information was kept in the .comment section (in 32-bit programs). It is
obsoleted in ELF-64 by the .events and .debug_frame sections.

Table 39 Note Descriptor Format

Field Type Comments

namesz Elf64_Word Size in bytes of name field

descsz Elf64_Word Size in bytes of desc field

type Elf64_Word Producer-specific type indicator

name char[] Producer-defined null-terminated string

desc Elf64_Xword[] Producer-defined descriptor

007-4658-001 ELF-64 Object File Format Page 73
The Compact Relocation Section’s attributes are:

name .MIPS.compact_rel

sh_type SHT_MIPS_COMPACT

sh_link SHN_UNDEF

sh_info 0

sh_flags none

requirements obsolete

Page 74 007-4658-001
Section 3 Program Linking and Loading

This section deals with aspects of the object file format specific to execut-
able and DSO files (which we refer to collectively as program files), and
with the processing required by the static linker ld(1) and the dynamic
linker rld(1).

3.1 Linker (ld) Requirements
This section is obviously not an exhaustive list; it is intended to collect
miscellaneous requirements which are not traditional and not obviously
implied by the format description.

The intent of some of these requirements, along with the specification of
most of the sections described above as having the SHF_ALLOC attribute
by default, is to allow a program (or another process monitoring it at runt-
ime, like a debugger) to access the information in its program file by sim-
ple references to its address space, rather than requiring that it explicitly
read the program file.

3.1.1 Headers
The ELF header, program header table, and section header table will be
allocated, i.e. they will be treated like sections with the SHF_ALLOC flag
set. Although they are considered optional by [ABI32], section headers
will be present in a MIPS ABI-compliant program file and may not be
stripped.

3.1.2 Automatically Generated Names
For each section with the SHF_MIPS_NAMES attribute set, the linker will
automatically generate hidden weak external symbols:

__elf_vaddr_name equal to the virtual address of the section

__elf_size_name equal to the size (in bytes) of the section

where "name" is the section name. If the section is not allocatable
(SHF_ALLOC), their values will be zero. If one of these symbols is
referenced, then the linker will set the corresponding section’s
SHF_MIPS_NOSTRIP flag.

The linker will also generate protected external symbols for the ELF
header (with name __elf_header) and the program header table
(__program_header_table). These symbols may be referenced for any
executable or DSO which is part of a process by using dlsym (3X).

007-4658-001 Program Linking and Loading Page 75
3.2 Program Header
The program header of an executable/DSO file consists of an array of de-
scriptors, one per loadable segment plus a few extras. The structure (from
[ABI64]) is as follows:

The segment types in the p_type field are given by the following table:

Table 40 Elf64_Phdr Structure

Field Name Type Description

p_type Elf64_Word Segment descriptor type — see Table 41

p_flags Elf64_Word Flags for segment — see Table 42

p_offset Elf64_Off File offset of segment

p_vaddr Elf64_Addr Virtual start address

p_paddr Elf64_Addr Physical start address

p_filesz Elf64_Xword Byte size in file (may be zero)

p_memsz Elf64_Xword Byte size in memory (may be zero)

p_align Elf64_Xword Required alignment — see [ABI32]

Table 41 Elf64_Phdr Segment Types (p_type)

Name Value Description

PT_NULL 0 Null descriptor — ignore

PT_LOAD 1 Loadable segment

PT_DYNAMIC 2 Dynamic segment — see Table 44

PT_INTERP 3 Interpreter pathname

PT_NOTE 4 Auxiliary information segment

PT_SHLIB 5 Reserved

PT_PHDR 6 Program header segment

PT_LOPROC 0x70000000 First processor-specific type

PT_HIPROC 0x7fffffff Last Processor-specific type

PT_MIPS_REGINFO 0x70000000 Register information segment

PT_MIPS_OPTIONS 0x70000001 Options segment

Page 76 007-4658-001
The segment flag bits in the p_flags field are given by the following table:

3.2.1 Segment Contents

A MIPS executable or DSO typically have a segment layout similar to the
following, although this specification should not be construed to require a
particular layout:

Headers: ELF header
Program header
Section headers

Text: .reginfo
.dynamic
.liblist
.rel.dyn
.conflict
.dynstr
.dynsym
.hash
<debug information sections>
.rodata
.text

Table 42 Elf64_Phdr Segment Flags (p_flags)

Name Value Description

PF_X 0x1 Executable

PF_W 0x2 Writable

PF_R 0x4 Readable

PF_MASKPROC 0xf0000000 Processor-specific flags

PF_MIPS_LOCAL 0x10000000 Thread-local data — see Table 9

007-4658-001 Program Linking and Loading Page 77
Data: .sdata
.litX
.got
.data
.bss

The following are constraints on the memory layout of a MIPS execut-
able or DSO file or memory image.

1. The gp value must be within 2GB of any executable code (manda-
tory). This guarantees that the gp may be established using a 32-bit
offset from the entry point of any function in register t9.

2. Any sections with the SHF_MIPS_GPREL flag must be allocated
entirely within 32KB of the gp value (mandatory). This will nor-
mally include any .sdata or .litX sections, and possibly .got sec-
tions.

3. The executable code for a single executable or DSO may never be
larger than 256MB, and it may never be loaded across a 256MB
boundary.

The linker (ld) should normally group sections into segments according
to the following rules:

1. Sections with the same name and attributes should be grouped to-
gether.

2. Groups from (1) with the same attributes should then be grouped.

3. Groups from (2) may then be grouped if their attributes are consis-
tent with inclusion in a common segment. The rules for such
grouping may be system-specific, and must balance the benefits of
precise segment attributes against improved performance from
limiting the number of segments to be loaded at runtime.

3.3 Dynamic Linking
This section discusses the data structures and issues relevant to dynamic
linking.

3.3.1 Dynamic Section

The Dynamic Section’s attributes are:

name .dynamic

Page 78 007-4658-001
The .dynamic section, which must be identified by a PT_DYNAMIC seg-
ment descriptor for any executable or DSO with DSO dependencies, con-
sists of a table of pairs with the following structure:

The possible tag values, which union element they require, and whether
they are present in executables and/or DSOs, are given by the following
table:

sh_type SHT_DYNAMIC

sh_link The section header index of the associated string table

sh_info 0

attributes SHT_ALLOC + SHT_MIPS_NOSTRIP

requirements may not be stripped

Table 43 Dynamic Structure (Elf64_Dyn)

Field Name Field Type Description

d_tag Elf64_Xword Kind — see

d_un union of:

d_val Elf64_Xword Kind-dependent value

d_ptr Elf64_Addr Kind-dependent address

Table 44 Dynamic Array Tags (d_tag)

Tag Name Value d_un Executable Shared Object

DT_NULL 0 ignored mandatory mandatory

DT_NEEDED 1 d_val optional optional

DT_PLTRELSZ 2 d_val optional optional

DT_PLTGOT 3 d_ptr mandatory a mandatory a

DT_HASH 4 d_ptr mandatory mandatory

DT_STRTAB 5 d_ptr mandatory mandatory

DT_SYMTAB 6 d_ptr mandatory mandatory

DT_RELA 7 d_ptr mandatory optional

007-4658-001 Program Linking and Loading Page 79
DT_RELASZ 8 d_val mandatory optional

DT_RELAENT 9 d_val mandatory optional

DT_STRSZ 10 d_val mandatory mandatory

DT_SYMENT 11 d_val mandatory mandatory

DT_INIT 12 d_ptr optional optional

DT_FINI 13 d_ptr optional optional

DT_SONAME 14 d_val ignored optional

DT_RPATH 15 d_val optional optional a

DT_SYMBOLIC 16 ignored mandatory ignored

DT_REL 17 d_ptr mandatory optional

DT_RELSZ 18 d_val mandatory optional

DT_RELENT 19 d_val mandatory optional

DT_PLTREL 20 d_val optional optional

DT_DEBUG 21 d_ptr optional ignored

DT_TEXTREL 22 ignored optional optional

DT_JMPREL 23 d_ptr optional optional

DT_LOPROC 0x70000000 unspecified unspecified unspecified

DT_HIPROC 0x7fffffff unspecified unspecified unspecified

DT_MIPS_RLD_VERSION 0x70000001 d_val mandatory mandatory

DT_MIPS_TIME_STAMP 0x70000002 d_val optional optional

DT_MIPS_ICHECKSUM 0x70000003 d_val optional optional

DT_MIPS_IVERSION 0x70000004 d_val optional optional

DT_MIPS_FLAGS 0x70000005 d_val mandatory mandatory

DT_MIPS_BASE_ADDRESS 0x70000006 d_ptr mandatory mandatory

DT_MIPS_MSYM 0x70000007 d_ptr optional optional

DT_MIPS_CONFLICT 0x70000008 d_ptr optional optional

DT_MIPS_LIBLIST 0x70000009 d_ptr optional optional

DT_MIPS_LOCAL_GOTNO 0x7000000a d_val mandatory mandatory

DT_MIPS_CONFLICTNO 0x7000000b d_val optional optional

DT_MIPS_LIBLISTNO 0x70000010 d_val optional optional

Table 44 Dynamic Array Tags (d_tag)

Tag Name Value d_un Executable Shared Object

Page 80 007-4658-001
DT_MIPS_SYMTABNO 0x70000011 d_val mandatory mandatory

DT_MIPS_UNREFEXTNO 0x70000012 d_val optional optional

DT_MIPS_GOTSYM 0x70000013 d_val mandatory mandatory

DT_MIPS_HIPAGENO 0x70000014 d_val optional optional

DT_MIPS_RLD_MAP 0x70000016 d_val optional optional

DT_MIPS_DELTA_CLASS 0x70000017 d_val optional optional

DT_MIPS_DELTA_CLASS_NO 0x70000018 d_val optional optional

DT_MIPS_DELTA_INSTANCE 0x70000019 d_val optional optional

DT_MIPS_DELTA_INSTANCE_NO 0x7000001a d_val optional optional

DT_MIPS_DELTA_RELOC 0x7000001b d_val optional optional

DT_MIPS_DELTA_RELOC_NO 0x7000001c d_val optional optional

DT_MIPS_DELTA_SYM 0x7000001d d_val optional optional

DT_MIPS_DELTA_SYM_NO 0x7000001e d_val optional optional

DT_MIPS_DELTA_CLASSSYM 0x70000020 d_val optional optional

DT_MIPS_DELTA_CLASSSYM_NO 0x70000021 d_val optional optional

DT_MIPS_CXX_FLAGS 0x70000022 d_val optional optional

DT_MIPS_PIXIE_INIT 0x70000023 d_val optional optional

DT_MIPS_SYMBOL_LIB 0x70000024 d_val optional optional

DT_MIPS_LOCALPAGE_GOTIDX 0x70000025 d_val optional optional

DT_MIPS_LOCAL_GOTIDX 0x70000026 d_val optional optional

DT_MIPS_HIDDEN_GOTIDX 0x70000027 d_val optional optional

DT_MIPS_PROTECTED_GOTIDX 0x70000028 d_val optional optional

DT_MIPS_OPTIONS 0x70000029 d_ptr mandatory mandatory

DT_MIPS_INTERFACE 0x7000002a d_ptr optional optional

DT_MIPS_DYNSTR_ALIGN 0x7000002b d_val optional optional

DT_MIPS_INTERFACE_SIZE 0x7000002c d_val optional optional

DT_MIPS_RLD_TEXT_RESOLVE_ADDR 0x7000002d d_ptr optional optional

DT_MIPS_PERF_SUFFIX 0x7000002e d_val optional optional

DT_MIPS_COMPACT_SIZE 0x7000002f d_val optional optional

DT_MIPS_GP_VALUE 0x70000030 d_ptr optional optional

Table 44 Dynamic Array Tags (d_tag)

Tag Name Value d_un Executable Shared Object

007-4658-001 Program Linking and Loading Page 81
Some of the specific requirements for these tags include:

DT_NULL This tag must terminate the list of dynamic section tags.

DT_NEEDED This is a string table offset of a required library’s name.
There must be such an entry for each required DSO. See
[ABI32].

DT_PLTGOT This member has the address of the .got section. It is man-
datory for MIPS executables and DSOs. (A completely
non-shared executable with no DSO dependencies might
have no GOT, but ABI compliance requires use of the libc
DSO.)

DT_HASH This member gives the symbol hash table address.

DT_STRTAB This member gives the string table address (the .dynstr
section). The string table contains symbol names, library
names, and other strings required in the executable/DSO.

DT_STRSZ This member gives the byte size of the DT_STRTAB table.

DT_SYMTAB This member gives the symbol table address (the .dynsym
section). All entries in a 64-bit file are Elf64_Sym type
(see Table 11)

DT_SYMENT This member gives the byte size of a DT_SYMTAB entry.

DT_MIPS_SYMTABNO

This member contains the number of entries in the
.dynsym section.

DT_MIPS_AUX_DYNAMIC 0x70000031 d_ptr optional optional

DT_MIPS_DIRECT 0x70000032 d_val optional optional

DT_MIPS_RLD_OBJ_UPDATE 0x70000033 d_val optional optional

a These requirements are different in [ABI32M] than in [ABI32].

Table 44 Dynamic Array Tags (d_tag)

Tag Name Value d_un Executable Shared Object

Page 82 007-4658-001
DT_RELA This member gives the address of a relocation table with
entry type Elf64_Rela (see Table 29). Elf-64 executables
will normally use this type of relocation because it is
required for some of the relocation types (e.g.
R_MIPS_HI16), but an ABI-compliant system must cope
with Elf64_Rel tables as well.

DT_RELASZ This member gives the byte size of the DT_RELA table.

DT_RELAENT This member gives the byte size of a DT_RELA entry.

DT_SONAME This member gives the string table offset of the containing
DSO’s name.

DT_RPATH This member gives the string table offset of a shared li-
brary search path. If it is present in a referenced DSO at
static link time, it is included in the final executable’s
DT_RPATH.

DT_SYMBOLIC This member, if present, causes references within the
containing DSO to be resolved locally if possible (i.e. it
makes them all non-preemptible).

DT_TEXTREL This member, if absent, implies that runtime relocations
will not change a non-writable segment.

DT_MIPS_RLD_VERSION

This member gives a version ID for the Runtime Linker
Interface.

DT_MIPS_TIME_STAMP This member gives a timestamp.

DT_MIPS_ICHECKSUM

This member gives a checksum of all external strings
(names?) and common sizes.

DT_MIPS_IVERSION

This member gives the string table index of a compatible
version string.

DT_MIPS_FLAGS

This member contains MIPS-specific flags (see below).

007-4658-001 Program Linking and Loading Page 83
DT_MIPS_BASE_ADDRESS

This member contains the base address assumed for the
executable/DSO at static link time. It is used to adjust ad-
dresses (e.g. in the GOT) when a DSO is relocated at run
time. It is the preferred address for quickstart purposes.

DT_MIPS_CONFLICT

This member contains the address of the .conflict section.
It is mandatory if there is a .conflict section.

DT_MIPS_CONFLICTNO

This member contains the number of entries in the
.conflict section. It is mandatory if DT_MIPS_CONFLICT is
present.

DT_MIPS_LIBLIST

This member contains the address of the .liblist section.

DT_MIPS_LIBLISTNO

This member contains the number of entries in the .liblist
section. It is required if DT_MIPS_LIBLIST is present.

DT_MIPS_LOCAL_GOTNO

This member contains the number of local GOT entries.

DT_MIPS_LOCALPAGE_GOTIDX

This member contains the index in the GOT of the first
page table entry for a segment. There will be one per seg-
ment, in the same order as the segments in the segment ta-
ble. They are mandatory if there are page table entries for
any segment, and the value for a segment without any
page table entries must be zero.

DT_MIPS_LOCAL_GOTIDX

This member contains the index in the GOT of the first en-
try for a local symbol. It is mandatory if there are local
symbol entries.

DT_MIPS_HIDDEN_GOTIDX

Page 84 007-4658-001
This member contains the index in the GOT of the first en-
try for a hidden symbol. It is mandatory if there are hidden
symbol entries.

DT_MIPS_PROTECTED_GOTIDX

This member contains the index in the GOT of the first en-
try for a protected symbol. It is mandatory if there are pro-
tected symbol entries.

DT_MIPS_UNREFEXTNO

This member contains the index into the dynamic symbol
table of the first external symbol that is not referenced in
the same object.

DT_MIPS_GOTSYM

This member contains the index into the dynamic symbol
table of the first entry that corresponds to an external sym-
bol with an entry in the GOT. See Section 3.5.

DT_MIPS_HIPAGENO

This member contains the number of page table entries in
the GOT. It is used by profiling tools and is optional.

DT_MIPS_OPTIONS

This member contains the address of the Options section,
containing various execution options. It is mandatory.

DT_MIPS_INTERFACE

This member contains the address of the .MIPS.interface
section, describing subprogram interfaces. It is mandatory
if there is such a section in the executable/DSO.

DT_MIPS_INTERFACE_SIZE

This member contains the size in bytes of the .MIPS.inter-
face section. It is mandatory if there is such a section in
the executable/DSO.

DT_MIPS_RLD_TEXT_RESOLVE_ADDR

If present, this member contains the link-time address of
_rld_text_resolve to place in GOT entry 0. If absent (or if
present and the value is not the same as the address in rld

007-4658-001 Program Linking and Loading Page 85
of the _rld_text_resolve function), then rld places the true
address of _rld_text_resolve into GOT entry 0 at run-time.

DT_MIPS_SYMBOL_LIB

This optional member contains the address of the
.MIPS.symlib section, describing a mapping from the
.dynsym symbols to the DSOs where they are defined.

The following tags are not normally present in a MIPS object file:

DT_JMPREL This member gives the address of relocation entries asso-
ciated solely with the procedure linkage table. If present,
DT_PLTREL and DT_PLTRELSZ are also required.

DT_PLTRELSZ This member gives the total byte size of the relocation en-
tries associated with the PLT. Mandatory if DT_JMPREL is
present.

DT_REL This member gives the address of a relocation table with
entry type Elf64_Rel (see Table 29, and DT_RELA above).

DT_RELSZ This member gives the byte size of the DT_RELA table.

DT_RELENT This member gives the byte size of a DT_RELA entry.

DT_PLTREL This member gives the kind of relocation (DT_RELA or
DT_REL) in the procedure linkage table.

DT_MIPS_PERF_SUFFIX This member contains an index to the string ta-
ble. Rld appends the specified string to the shared object
name specified in any dlopen calls. (For example, pixie
creates binaries and shared objects with suffix ".pixie".
Although it changes the shared objects in the liblist of an
object to include the correct suffix, it cannot change the
pathnames passed by the program to dlopen.)

DT_MIPS_PIXIE_INIT This member contains the address of an initializa-
tion routine created by pixie. (DT_INIT cannot be used for
this purpose is because pixie depends on a specific order
for its initialization routines, which is different from the
ABI-specified DT_INIT order.

Page 86 007-4658-001
DT_MIPS_COMPACT_SIZE This member contains the size of a ucode
compact relocation header record, and is not present in
-n32 or -64 ELF files..

DT_MIPS_GP_VALUE This member contains the GP value of a
specific GP relative range. This is used with multigot and
is dynamic table order sensitive.

DT_MIPS_AUX_DYNAMIC This member contains the address of an
auxiliary dynamic table in the case of multigot. The order
of these records should correspind to the order of the
DT_MIPS_GP_VALUE records as the latter contain the
GP value representing the corresponding dynamic table.

DT_MIPS_DIRECT If this member exists it tells the runtime
linker (rld) that the .symlib section is fully filled out and
preemption is not used. This does not affect normal reso-
lution of UNDEF symbols.

DT_MIPS_RLD_OBJ_UPDATE This member gives the dynamic symbol
entry of a callback function defined in this dso/a.out. The
callback function is called by rld whenever a change to it’s
object list has occured, usually through dynamic open and
close operations.

This callback function has a void type and has one integer
parameter.

 void (*)(int version)
where version == 1

No particular function name is required. Rld will call
whatever symbol is referenced by the .dynsym index. It is
suggested, but not required that the symbol be marked
STO_HIDDEN and should never be called by anyone oth-
er than rld. The symbol should however be marked
STT_FUNC.

The symbol must not be SHN_ABS, SHN_COMMON or
SHN_UNDEF. It must be a defined symbol in the
DSO/a.out with DT_MIPS_RLD_OBJ_UPDATE set.

007-4658-001 Program Linking and Loading Page 87
Issue: The above list of dynamic tag descriptions is not yet complete.

The MIPS-specific flags given by DT_MIPS_FLAGS are given by the fol-
lowing table:

Issue: Is RHF_NOTPOT obsolete?

3.4 Shared Object Dependencies
The System V ABI [ABI32] defines the default library search path to be
/usr/lib. The MIPS old 32-bit ABI [ABI32M], defines the default library
search path to be /usr/lib:/lib:/lib/cmplrs/cc:/usr/lib/cmplrs/cc:/opt/lib. The
runtime loader (rld) overrides this default with the value of the environ-
ment variable LD_LIBRARY_PATH if set.

Table 45 DT_MIPS_FLAGS Masks

Name Value Description

RHF_NONE 0x00000000 None

RHF_QUICKSTART 0x00000001 Use runtime loading shortcuts if possible (see Section
3.8)

RHF_NOTPOT 0x00000002 Hash size not a power of two

RHF_NO_LIBRARY_REPLACEMENT 0x00000004 Ignore LD_LIBRARY_PATH

RHF_NO_MOVE 0x00000008 DSO addresses may not be relocated by rld

RHF_SGI_ONLY 0x00000010 Contains SGI-specific features

RHF_GUARANTEE_INIT 0x00000020 Guarantee that .init will finish executing before any
non-.init code in the DSO is called

RHF_DELTA_C_PLUS_PLUS 0x00000040 Contains Delta C++ code

RHF_GUARANTEE_START_INIT 0x00000080 Guarantee that .init will begin executing before any
non-.init code in the DSO is called

RHF_PIXIE 0x00000100 Generated by pixie

RHF_DEFAULT_DELAY_LOAD 0x00000200 Delay-load DSO by default

RHF_REQUICKSTART 0x00000400 Object may be requickstarted

RHF_REQUICKSTARTED 0x00000800 Object has been requickstarted

RHF_CORD 0x00001000 Generated by cord

RHF_NO_UNRES_UNDEF 0x00002000 Object contains no unresolved undef symbols

RHF_RLD_ORDER_SAFE 0x00004000 Symbol table is in a safe order

ISSUE !

ISSUE !

Page 88 007-4658-001
This 64-bit ABI defines the default library search path to be
/usr/lib64:/lib64:/opt/lib64. It is overridden by the environment variable
LD_LIBRARY64_PATH if set, or if not by LD_LIBRARY_PATH if set.

This new 32-bit ABI defines the default library search path to be
/usr/lib32:/lib32:/opt/lib32. It is overridden by the environment variable
LD_LIBRARYN32_PATH if set, or if not by LD_LIBRARY_PATH if set.

3.5 The Global Offset Table
The organization of the GOT generally follows that of [ABI32M]. It is
essentially a table of addresses, 64 bits each. We summarize it here pri-
marily for completeness.

The GOT itself is located by the DT_PLTGOT dynamic tag. It is logically
two tables. The first (with DT_MIPS_LOCAL_GOTNO entries) consists of
local GOT addresses, i.e. non-preemptible (protected) addresses defined
within the executable/DSO. They are initialized to their quickstart values,
and must be relocated if and only if the DSO is loaded at a different ad-
dress than that given by its DT_MIPS_BASE_ADDRESS dynamic tag.

The second part of the GOT is the global GOT addresses, i.e. those which
are undefined or preemptible. Each entry in this part has an associated
symbol entry in the .dynsym section. Those symbols start at the symbol
table index given by the DT_MIPS_GOTSYM dynamic tag, and are in the
same order as the global GOT entries. If a symbol is defined in the DSO
(but preemptible), the GOT entry will normally be initialized to a quick-
start value. See Figures 5-9 and 5-10 of [ABI32M] for details of the treat-
ment.

Sections in .o files containing addresses destined for the GOT must have
the SHF_MIPS_GPREL attribute, and will normally have the
SHF_MIPS_MERGE attribute (indicating that duplicates are to be
removed). Code references to the GOT in .o files may need to cope with
offsets from gp greater than 16 bits much more often than in 32-bit
programs (because the GOT entries are twice the size). ABI-compliant
objects should use 32-bit offsets if it is possible that they will be linked
into programs with large GOTs.

Observe that it is acceptable to allocate non-GOT data at gp-relative ad-
dresses, although the current 32-bit system does not do so. Such data
(e.g. the .sdata, .sbss, and .litX sections) should be allocated first in the

007-4658-001 Program Linking and Loading Page 89
global data area, since its reason for being allocated here is normally to
achieve short-offset addressing.

3.6 Symbol Resolution

STB_LOCAL symbols are always resolved within the executable/DSO
where they appear by the static linker. This is also the case with
STB_GLOBAL or STB_WEAK symbols with export class STO_INTERNAL,
STO_HIDDEN, or STO_PROTECTED. (See Section 2.5 for identification of
these classes.) Other global or weak symbols, however, are preemptible,
i.e. they may be resolved to a definition in a different object file
(executable/DSO) by the dynamic linker. The rules for doing so are as
follows:

1. Create a search order of the executable and DSOs which make up
the running process. The executable is first. Next come the DSOs
which it references, given by the DT_NEEDED tags in order of
appearance. (If there is a DT_LIBLIST tag, the list in the .liblist
section is used instead — it should therefore be consistent with the
DT_NEEDED order.) Then the DT_NEEDED tags of these DSOs are
searched, and so on recursively breadth-first until no new DSOs
are identified.

2. Undefined non-COMMON symbol references are resolved by the
first object file on the list which provides a strong symbol defini-
tion, if any, or if not by the first object file which provides a weak
symbol definition.

3. Undefined COMMON symbol references are resolved by the first
object file on the list which defines the symbol (i.e. provides initial
values), if any (again giving priority to strong definitions), or if not
by the first object file where it appears.

3.7 Relocation
As required in [ABI32M], there will typically be exactly one relocation
section, named .rel.dyn, which will normally contain only
R_MIPS_REL32 relocations. However, we do not require this, and the
dynamic linker must deal with any relocation sections given by DT_REL
or DT_RELA tags, and with any legal relocation types.

Unlike the current MIPS systems, the GOT or other segments containing
relocatable values should not be made writable (unless page sharing with
writable data requires it) — if there is a DT_TEXTREL tag, the dynamic
linker must be prepared to relocate objects in read-only pages. Also, the

Page 90 007-4658-001
system must provide the process with a private copy of any pages which
are relocated dynamically.

3.8 Quickstart and Process Initiation Optimizations
We use the same quick start-up mechanisms as [ABI32M]. The definition
of the .liblist and .conflict sections is unchanged from the 32-bit version
except that the .conflict section contains 64-bit addresses (type
Elf64_Addr).

We impose the same ordering constraints as [ABI32M] as conditions for
using Quickstart functionality:

● The GOT-mapped portion of the .dynsym section must be ordered
by increasing values in the st_value field. This requires that the .got
section have the same order, since it must correspond to the
.dynsym section.

● The .rel.dyn section must have all local entries first, followed by
the external entries. Within each of these subsections, the entries
must be ordered by increasing symbol index.

3.8.1 MIPS Symbol Table Extension Section
A MIPS symbol table extension section is unchanged from [ABI32M].
Its purpose is to facilitate relocation which must occur in spite of quick-
start. It has the following attributes:

This section is an array of Elf64_msym elements, each corresponding to
an entry in the .dynsym section. If it is present, the symbols in the
.dynsym section must be ordered with all external symbols first, followed
by all local symbols. Additionally, all symbols of the same name must
have contiguous .dynsym entries. If this section does not exist, there are
no ordering constraints on the .dynsym section (unless
RHF_RLD_ORDER_SAFE is set in DT_MIPS_FLAGS, which implies that
all UNDEF global entries will precede all non-UNDEF entries). The

name .msym

sh_type SHT_MIPS_MSYM

sh_link Section header index of .dynsym, or 0 (see note below)

sh_info Section header index of .rel.dyn, or 0 (see note below)

sh_flags SHF_ALLOC

requirements Must be present for quickstart

007-4658-001 Program Linking and Loading Page 91
layout of Elf64_msym elements, shown in Table 46 below, is defined in
header file /usr/include/msym.h.

Note: SGI implementations today are inconsistent about what they put in
the sh_link and sh_info fields. Rld does not depend on them, and tools
should validate the indicated sections by section type before doing so.
Future implementations should fill these fields as specified.

The ms_hash_value member contains the static link time precomputed
hash value for the symbol, without the final step of reduction modulo the
hash table size. If this section (.msym) is present, the hash table size must
be a power of two, and the hash table index of a symbol is computed by
simply AND’ing ms_hash_value with the hash table size minus 1.

The ms_info member contains two sub-members. The high-order 24 bits
are the index of the first .rel.dyn entry for this symbol. The low-order byte
contains the flags in Table 47 below.

The MS_ALIAS flag means that any relocations to the symbol inside this
object must be resolved as if it were an undefined symbol, but references
outside this object may resolve to this symbol.

Table 46 Symbol Table Extension Structure (Elf64_msym)

Field name Type Comments

ms_hash_value Elf64_Word Precomputed hash value

ms_info Elf64_Word Additional information:

ms_info >> 8 First relocation section entry
for the symbol.

ms_info & 0xff Flags (see Table 47)

Table 47 ELF64_msym Flag Masks

Mask Name Value Comments

MS_ALIAS 0x01 Symbol is an alias

Page 92 007-4658-001
3.8.2 Shared Object List Section
A .liblist section is unchanged from [ABI32M]. Its purpose is to facilitate
preemption of symbols in quickstarted programs, which requires check-
ing that the DSO version loaded is the same one used to quickstart. It is
an array of structures providing identification information for the DSOs
on which a quickstarted object depends.

The .liblist section has the following attributes:

Each of the .liblist entries has the structure given by Table 48 below.

The l_name field specifies the name of a shared object. Its value is a string
table index. The name may be a trailing component of a pathname speci-
fied in the DT_RPATH dynamic tag or the LD_LIBRARY*_PATH environ-
ment variable, or it may be a name containing ’/’ characters interpreted as
relative to ’.’, or it may be a full pathname.

The l_time_stamp field is a 32-bit timestamp, which may be combined
with the l_checksum value and the l_version string to form a unique id for
this shared object.

name .liblist

sh_type SHT_MIPS_LIBLIST

sh_link Section header index of .dynstr

sh_info number of entries

sh_flags SHF_ALLOC

requirements Must be present for quickstart if conflicts exist

Table 48 Shared Object Information Structure (Elf64_lib)

Field name Type Comments

l_name Elf64_Word Shared object name (.dynstr index)

l_time_stamp Elf64_Word Timestamp

l_checksum Elf64_Word Sum of all externally visible sym-
bols’ string names and common sizes

l_version Elf64_Word Interface version (.dynstr index)

l_flags Elf64_Word Flags (see Table 47)

007-4658-001 Program Linking and Loading Page 93
The l_version field specifies the interface version, as a string in the .dynstr
section. The version is a single string containing no colons (:). It is com-
pared against a colon separated string of versions pointed to by a dynam-
ic section entry of the shared object. Shared objects with matching names
are considered incompatible if the interface version strings are deemed
incompatible. An index value of zero means no version string is speci-
fied.

The l_flags field contains a set of 1-bit flags, defined in Table 49 below.

Table 49 Library List Flags, l_flags

Name Value Description

LL_NONE 0x00000000 None

LL_EXACT_MATCH 0x00000001 At runtime use a unique ID com-
posed of l_time_stamp, l_checksum,
and l_version fields to demand that
the run-time dynamic shared library
match exactly the shared library used
at static link time. Set by the ld op-
tion -exact_version, or turned off by
the ld option -ignore_version.

LL_IGNORE_INT_VER 0x00000002 At runtime, ignore any version in-
compatibilities between the dynamic
shared library and the library used at
static link time.

LL_REQUIRE_MINOR 0x00000004 The entry must match both major and
minor revision numbers. Ignored for
DSOs not marked RHF_SGI_ONLY.
Turned on by the ld option
-require_minor.

LL_EXPORTS 0x00000008 Whenever the containing DSO is ex-
posed to the static linker, this DSO is
too, as though it were explicitly listed
on the linker command line.

LL_DELAY_LOAD 0x00000010 The named DSO is not loaded until
some function in it is called via lazy
function resolution, at which time rld
does an sgidladd() of the DSO, and
after which lazy function resolution
proceeds as usual for functions in the
DSO. Turned on by the ld options
-default_delay_load or
-delay_load.

Page 94 007-4658-001
At most one of LL_EXACT_MATCH, LL_IGNORE_INT_VER, or
LL_REQUIRE_MINOR may be set for any particular .liblist entry. The re-
sult of combining them is undefined.

3.8.3 Conflict Section
A .conflict section is unchanged from [ABI32M]. Its purpose is to facili-
tate preemption of symbols in quickstarted programs. It is an array of in-
dexes into the .dynsym section. Each identifies a symbol with attributes
that conflict with a shared object on which it depends, either in type or
size, such that this definition will preempt the shared object’s definition.
The dependent shared object is identified at static link time.

The .conflict section has the following attributes:

Note: SGI implementations today are inconsistent about what they put in
the sh_link and sh_info fields. Rld does not depend on them, and tools
should validate the indicated sections by section type before doing so.
Future implementations should fill these fields as specified.

Each element of a .conflict section is an Elf64_conflict struct as given by
Table 50 below.

LL_DELTA 0x00000020 Delta C++ library

name .conflict

sh_type SHT_MIPS_CONFLICT

sh_link Section header index of .dynsym, or 0 (see note below)

sh_info 0

sh_flags SHF_ALLOC

requirements Must be present for quickstart if conflicts exist

Table 50 Conflict Structure (Elf64_conflict)

Field name Type Comments

c_index Elf64_Addr .dynsym index of conflicting symbol

Table 49 Library List Flags, l_flags

Name Value Description

007-4658-001 Program Linking and Loading Page 95
3.8.4 Symbol Library Section
The .MIPS.symlib section is used to improve rld lookup performance. It is
logically an extension of the external symbol (.dynsym) array
and is an array in parallel to the .dynsym array. If this section exists for a
DSO or executable it has one entry for each symbol. It is not required un-
less there are delay-loaded DSOs in a program.

The .MIPS.symlib section has the following attributes:

Each entry in this section is an unsigned index into the .liblist section,
identifying which DSO satisfies external references to the corresponding
.dynsym symbol. If the entry is zero, there is no information. Otherwise,
the entry minus one is the .liblist index of a DSO satisfying the reference.

If the .liblist section contains no more than 254 entries, then each
.MIPS.symlib entry is a single 8 bit unsigned value. If the the .liblist
section contains more than 254 entries, then each .MIPS.symlib entry is a
16 bit unsigned value. (At present, no .liblist section with more than 64K
entries is envisaged. If required, a decision will have to be made to either
use 32-bit entries or some more space-efficient encoding.)

name .MIPS.symlib

sh_type SHT_MIPS_SYMBOL_LIB

sh_link Section header index of .dynstr

sh_info Section header index of .liblist

sh_flags SHF_ALLOC

requirements Optional

Page 96 007-4658-001
Section 4 Archive File Format

The archive file (i.e. ar(4) format) may be used to collect arbitrary files;
we are concerned here with the specific case where those files are ELF
object files. This format is based on the System V ABI [ABI32]; in par-
ticular, the magic string and member header format are unchanged.

Unlike the COFF archive format, we do not generate an archive hash ta-
ble, since the IRIX 6.0 linker (ld) does not use it.

The linker (ld) will work more efficiently when component object files
(not their file headers) are 8-byte aligned. Generating tools (especially
the compilers) are encouraged to arrange this by padding them, i.e. by in-
creasing the length of the component files to a multiple of 8 bytes.

4.1 Basic File Format

An object file archive consists of the following sequence of components.
In general, each must start on a 2-byte boundary, and is padded with a
newline if necessary to make it even length. Its ar_size in its header, how-
ever, does not include the padding byte.

● The archive magic string, ARMAG ("!<arch>\n"), SARMAG (8)
bytes long.

The remaining components are all preceded with a member header as
specified by [ELF32].

● An optional archive symbol table. This table is discussed further
below.

● An optional archive string table. Such a component has ar_name
="//" in its header, blank padded. The string table consists of a se-
quence of null-terminated names.

● Some number of "normal" member files. The ar_name field of such
a component contains its filename, slash-terminated and
blank-padded, if it fits. Otherwise it contains a slash followed by
the decimal representation of the name’s file offset in the archive
string table.

007-4658-001 Archive File Format Page 97
4.2 Archive Symbol Table Components

We define below two symbol table component formats. These are the cur-
rent 32-bit ABI format and an analogous 64-bit form for 64-bit ELF ob-
ject files.

● 32-bit generic ABI symbol table (see [ABI32]).

Such a component has ar_name="/" in its header, i.e. a null file
name, blank padded. This symbol table consists of:

❍ The number of symbols defined (a 32-bit count).

❍ A sequence of 32-bit file offsets, one for each symbol, relative
to the beginning of the archive file.

❍ A sequence of null-terminated symbol names, one for each
symbol.

The sequences of file offsets and symbol names must correspond
1-1, and they must occur in the same order as their containing files
in the archive, i.e. the file offsets must be in non-decreasing order.
There may be multiple definitions of a single name (from different
archived object files).

This particular component must be 4-byte aligned, and hence must
precede all normal files if present. It must be a multiple of 4 bytes
in size; it should be null-padded if necessary, and ar_size in its
header should include the padding. (The alignment and padding re-
quirement is a modification to the [ABI32] format.)

● 64-bit generic ABI style symbol table.

Such a component has ar_name="/SYM64/" in its header, blank
padded. This name starts like a null name (slash) but then contains
a string in the usual padding characters to identify the format.

This symbol table consists of:

❍ The number of symbols defined (a 64-bit count).

❍ A sequence of 64-bit file offsets, one for each symbol, relative
to the beginning of the archive file.

❍ A sequence of null-terminated symbol names, one for each
symbol.

The sequences of file offsets and symbol names must correspond
1-1, and they must occur in the same order as their containing files
in the archive, i.e. the file offsets must be in non-decreasing order.
There may be multiple definitions of a single name.

This form of the symbol table is only used for archives of 64-bit
ELF object files; in such cases it replaces the generic ELF form.

Page 98 007-4658-001
This particular component must be 8-byte aligned, and hence must
precede all normal files if present. It must be a multiple of 8 bytes
in size; it should be null-padded if necessary, and ar_size in its
header should include the padding. (The alignment and padding re-
quirement is a modification to the [ABI32] format.)

4.3 Archive Hash Table Components

4.4 Discussion
We have made one significant extension to the [ABI32] definition:

● In order to deal with archive files potentially larger than 4GB in
size, we have added a 64-bit analogue of the 32-bit symbol table
component, extended in the obvious way, i.e. by changing the sym-
bol count and file offsets to 64-bit values. It is distinguished from
the 32-bit form only by a special string in padding area of its
ar_name field. We intend to support this option only for archives of
64-bit ELF object files.

Initially, at least, MIPS tools will support the 32-bit forms of the symbol
and hash tables for archives consisting solely of 32-bit ELF object files,
and the 64-bit forms for archives consisting solely of 64-bit ELF object
files. However, it may prove desirable to use the 32-bit forms even for
64-bit object files because they are much more compact than the 64-bit
forms, and the 64-bit file offsets will be required only very rarely. There-
fore, tools which must deal with either format anyway should avoid de-
pending on this restriction if possible.

007-4658-001 Archive File Format Page 99
Bibliography

[ABI32] AT&T, SYSTEM V APPLICATION BINARY INTERFACE, 1990,
Unix Press (Prentice-Hall).

[ABI32M] AT&T, SYSTEM V APPLICATION BINARY INTERFACE MIPS Pro-
cessor Supplement, 1991, Unix Press (Prentice-Hall).

[ABI64] SPARC International, SYSTEM V APPLICATION BINARY INTER-
FACE Generic 64-Bit Extensions, March7, 1992, Delta Document 1.20
(Draft).

[AsmPG] MIPS Computer Systems, Inc., Assembly Language Programmer’s
Guide, May 1989 (Order Number 3201DOC).

[DWARF-1] Unix International, Programming Languages SIG, DWARF Debugging
Information Format, Version 1.

[DWARF] Unix International, Programming Languages SIG, DWARF Debugging
Information Format, Version 2, Revision 2.0.0 (July 27, 1993).

[IrisCG] Silicon Graphics Computer Systems, Inc., IRIS-4D Series Compiler
Guide, February 1992 (Order Number 007-0905-030).

[Symbols] http://sahara.mti/SGIABI/Symbols.html

	64-bit ELF Object File Specification
	Section 1 Introduction
	1.1 Objectives
	1.2 Approach
	1.3 Conventions
	1.4 Open Issues
	1.5 Changes from Version 2.0

	Section 2 ELF-64 Object File Format
	2.1 Infrastructure
	2.2 ELF-64 Header
	2.3 ELF-64 Section Header
	2.4 String Table
	2.5 Symbol Table
	2.5.1 Split Common Symbols

	2.6 Hash Table
	2.7 Register Information Section
	2.8 Options Section
	2.8.1 Register Information Option Descriptor
	2.8.2 Exception Information Option Descriptor
	2.8.3 Section Padding Option Descriptor
	2.8.4 Hardware Patch Option Descriptor
	2.8.5 Hardware AND/OR Patch Option Descriptors
	2.8.6 Fill Value Option Descriptor
	2.8.7 Tags Option Descriptor
	2.8.8 GP Group Option Descriptor
	2.8.9 Ident Option Descriptor
	2.8.10 Page Size Option Descriptor

	2.9 Relocation
	2.9.1 Rules for Interpreting Relocation Records
	2.9.2 Semantics of the Relocation Types
	2.9.3 Examples
	2.9.4 Discarded Relocations

	2.10 Event Location Section
	2.11 Interface Section
	2.11.1 Linker Processing

	2.12 Section Content Classification
	2.13 Comment Section
	2.14 Note Section
	2.15 Compact Relocation Section

	Section 3 Program Linking and Loading
	3.1 Linker (ld) Requirements
	3.1.1 Headers
	3.1.2 Automatically Generated Names

	3.2 Program Header
	3.2.1 Segment Contents

	3.3 Dynamic Linking
	3.3.1 Dynamic Section

	3.4 Shared Object Dependencies
	3.5 The Global Offset Table
	3.6 Symbol Resolution
	3.7 Relocation
	3.8 Quickstart and Process Initiation Optimizations
	3.8.1 MIPS Symbol Table Extension Section
	3.8.2 Shared Object List Section
	3.8.3 Conflict Section
	3.8.4 Symbol Library Section

	Section 4 Archive File Format
	4.1 Basic File Format
	4.2 Archive Symbol Table Components
	4.3 Archive Hash Table Components
	4.4 Discussion

	Bibliography

